SGP20N60HS SGW20N60HS High Speed IGBT in NPT-technology C • 30% lower Eoff compared to previous generation • Short circuit withstand time – 10 µs G E • Designed for operation above 30 kHz • NPT-Technology for 600V applications offers: - parallel switching capability - moderate Eoff increase with temperature - very tight parameter distribution P-TO-220-3-1 (TO-220AB) • High ruggedness, temperature stable behaviour • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type P-TO-247-3-1 (TO-247AC) VCE IC Eoff Tj Package Ordering Code SGP20N60HS 600V 20 240µJ 150°C TO220AB Q67040-S4498 SGW20N60HS 600V 20 240µJ 150°C TO-247AC Q67040-S4499 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 Unit V A TC = 25°C 36 TC = 100°C 20 Pulsed collector current, tp limited by Tjmax ICpul s 80 Turn off safe operating area - 80 Avalanche energy single pulse IC = 20A, VCC=50V, RGE=25Ω start TJ=25°C EAS 115 mJ Gate-emitter voltage static transient (tp<1µs, D<0.05) VGE ±20 ±30 V tSC 10 µs Ptot 178 W Operating junction and storage temperature Tj , Tstg -55...+150 °C Time limited operating junction temperature for t < 150h Tj(tl) 175 Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260 VCE ≤ 600V, Tj ≤ 150°C 1) Short circuit withstand time VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C Power dissipation TC = 25°C 1) Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 1 Rev.2 Aug-02 SGP20N60HS SGW20N60HS Thermal Resistance Parameter Symbol Conditions Max. Value Unit 0.7 K/W Characteristic IGBT thermal resistance, junction – case RthJC Thermal resistance, junction – ambient RthJA TO-220AB 62 TO-247AC 40 Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - T j =2 5 °C 2.8 3.15 T j =1 5 0° C 3.5 4.00 4 5 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µA Collector-emitter saturation voltage VCE(sat) V V G E = 15 V , I C = 20 A Gate-emitter threshold voltage VGE(th) I C = 50 0 µA , V C E = V G E Zero gate voltage collector current ICES V C E = 60 0 V, V G E = 0 V 3 µA T j =2 5 °C - - 40 T j =1 5 0° C - - 2500 100 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - Transconductance gfs V C E = 20 V , I C = 20 A - 14 S Input capacitance Ciss V C E = 25 V , - 1100 pF Output capacitance Coss V G E = 0V , - 105 Reverse transfer capacitance Crss f= 1 MH z - 64 Gate charge QGate V C C = 48 0 V, I C =2 0 A - 100 nC nA Dynamic Characteristic V G E = 15 V Internal emitter inductance LE T O - 24 7A C - 13 nH IC(SC) V G E = 15 V ,t S C ≤ 10 µs V C C ≤ 6 0 0 V, T j ≤ 15 0° C - 170 A measured 5mm (0.197 in.) from case Short circuit collector current 1) 1) Allowed number of short circuits: <1000; time between short circuits: >1s. Power Semiconductors 2 Rev.2 Aug-02 SGP20N60HS SGW20N60HS Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. - 18 - 15 - 207 - 13 - 0.39 - 0.30 - 0.69 max. Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 °C , V C C = 40 0 V, I C = 2 0 A, V G E = 0/ 15 V , R G = 16 Ω 1) L σ = 60 n H, 1) C σ = 40 pF Energy losses include “tail” and diode reverse recovery. ns mJ Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. T j =1 5 0° C V C C = 40 0 V, I C = 2 0 A, V G E = 0/ 15 V , R G = 2 .2 Ω 1) L σ = 60 n H, 1) C σ = 40 pF Energy losses include “tail” and diode reverse recovery. - 15 - 8.5 - 65 - 35 - 0.46 - 0.24 - 0.7 T j =1 5 0° C V C C = 40 0 V, I C = 2 0 A, V G E = 0/ 15 V , R G = 1 6Ω 1) L σ = 60 n H, 1) C σ = 40 pF Energy losses include “tail” and diode reverse recovery. - 17 - 13 - 222 - 13 - 0.6 - 0.36 - 0.96 max. Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets 1) ns mJ ns mJ Leakage inductance L σ an d Stray capacity C σ due to test circuit in Figure E. Power Semiconductors 3 Rev.2 Aug-02 SGP20N60HS SGW20N60HS 100A 80A tP=4µs TC=80°C IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 70A 60A 50A TC=110°C 40A 30A Ic 20A 10A 50µs 200µs 1ms 1A Ic 10A 0A 10Hz 15µs 100Hz 1kHz DC 10kHz 0,1A 1V 100kHz 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤150°C;VGE=15V) f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 16Ω) 1 80W 30A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION 1 60W 1 40W 1 20W 1 00W 80W 60W 20A 10A 40W 20W 0W 25 °C 50°C 75 °C 100 °C 0A 25°C 1 25°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) Power Semiconductors 75°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Rev.2 Aug-02 SGP20N60HS SGW20N60HS V G E =20V 50A V G E =20V 50A 15V IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 15V 13V 40A 11V 9V 30A 7V 5V 20A 10A 0V 2V 4V 9V 30A 7V 5V 20A 0A 6V T J = -5 5 °C 2 5 °C 1 5 0 °C 40A 20A 0V 2V 4V 6V 8V 2V 4V 6V 5,5V 5,0V I C =40A 4,5V 4,0V 3,5V I C =20A 3,0V 2,5V I C =10A 2,0V 1,5V 1,0V -50°C 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristic (VCE=10V) Power Semiconductors 0V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristic (Tj = 150°C) VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristic (Tj = 25°C) IC, COLLECTOR CURRENT 11V 10A 0A 0A 13V 40A 5 Rev.2 Aug-02 SGP20N60HS SGW20N60HS t d (o ff) tf t, SWITCHING TIMES t, SWITCHING TIMES 1 00ns td ( o n ) 10ns tr 1ns 0A 10 A 20A td(on) tr tf 100°C t d(on) tr 10Ω 20Ω 30Ω 40Ω 5,0V 4,5V max. 4,0V 3,5V typ. 3,0V 2,5V min. 2,0V 1,5V -50°C 150°C TJ, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE=400V, VGE=0/15V, IC=20A, RG=16Ω, Dynamic test circuit in Figure E) Power Semiconductors 10 ns RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, TJ=150°C, VCE=400V, VGE=0/15V, IC=20A, Dynamic test circuit in Figure E) VGE(th), GATE-EMITT TRSHOLD VOLTAGE t, SWITCHING TIMES 100ns 50°C tf 0Ω td(off) 0°C t d(o ff) 1 ns 30A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, TJ=150°C, VCE=400V, VGE=0/15V, RG=16Ω, Dynamic test circuit in Figure E) 10ns 100 ns 0°C 50°C 100°C 150°C TJ, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.5mA) 6 Rev.2 Aug-02 SGP20N60HS SGW20N60HS *) E o n in clu de loss es *) Eon include losses E ts * 2,0 m J E on* 1,0 m J E o ff 0,0 m J 0A 1 0A 20 A 30A Eon* Eoff 20Ω 30Ω 40Ω D=0.5 0.2 -1 10 K/W 0.1 0.05 R,(K/W) 0.1882 0.3214 0.1512 0.0392 0.02 -2 10 K/W 0.01 R1 τ, (s) 0.1137 2.24*10-2 7.86*10-4 9.41*10-5 R2 -3 10 K/W single pulse C 1 = τ 1 / R 1 C 2 = τ 2 /R 2 -4 10 K/W 1µs 150°C TJ, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE=400V, VGE=0/15V, IC=20A, RG=16Ω, Dynamic test circuit in Figure E) Power Semiconductors 10Ω RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, TJ=150°C, VCE=400V, VGE=0/15V, IC=20A, Dynamic test circuit in Figure E) ZthJC, TRANSIENT THERMAL RESISTANCE E, SWITCHING ENERGY LOSSES 0,50mJ 100°C 0Ω 0 Ets* 50°C E off 0,5 m J 10 K/W 0,75mJ 0,00mJ 0°C E on * 0,0 m J IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, TJ=150°C, VCE=400V, VGE=0/15V, RG=16Ω, Dynamic test circuit in Figure E) 0,25mJ 1,0 m J 4 0A *) Eon include losses due to diode recovery E ts * due to diode recovery E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES d ue to d iode re cov ery 10µs 100µs 1ms 10ms 100ms tP, PULSE WIDTH Figure 16. IGBT transient thermal resistance (D = tp / T) 7 Rev.2 Aug-02 SGP20N60HS SGW20N60HS 15V 120V c, CAPACITANCE VGE, GATE-EMITTER VOLTAGE Ciss 1nF 480V 10V Crss 5V 0V 0nC 50nC 10pF 100nC 15µs 10µs 5µs 0µs 10V 11V 12V 13V 10V 20V 250A 200A 150A 100A 50A 0A 10V 14V VGE, GATE-EMITETR VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE=600V, start at TJ=25°C) Power Semiconductors 0V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE=0V, f = 1 MHz) IC(sc), short circuit COLLECTOR CURRENT QGE, GATE CHARGE Figure 17. Typical gate charge (IC=20 A) tSC, SHORT CIRCUIT WITHSTAND TIME Coss 100pF 12V 14V 16V 18V VGE, GATE-EMITETR VOLTAGE Figure 20. Typical short circuit collector current as a function of gateemitter voltage (VCE ≤ 600V, Tj ≤ 150°C) 8 Rev.2 Aug-02 SGP20N60HS SGW20N60HS TO-220AB dimensions [mm] symbol [inch] min max min max A 9.70 10.30 0.3819 0.4055 B 14.88 15.95 0.5858 0.6280 C 0.65 0.86 0.0256 0.0339 D 3.55 3.89 0.1398 0.1531 E 2.60 3.00 0.1024 0.1181 F 6.00 6.80 0.2362 0.2677 G 13.00 14.00 0.5118 0.5512 H 4.35 4.75 0.1713 0.1870 K 0.38 0.65 0.0150 0.0256 L 0.95 1.32 0.0374 0.0520 M 2.54 typ. 4.30 4.50 0.1693 0.1772 P 1.17 1.40 0.0461 0.0551 T 2.30 2.72 0.0906 0.1071 dimensions TO-247AC [mm] symbol min max min max 4.78 5.28 0.1882 0.2079 B 2.29 2.51 0.0902 0.0988 C 1.78 2.29 0.0701 0.0902 D 1.09 1.32 0.0429 0.0520 E 1.73 2.06 0.0681 0.0811 F 2.67 3.18 0.1051 0.1252 0.76 max 0.0299 max H 20.80 21.16 0.8189 0.8331 K 15.65 16.15 0.6161 0.6358 L 5.21 5.72 0.2051 0.2252 M 19.81 20.68 0.7799 0.8142 N 3.560 4.930 0.1402 0.1941 ∅P Q 9 [inch] A G Power Semiconductors 0.1 typ. N 3.61 6.12 0.1421 6.22 0.2409 0.2449 Rev.2 Aug-02 SGP20N60HS SGW20N60HS τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn TC Figure D. Thermal equivalent circuit Figure A. Definition of switching times Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance Lσ =60nH an d Stray capacity C σ =40pF. Published by Infineon Technologies AG, Power Semiconductors 10 Rev.2 Aug-02 SGP20N60HS SGW20N60HS Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2001 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Power Semiconductors 11 Rev.2 Aug-02 This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.