INFINEON ILQ615-1

ILD615
QUAD CHANNEL ILQ615
DUAL CHANNEL
FEATURES
• Identical Channel to Channel Footprint
• Current Transfer Ratio (CTR) Range at
IF=10 mA
ILD/Q615-1: 40 – 80% Min.
ILD/Q615-2: 63 – 125% Min.
ILD/Q615-3: 100 – 200% Min.
ILD/Q615-4: 160 – 320% Min.
• Guaranteed CTR at IF=1 mA
ILD/Q615-1: 13% Min.
ILD/Q615-2: 22% Min.
ILD/Q615-3: 34% Min.
ILD/Q615-4: 56% Min.
• High Collector-Emitter Voltage BVCEO=70 V
• Dual and Quad Packages Feature:
- Reduced Board Space
- Lower Pin and Parts Count
- Better Channel to Channel CTR Match
- Improved Common Mode Rejection
• Field-Effect Stable by TRIOS (TRansparent IOn
Shield)
• Isolation Test Voltage from Double Molded
Package, 5300 VACRMS
• UL Approval #E52744
• VDE #0884 Available with Option 1
PHOTOTRANSISTOR OPTOCOUPLER
Dimensions in inches (mm)
4
3
2
1
.268 (6.81)
.255 (6.48)
5
6
7
8
.390 (9.91)
.379 (9.63)
.045 (1.14)
.030 (.76)
Detector
Collector-Emitter Reverse Voltage .................. 70 V
Emitter-Collector Reverse Voltage .................... 7 V
Collector Current .......................................... 50 mA
Collector Current (t <1 ms) .........................100 mA
Power Dissipation ...................................... 150 mW
Derate Linearly from 25°C........................ 2 mW/°C
Package
Storage Temperature................... –55°C to +150°C
Operating Temperature ............... –55°C to +100°C
Junction Temperature.................................... 100°C
Soldering Temperature
(2 mm distance from case bottom) ........... 260°C
Package Power Dissipation, ILD615.......... 400 mW
Derate Linearly from 25°C.................. 5.33 mW/°C
Package Power Dissipation, ILQ615 ......... 500 mW
Derate Linearly from 25°C................. 6.67 mW/°C
Isolation Test Voltage (t=1 sec.)........ 5300 VACRMS
Creepage ............................................... 7 mm min.
Clearance............................................... 7 mm min.
Isolation Resistance
VIO=500 V, TA=25°C ............................... ≥1012 Ω
VIO=500 V, TA=100°C ............................. ≥1011 Ω
Anode 1
8
Collector
Cathode 2
7
Emitter
Anode 3
6
Collector
Cathode 4
5
Emitter
.150 (3.81)
.130 (3.30)
.305 Typ.
(7.75) Typ.
4°
Typ.
.135 (3.43)
.115 (2.92)
10° Typ.
.040 (1.02)
.030 (.76 )
.022 (.56)
.018 (.46)
3°–9°
.012 (.30)
.008 (.20)
.100 (2.54) Typ.
Pin
One
I.D.
Anode 1
16 Collector
Cathode 2
15 Emitter
14 Collector
Anode 3
13 Emitter
Cathode 4
.268 (6.81)
.255 (6.48)
12 Collector
Anode 5
Maximum Ratings (Each Channel)
Emitter
Reverse Voltage ................................................ 6 V
Forward Current ........................................... 60 mA
Surge Current .................................................1.5 A
Power Dissipation ...................................... 100 mW
Derate Linearly from 25°C ................... 1.33 mW/°C
Pin One I.D.
11 Emitter
Cathode 6
10 Collector
Anode 7
.790 (20.07)
.779 (19.77 )
.045 (1.14)
.030 (.76)
.150 (3.81)
.130 (3.30)
4°
Typ.
.022 (.56)
.018 (.46)
9 Emitter
Cathode 8
.305 Typ.
(7.75) Typ.
10° Typ.
.040 (1.02)
.030 (.76 )
.100 (2.54) Typ.
.135 (3.43)
.115 (2.92)
3°–9°
.012 (.30)
.008 (.20)
DESCRIPTION
The ILD/Q615 are multi-channel phototransistor optocouplers that use GaAs
IRLED emitters and high gain NPN phototransistors. These devices are constructed using over/under leadframe optical coupling and double molded
insulation technology resulting a Withstand Test Voltage of 7500 VACPEAK
and a Working Voltage of 1700 VACRMS.
The binned min./max. and linear CTR characteristics combined with the
TRIOS (TRansparent IOn Shield) field-effect process make these devices
well suited for DC or AC voltage detection. Eliminating the phototransistor
base connection provides added electrical noise immunity from the transients found in many industrial control environments.
Because of guaranteed maximum non-saturated and saturated switching
characteristics, the ILD/Q615 can be used in medium speed data I/O and
control systems. The binned min./max. CTR specification allow easy worst
case interface calculations for both level detection and switching applications. Interfacing with a CMOS logic is enhanced by the guaranteed CTR at
an IF=1 mA.
See Appnote 45, “How to Use Optocoupler Normalized Curves.”
5–1
Characteristics, TA=25°C
Symbol
Min.
Typ.
Max.
Unit
Condition
Forward Voltage
VF
1
1.15
1.3
V
IF=10 mA
Breakdown Voltage
VBR
6
30
V
IR=10 µA
Reverse Current
IF
0.01
µA
VR=6 V
Capacitance
CO
25
pF
VR=0 V, f=1 MHz
Thermal Resistance, Junction to Lead
RTHJL
750
°C/W
Capacitance
CCE
6.8
pF
VCE=5 V, f=1 MHz
Collector-Emitter Leakage Current, -1, -2
ICEO
2
50
nA
VCE=10 V
Collector-Emitter Leakage Current, -3, -4
ICEO
5
100
nA
VCE=10 V
Collector-Emitter Breakdown Voltage
BVCEO
70
V
ICE=0.5 mA
Emitter-Collector Breakdown Voltage
BVECO
7
V
IE=0.1 mA
Thermal Resistance, Junction to Lead
RTHJL
Emitter
10
Detector
°C/W
500
Package Transfer Characteristics
Channel/Channel CTR Match
CTRX/CTRY
1 to 1
2 to 1
IF=10 mA, VCE=5 V
ILD/Q615-1
Saturated Current Transfer Ratio
CTRCEsat
25
%
IF=10 mA, VCE=0.4 V
Current Transfer Ratio
CTRCE
40
60
%
IF=10 mA, VCE=5 V
Current Transfer Ratio
CTRCE
13
30
%
IF=1 mA, VCE=5 V
40
%
IF=10 mA, VCE=0.4 V
%
IF=10 mA, VCE=5 V
80
ILD/Q615-2
Saturated Current Transfer Ratio
CTRCEsat
Current Transfer Ratio
CTRCE
63
80
Current Transfer Ratio
CTRCE
22
45
%
IF=1 mA, VCE=5 V
60
%
IF=10 mA, VCE=0.4 V
%
IF=10 mA, VCE=5 V
125
ILD/Q615-3
Saturated Current Transfer Ratio
CTRCEsat
Current Transfer Ratio
CTRCE
100
150
Current Transfer Ratio
CTRCE
34
70
%
IF=1 mA, VCE=5 V
100
%
IF=10 mA, VCE=0.4 V
%
IF=10 mA, VCE=5 V
200
ILD/Q615-4
Saturated Current Transfer Ratio
CTRCEsat
Current Transfer Ratio
CTRCE
160
200
Current Transfer Ratio
CTRCE
56
90
%
IF=1 mA, VCE=5 V
320
Isolation and Insulation
Common Mode Rejection, Output High
CMH
5000
V/µs
VCM=50 VP-P, RL=1 kΩ, IF=0 mA
Common Mode Rejection, Output Low
CML
5000
V/µs
VCM=50 VP-P, RL=1 kΩ, IF=10 mA
Common Mode Coupling Capacitance
CCM
0.01
pF
Package Capacitance
CI-O
Insulation Resistance
Channel to Channel Isolation
0.8
1014
RS
500
pF
VIO=0 V, f=1 MHz
Ω
VIO=500 V, TA=25°C
VAC
ILD/Q615
5–2
Switching Times
Figure 1. Non-saturated switching timing
VCC=5 V
IF=10 mA
VO
RL=75 Ω
F=10 KHz,
DF=50%
Parameter
Typ.
Unit
tON
3.0
µs
tR
2.0
µs
tOFF
2.3
µs
tF
2.0
µs
tPHL Propagation H-L (50% of VPP)
1.1
µs
tPHL Propagation L-H
2.5
µs
Test
Condition
RL=75 Ω
IF=10 mA
VCC=5 V
Figure 2. Saturated switching timing
F=10 KHz,
DF=50%
VCC=5 V
RL
VO
Figure 3. Non-saturated switching timing
IF
tPHL
V0
-1
IF=20 mA
-1,-3
IF=10 mA
-4
IF=5mA
Typ.
Typ.
Typ.
Unit
tON
3.0
4.3
6.0
µs
tR
2.0
2.8
4.6
µs
tOFF
18
25
25
µs
tF
11
14
15
µs
tPHL
Propagation
H-L
1.6
2.6
5.4
µs
tPLH
Propagation
L-H
8.6
7.2
7.4
µs
Parameter
RL=1 Ω
VCC=5 V
VTH=1.5 V
tPLH
Figure 5. Maximum LED current versus ambient temperature
tS
tD
tF
tR
Figure 4. Saturated switching timing
IF
IF - Maximum LED Current - mA
50%
VO
Test
Condition
120
100
80
60
TJ (MAX)=100°C
40
20
0
--60
-40
-20
0
20
40
60
80
Ta - Ambient Temperature - °C
100
tD
tR
tPLH
tPHL
tS
VTH=1.5 V
tF
ILD/Q615
5–3
Figure 10. Maximum collector current versus collector
voltage
Figure 6. Maximum LED power dissipation
200
PLED - LED Power - mW
1000
Ice - Collector Current - mA
150
100
50
0
--60
-40
-20
0
20
40
60
80
Ta - Ambient Temperature - °C
25°C
50°C
75°C
1
90°C
.1
1
10
Vce - Collector-Emitter Voltage - V
100
Figure 11. Normalization factor for non-saturated
and saturated CTR TA=25°C versus if
1.4
2.0
1.3
Ta = -55°C
CTRNF - Normalized CTR Factor
VF - Forward Voltage - V
10
.1
100
Figure 7. Forward voltage versus forward current
1.2
Ta = 25°C
1.1
1.0
0.9
Ta = 85°C
0.8
0.7
.1
1
10
IF - Forward Current - mA
100
10000
10
10-6
CTRNF - Normalized CTR Factor
t
τ
DF = /t
.5
10 -5
CTRce(sat) Vce = 0.4V
NCTRce
1.0
NCTRce(sat)
0.5
Ta = 25°C
0.0
1
10
IF - LED Current - mA
100
2.0
.005
.01
.02
.05
.1
.2
100
1.5
Figure 12. Normalization factor for non-saturated
and saturated CTR TA=50°C versus if
τ
Duty Factor
1000
Normalized to:
Vce = 10V, IF = 5mA, Ta = 25°C
.1
Figure 8. Peak LED current versus pulse detection, Tau
If(pk) - Peak LED Current - mA
Rth = 500°C/W
100
10-4
10 -3
10-2
10 -1
10 0
10 1
Normalized to:
Vce = 10V, IF = 5mA, Ta = 25°C
1.5
CTRce(sat) Vce = 0.4V
NCTRce
1.0
NCTRce(sat)
0.5
Ta = 50°C
0.0
.1
t - LED Pulse Duration - s
Figure 9. Maximum detector power dissipation
1
10
IF - LED Current - mA
100
Figure 13. Normalization factor for non-saturated
and saturated CTR TA=70°C versus if
200
CTRNF - Normalized CTR Factor
P
- Detector Power - mW
DET
2.0
150
100
50
0
-60
-40
-20
0
20
40
60
Ta - Ambient Temperature - °C
80
100
Normalized to:
Vce = 10V, IF = 5mA, Ta = 25°C
1.5
CTRce(sat) Vce = 0.4V
NCTRce
1.0
NCTRce(sat)
0.5
Ta = 70°C
0.0
.1
1
10
100
IF - LED Current - mA
ILD/Q615
5–4
Figure 17. -1 Propagation delay versus collector load resistor
1000
tPLH - Propagat ion Low- High - µs
Normalized to:
Vce = 10V, IF = 5mA, Ta = 25°C
CTRce(sat) Vce = 0.4V
NCTRce
1.0
0.5
NCTRce(sat)
Ta=100°C
Ta
= 100°C
1
10
IF - LED Current - mA
2.0
tPHL
1.5
1
1.0
100
10
RL - Load Resistor - KΩ
Figure 18. -2, -3 Propagation delay versus collector
load resistor
1000
30
25
tPLH - Propagation Low-High - µs
Ice - Collector Current - mA
2.5
10
1
.1
35
50°C
20
15
70°C
25°C
85°C
10
5
0
0
10
20
30
40
IF - LED Current - mA
50
60
5
10
4
10
3
10
10 2
10 0
2.0
tPLH
10
1.5
tPHL
1
.1
1.0
100
1
10
RL - Collector Load Resistor - KΩ
1000
Vce = 10V
TYPICAL
10 -1
10 -2
-20
Vcc = 5V, Vth = 1.5V
100
tPLH - Propagation Low-High - µs
1
2.5
Ta = 25°C, IF = 10mA
Figure 19. -4 Propagation delay versus collector
load resistor
Figure 16. Collector-emitter leakage versus
temperature
10
3.0
tPLH
100
Figure 15. Collector-emitter current versus temperature
and LED current
Iceo - Collector-Emitter - nA
100
0.0
.1
3.5
Vcc = 5V, Vth = 1.5V
0
20
40
60
80
100
Ta - Ambient Temperature - °C
2.5
Ta = 25°C, IF = 10mA
Vcc = 5V, Vth = 1.5V
100
2.0
tPLH
10
1.5
tPHL
1
.1
1
10
RL - Collector Load Resistor - KΩ
1.0
100
tPHL - Propagation High-Low - µs
1.5
4.0
Ta = 25°C, IF = 10mA
tPHL - Propagation High-Low - µs
CTRNF - Normalized CTR Factor
2.0
tPHL - Propagation High- Low - µs
Figure 14. Normalization factor for non-saturated
and saturated CTR TA=85°C versus if
ILD/Q615
5–5