INFINEON SGB20N60

SGP20N60
SGB20N60, SGW20N60
Fast S-IGBT in NPT-technology
• 75% lower Eoff compared to previous generation combined with
low conduction losses
• Short circuit withstand time – 10 µs
• Designed for:
- Motor controls
- Inverter
• NPT-Technology for 600V applications offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
Type
VCE
IC
VCE(sat)
Tj
600V
20A
2.4V
150°C
C
G
E
Package
Ordering Code
TO-220AB
Q67041-A4712-A2
SGB20N60
TO-263AB
Q67041-A4712-A4
SGW20N60
TO-247AC
Q67040-S4236
SGP20N60
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCE
DC collector current
IC
Value
600
Unit
V
A
TC = 25°C
40
TC = 100°C
20
Pulsed collector current, tp limited by Tjmax
ICpul s
80
Turn off safe operating area
-
80
Gate-emitter voltage
VGE
±20
V
Avalanche energy, single pulse
EAS
115
mJ
tSC
10
µs
Ptot
179
W
-55...+150
°C
VCE ≤ 600V, Tj ≤ 150°C
IC = 20 A, VCC = 50 V, RGE = 25 Ω,
start at Tj = 25°C
1)
Short circuit withstand time
VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C
Power dissipation
TC = 25°C
Tj , Tstg
Operating junction and storage temperature
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
1
Mar-00
SGP20N60
SGB20N60, SGW20N60
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
0.7
K/W
Characteristic
RthJC
IGBT thermal resistance,
junction – case
RthJA
Thermal resistance,
TO-247AC
40
junction – ambient
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
Typ.
max.
600
-
-
1.7
2
2.4
T j =1 5 0° C
-
2.4
2.9
3
4
5
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V , I C = 5 00 µA
Collector-emitter saturation voltage
VCE(sat)
V
V G E = 15 V , I C = 20 A
T j =2 5 °C
Gate-emitter threshold voltage
VGE(th)
I C = 70 0 µA , V C E = V G E
Zero gate voltage collector current
ICES
V C E = 60 0 V, V G E = 0 V
µA
T j =2 5 °C
-
-
40
T j =1 5 0° C
-
-
2500
Gate-emitter leakage current
IGES
V C E = 0V , V G E =2 0 V
-
-
100
nA
Transconductance
gfs
V C E = 20 V , I C = 20 A
-
14
-
S
Input capacitance
Ciss
V C E = 25 V ,
-
1100
1320
pF
Output capacitance
Coss
V G E = 0V ,
-
107
128
Reverse transfer capacitance
Crss
f= 1 MH z
-
63
76
Gate charge
QGate
V C C = 48 0 V, I C =2 0 A
-
100
130
nC
T O - 24 7A C
-
7
-
nH
F eh le r !
V erw e is qu el le
ko n n t e n i ch t
g ef u n d e n
w erd en.
-
13
V G E = 15 V ,t S C ≤ 10 µs
V C C ≤ 6 0 0 V,
T j ≤ 15 0° C
-
200
-
A
Dynamic Characteristic
V G E = 15 V
LE
Internal emitter inductance
measured 5mm (0.197 in.) from case
1)
Short circuit collector current
1)
IC(SC)
Allowed number of short circuits: <1000; time between short circuits: >1s.
2
Mar-00
SGP20N60
SGB20N60, SGW20N60
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
Unit
IGBT Characteristic
Turn-on delay time
td(on)
T j =2 5 °C ,
-
36
46
Rise time
tr
V C C = 40 0 V, I C = 2 0 A,
-
30
36
Turn-off delay time
td(off)
V G E = 0/ 15 V ,
-
225
270
Fall time
tf
R G = 16 Ω,
-
54
65
Turn-on energy
Eon
-
0.44
0.53
Turn-off energy
Eoff
Energy losses include
“tail” and diode
reverse recovery.
-
0.33
0.43
Total switching energy
Ets
-
0.77
0.96
ns
mJ
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
Unit
IGBT Characteristic
Turn-on delay time
td(on)
T j =1 5 0° C
-
36
46
Rise time
tr
V C C = 40 0 V,
-
30
36
Turn-off delay time
td(off)
I C = 20 A ,
-
250
300
Fall time
tf
V G E = 0/ 15 V ,
-
63
76
Turn-on energy
Eon
R G = 16 Ω
-
0.67
0.81
Turn-off energy
Eoff
-
0.49
0.64
Total switching energy
Ets
Energy losses include
“tail” and diode
reverse recovery.
-
1.12
1.45
3
ns
mJ
Mar-00
SGP20N60
SGB20N60, SGW20N60
100A
110A
tp=4µs
Ic
100A
15µs
80A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
90A
70A
60A
50A
TC=80°C
40A
30A
TC=110°C
20A
Ic
10A
50µs
200µs
1ms
1A
DC
10A
0A
10Hz
0.1A
100Hz
1kHz
10kHz
1V
100kHz
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 400V,
VGE = 0/+15V, RG = 16Ω)
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C, Tj ≤ 150°C)
200W
50A
180W
40A
140W
IC, COLLECTOR CURRENT
Ptot, POWER DISSIPATION
160W
120W
100W
80W
60W
40W
30A
20A
10A
20W
0W
25°C
50°C
75°C
100°C
0A
25°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
(Tj ≤ 150°C)
50°C
75°C
100°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≤ 15V, Tj ≤ 150°C)
4
Mar-00
60A
60A
50A
50A
40A
30A
20A
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
SGP20N60
SGB20N60, SGW20N60
VGE=20V
15V
13V
11V
9V
7V
5V
10A
0A
0V
1V
2V
3V
4V
20A
0A
0V
5V
15V
13V
11V
9V
7V
5V
Tj=+25°C
60A
-55°C
+150°C
50A
40A
30A
20A
10A
2V
4V
6V
8V
10V
1V
2V
3V
4V
5V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristics
(Tj = 150°C)
VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE
70A
IC, COLLECTOR CURRENT
30A
VGE=20V
10A
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(Tj = 25°C)
0A
0V
40A
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristics
(VCE = 10V)
4.0V
3.5V
IC = 40A
3.0V
2.5V
IC = 20A
2.0V
1.5V
1.0V
-50°C
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(VGE = 15V)
5
Mar-00
SGP20N60
SGB20N60, SGW20N60
td(off)
100ns
t, SWITCHING TIMES
t, SWITCHING TIMES
td(off)
tf
td(on)
100ns
tf
td(on)
tr
tr
10ns
10A
20A
30A
10ns
0Ω
40A
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 16Ω)
10Ω
20Ω
30Ω
40Ω
50Ω
60Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 20A)
VGE(th), GATE-EMITTER THRESHOLD VOLTAGE
5.5V
t, SWITCHING TIMES
td(off)
100ns
tf
tr
td(on)
10ns
0°C
5.0V
4.5V
4.0V
max.
3.5V
typ.
3.0V
2.5V
min.
2.0V
50°C
100°C
150°C
-50°C
Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 20A, RG = 1 6Ω)
0°C
50°C
100°C
150°C
Tj, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
(IC = 0.7mA)
6
Mar-00
SGP20N60
SGB20N60, SGW20N60
3.0mJ
3.0mJ
Ets*
*) Eon and Ets include losses
due to diode recovery.
*) Eon and Ets include losses
due to diode recovery.
2.5mJ
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
2.5mJ
2.0mJ
Eon*
1.5mJ
Eoff
1.0mJ
0.5mJ
0.0mJ
0A
10A
20A
30A
40A
2.0mJ
Ets*
1.5mJ
1.0mJ
Eon*
Eoff
0.5mJ
0.0mJ
0Ω
50A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, RG = 16Ω)
10Ω
20Ω
30Ω
40Ω
50Ω
60Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj = 150°C, VCE = 400V,
VGE = 0/+15V, IC = 20A)
1.6mJ
*) Eon and Ets include losses
due to diode recovery.
1.2mJ
0
Ets*
1.0mJ
0.8mJ
Eon*
0.6mJ
Eoff
0.4mJ
0.2mJ
0.0mJ
0°C
ZthJC, TRANSIENT THERMAL IMPEDANCE
E, SWITCHING ENERGY LOSSES
1.4mJ
10 K/W
D=0.5
0.2
-1
10 K/W 0.1
0.05
0.02
R,(1/W)
0.1882
0.3214
0.1512
0.0392
-2
10 K/W
0.01
τ, (s)=
0.1137
2.24*10-2
7.86*10-4
9.41*10-5
-3
10 K/W
R1
R2
single pulse
C 1= τ1/R 1
C 2= τ2/R 2
-4
50°C
100°C
10 K/W
1µs
150°C
10µs
100µs
1ms
10ms 100ms
1s
tp, PULSE WIDTH
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 400V, VGE = 0/+15V,
IC = 20A, RG = 1 6Ω)
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = tp / T)
7
Mar-00
SGP20N60
SGB20N60, SGW20N60
25V
Ciss
1nF
C, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
20V
15V
120V
480V
10V
Crss
5V
0V
0nC
25nC
50nC
10pF
0V
75nC 100nC 125nC
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC = 20A)
20V
30V
IC(sc), SHORT CIRCUIT COLLECTOR CURRENT
350A
20 µ s
15 µ s
10 µ s
5µ s
0µ s
10V
10V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f = 1MHz)
25 µ s
tsc, SHORT CIRCUIT WITHSTAND TIME
Coss
100pF
11V
12V
13V
14V
300A
250A
200A
150A
100A
50A
0A
10V
15V
VGE, GATE-EMITTER VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE = 600V, start at Tj = 25°C)
12V
14V
16V
18V
20V
VGE, GATE-EMITTER VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(VCE ≤ 600V, Tj = 150°C)
8
Mar-00
SGP20N60
SGB20N60, SGW20N60
dimensions
TO-220AB
symbol
[mm]
[inch]
min
max
min
max
A
9.70
10.30
0.3819
0.4055
B
14.88
15.95
0.5858
0.6280
C
0.65
0.86
0.0256
0.0339
D
3.55
3.89
0.1398
0.1531
E
2.60
3.00
0.1024
0.1181
F
6.00
6.80
0.2362
0.2677
G
13.00
14.00
0.5118
0.5512
H
4.35
4.75
0.1713
0.1870
K
0.38
0.65
0.0150
0.0256
L
0.95
1.32
0.0374
0.0520
M
2.54 typ.
0.1 typ.
N
4.30
4.50
0.1693
0.1772
P
1.17
1.40
0.0461
0.0551
T
2.30
2.72
0.0906
0.1071
dimensions
TO-263AB (D2Pak)
symbol
[inch]
max
min
max
A
9.80
10.20
0.3858
0.4016
B
0.70
1.30
0.0276
0.0512
C
1.00
1.60
0.0394
0.0630
D
1.03
1.07
0.0406
0.0421
E
F
G
H
2.54 typ.
0.65
0.85
5.08 typ.
4.30
4.50
0.1 typ.
0.0256
0.0335
0.2 typ.
0.1693
0.1772
K
1.17
1.37
0.0461
0.0539
L
9.05
9.45
0.3563
0.3720
M
2.30
2.50
0.0906
0.0984
N
15 typ.
0.5906 typ.
P
0.00
0.20
0.0000
0.0079
Q
4.20
5.20
0.1654
0.2047
R
9
[mm]
min
8° max
8° max
S
2.40
3.00
0.0945
0.1181
T
0.40
0.60
0.0157
0.0236
U
10.80
0.4252
V
1.15
0.0453
W
6.23
0.2453
X
4.60
0.1811
Y
9.40
0.3701
Z
16.15
0.6358
Mar-00
SGP20N60
SGB20N60, SGW20N60
dimensions
TO-247AC
symbol
[mm]
min
max
min
max
A
4.78
5.28
0.1882
0.2079
B
2.29
2.51
0.0902
0.0988
C
1.78
2.29
0.0701
0.0902
D
1.09
1.32
0.0429
0.0520
E
1.73
2.06
0.0681
0.0811
F
2.67
3.18
0.1051
0.1252
G
0.76 max
0.0299 max
H
20.80
21.16
0.8189
0.8331
K
15.65
16.15
0.6161
0.6358
L
5.21
5.72
0.2051
0.2252
M
19.81
20.68
0.7799
0.8142
N
3.560
4.930
0.1402
0.1941
∅P
Q
10
[inch]
3.61
6.12
0.1421
6.22
0.2409
0.2449
Mar-00
SGP20N60
SGB20N60, SGW20N60
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
TC
Figure D. Thermal equivalent
circuit
Figure A. Definition of switching times
Figure B. Definition of switching losses
11
Mar-00
SGP20N60
SGB20N60, SGW20N60
Published by
Infineon Technologies AG,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 2000
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
12
Mar-00