ILD615 QUAD CHANNEL ILQ615 DUAL CHANNEL FEATURES • Identical Channel to Channel Footprint • Current Transfer Ratio (CTR) Range at IF=10 mA ILD/Q615-1: 40 – 80% Min. ILD/Q615-2: 63 – 125% Min. ILD/Q615-3: 100 – 200% Min. ILD/Q615-4: 160 – 320% Min. • Guaranteed CTR at IF=1 mA ILD/Q615-1: 13% Min. ILD/Q615-2: 22% Min. ILD/Q615-3: 34% Min. ILD/Q615-4: 56% Min. • High Collector-Emitter Voltage BVCEO=70 V • Dual and Quad Packages Feature: - Reduced Board Space - Lower Pin and Parts Count - Better Channel to Channel CTR Match - Improved Common Mode Rejection • Field-Effect Stable by TRIOS (TRansparent IOn Shield) • Isolation Test Voltage from Double Molded Package, 5300 VACRMS • UL Approval #E52744 • VDE #0884 Available with Option 1 PHOTOTRANSISTOR OPTOCOUPLER Dimensions in inches (mm) 4 3 2 1 .268 (6.81) .255 (6.48) 5 6 7 8 .390 (9.91) .379 (9.63) .045 (1.14) .030 (.76) Detector Collector-Emitter Reverse Voltage .................. 70 V Emitter-Collector Reverse Voltage .................... 7 V Collector Current .......................................... 50 mA Collector Current (t <1 ms) .........................100 mA Power Dissipation ...................................... 150 mW Derate Linearly from 25°C........................ 2 mW/°C Package Storage Temperature................... –55°C to +150°C Operating Temperature ............... –55°C to +100°C Junction Temperature.................................... 100°C Soldering Temperature (2 mm distance from case bottom) ........... 260°C Package Power Dissipation, ILD615.......... 400 mW Derate Linearly from 25°C.................. 5.33 mW/°C Package Power Dissipation, ILQ615 ......... 500 mW Derate Linearly from 25°C................. 6.67 mW/°C Isolation Test Voltage (t=1 sec.)........ 5300 VACRMS Creepage ............................................... 7 mm min. Clearance............................................... 7 mm min. Isolation Resistance VIO=500 V, TA=25°C ............................... ≥1012 Ω VIO=500 V, TA=100°C ............................. ≥1011 Ω Anode 1 8 Collector Cathode 2 7 Emitter Anode 3 6 Collector Cathode 4 5 Emitter .150 (3.81) .130 (3.30) .305 Typ. (7.75) Typ. 4° Typ. .135 (3.43) .115 (2.92) 10° Typ. .040 (1.02) .030 (.76 ) .022 (.56) .018 (.46) 3°–9° .012 (.30) .008 (.20) .100 (2.54) Typ. Pin One I.D. Anode 1 16 Collector Cathode 2 15 Emitter 14 Collector Anode 3 13 Emitter Cathode 4 .268 (6.81) .255 (6.48) 12 Collector Anode 5 Maximum Ratings (Each Channel) Emitter Reverse Voltage ................................................ 6 V Forward Current ........................................... 60 mA Surge Current .................................................1.5 A Power Dissipation ...................................... 100 mW Derate Linearly from 25°C ................... 1.33 mW/°C Pin One I.D. 11 Emitter Cathode 6 10 Collector Anode 7 .790 (20.07) .779 (19.77 ) .045 (1.14) .030 (.76) .150 (3.81) .130 (3.30) 4° Typ. .022 (.56) .018 (.46) 9 Emitter Cathode 8 .305 Typ. (7.75) Typ. 10° Typ. .040 (1.02) .030 (.76 ) .100 (2.54) Typ. .135 (3.43) .115 (2.92) 3°–9° .012 (.30) .008 (.20) DESCRIPTION The ILD/Q615 are multi-channel phototransistor optocouplers that use GaAs IRLED emitters and high gain NPN phototransistors. These devices are constructed using over/under leadframe optical coupling and double molded insulation technology resulting a Withstand Test Voltage of 7500 VACPEAK and a Working Voltage of 1700 VACRMS. The binned min./max. and linear CTR characteristics combined with the TRIOS (TRansparent IOn Shield) field-effect process make these devices well suited for DC or AC voltage detection. Eliminating the phototransistor base connection provides added electrical noise immunity from the transients found in many industrial control environments. Because of guaranteed maximum non-saturated and saturated switching characteristics, the ILD/Q615 can be used in medium speed data I/O and control systems. The binned min./max. CTR specification allow easy worst case interface calculations for both level detection and switching applications. Interfacing with a CMOS logic is enhanced by the guaranteed CTR at an IF=1 mA. See Appnote 45, “How to Use Optocoupler Normalized Curves.” 5–1 Characteristics, TA=25°C Symbol Min. Typ. Max. Unit Condition Forward Voltage VF 1 1.15 1.3 V IF=10 mA Breakdown Voltage VBR 6 30 V IR=10 µA Reverse Current IF 0.01 µA VR=6 V Capacitance CO 25 pF VR=0 V, f=1 MHz Thermal Resistance, Junction to Lead RTHJL 750 °C/W Capacitance CCE 6.8 pF VCE=5 V, f=1 MHz Collector-Emitter Leakage Current, -1, -2 ICEO 2 50 nA VCE=10 V Collector-Emitter Leakage Current, -3, -4 ICEO 5 100 nA VCE=10 V Collector-Emitter Breakdown Voltage BVCEO 70 V ICE=0.5 mA Emitter-Collector Breakdown Voltage BVECO 7 V IE=0.1 mA Thermal Resistance, Junction to Lead RTHJL Emitter 10 Detector °C/W 500 Package Transfer Characteristics Channel/Channel CTR Match CTRX/CTRY 1 to 1 2 to 1 IF=10 mA, VCE=5 V ILD/Q615-1 Saturated Current Transfer Ratio CTRCEsat 25 % IF=10 mA, VCE=0.4 V Current Transfer Ratio CTRCE 40 60 % IF=10 mA, VCE=5 V Current Transfer Ratio CTRCE 13 30 % IF=1 mA, VCE=5 V 40 % IF=10 mA, VCE=0.4 V % IF=10 mA, VCE=5 V 80 ILD/Q615-2 Saturated Current Transfer Ratio CTRCEsat Current Transfer Ratio CTRCE 63 80 Current Transfer Ratio CTRCE 22 45 % IF=1 mA, VCE=5 V 60 % IF=10 mA, VCE=0.4 V % IF=10 mA, VCE=5 V 125 ILD/Q615-3 Saturated Current Transfer Ratio CTRCEsat Current Transfer Ratio CTRCE 100 150 Current Transfer Ratio CTRCE 34 70 % IF=1 mA, VCE=5 V 100 % IF=10 mA, VCE=0.4 V % IF=10 mA, VCE=5 V 200 ILD/Q615-4 Saturated Current Transfer Ratio CTRCEsat Current Transfer Ratio CTRCE 160 200 Current Transfer Ratio CTRCE 56 90 % IF=1 mA, VCE=5 V 320 Isolation and Insulation Common Mode Rejection, Output High CMH 5000 V/µs VCM=50 VP-P, RL=1 kΩ, IF=0 mA Common Mode Rejection, Output Low CML 5000 V/µs VCM=50 VP-P, RL=1 kΩ, IF=10 mA Common Mode Coupling Capacitance CCM 0.01 pF Package Capacitance CI-O Insulation Resistance Channel to Channel Isolation 0.8 1014 RS 500 pF VIO=0 V, f=1 MHz Ω VIO=500 V, TA=25°C VAC ILD/Q615 5–2 Switching Times Figure 1. Non-saturated switching timing VCC=5 V IF=10 mA VO RL=75 Ω F=10 KHz, DF=50% Parameter Typ. Unit tON 3.0 µs tR 2.0 µs tOFF 2.3 µs tF 2.0 µs tPHL Propagation H-L (50% of VPP) 1.1 µs tPHL Propagation L-H 2.5 µs Test Condition RL=75 Ω IF=10 mA VCC=5 V Figure 2. Saturated switching timing F=10 KHz, DF=50% VCC=5 V RL VO Figure 3. Non-saturated switching timing IF tPHL V0 -1 IF=20 mA -1,-3 IF=10 mA -4 IF=5mA Typ. Typ. Typ. Unit tON 3.0 4.3 6.0 µs tR 2.0 2.8 4.6 µs tOFF 18 25 25 µs tF 11 14 15 µs tPHL Propagation H-L 1.6 2.6 5.4 µs tPLH Propagation L-H 8.6 7.2 7.4 µs Parameter RL=1 Ω VCC=5 V VTH=1.5 V tPLH Figure 5. Maximum LED current versus ambient temperature tS tD tF tR Figure 4. Saturated switching timing IF IF - Maximum LED Current - mA 50% VO Test Condition 120 100 80 60 TJ (MAX)=100°C 40 20 0 --60 -40 -20 0 20 40 60 80 Ta - Ambient Temperature - °C 100 tD tR tPLH tPHL tS VTH=1.5 V tF ILD/Q615 5–3 Figure 10. Maximum collector current versus collector voltage Figure 6. Maximum LED power dissipation 200 PLED - LED Power - mW 1000 Ice - Collector Current - mA 150 100 50 0 --60 -40 -20 0 20 40 60 80 Ta - Ambient Temperature - °C 25°C 50°C 75°C 1 90°C .1 1 10 Vce - Collector-Emitter Voltage - V 100 Figure 11. Normalization factor for non-saturated and saturated CTR TA=25°C versus if 1.4 2.0 1.3 Ta = -55°C CTRNF - Normalized CTR Factor VF - Forward Voltage - V 10 .1 100 Figure 7. Forward voltage versus forward current 1.2 Ta = 25°C 1.1 1.0 0.9 Ta = 85°C 0.8 0.7 .1 1 10 IF - Forward Current - mA 100 10000 10 10-6 CTRNF - Normalized CTR Factor t τ DF = /t .5 10 -5 CTRce(sat) Vce = 0.4V NCTRce 1.0 NCTRce(sat) 0.5 Ta = 25°C 0.0 1 10 IF - LED Current - mA 100 2.0 .005 .01 .02 .05 .1 .2 100 1.5 Figure 12. Normalization factor for non-saturated and saturated CTR TA=50°C versus if τ Duty Factor 1000 Normalized to: Vce = 10V, IF = 5mA, Ta = 25°C .1 Figure 8. Peak LED current versus pulse detection, Tau If(pk) - Peak LED Current - mA Rth = 500°C/W 100 10-4 10 -3 10-2 10 -1 10 0 10 1 Normalized to: Vce = 10V, IF = 5mA, Ta = 25°C 1.5 CTRce(sat) Vce = 0.4V NCTRce 1.0 NCTRce(sat) 0.5 Ta = 50°C 0.0 .1 t - LED Pulse Duration - s Figure 9. Maximum detector power dissipation 1 10 IF - LED Current - mA 100 Figure 13. Normalization factor for non-saturated and saturated CTR TA=70°C versus if 200 CTRNF - Normalized CTR Factor P - Detector Power - mW DET 2.0 150 100 50 0 -60 -40 -20 0 20 40 60 Ta - Ambient Temperature - °C 80 100 Normalized to: Vce = 10V, IF = 5mA, Ta = 25°C 1.5 CTRce(sat) Vce = 0.4V NCTRce 1.0 NCTRce(sat) 0.5 Ta = 70°C 0.0 .1 1 10 100 IF - LED Current - mA ILD/Q615 5–4 Figure 17. -1 Propagation delay versus collector load resistor 1000 tPLH - Propagat ion Low- High - µs Normalized to: Vce = 10V, IF = 5mA, Ta = 25°C CTRce(sat) Vce = 0.4V NCTRce 1.0 0.5 NCTRce(sat) Ta=100°C Ta = 100°C 1 10 IF - LED Current - mA 2.0 tPHL 1.5 1 1.0 100 10 RL - Load Resistor - KΩ Figure 18. -2, -3 Propagation delay versus collector load resistor 1000 30 25 tPLH - Propagation Low-High - µs Ice - Collector Current - mA 2.5 10 1 .1 35 50°C 20 15 70°C 25°C 85°C 10 5 0 0 10 20 30 40 IF - LED Current - mA 50 60 5 10 4 10 3 10 10 2 10 0 2.0 tPLH 10 1.5 tPHL 1 .1 1.0 100 1 10 RL - Collector Load Resistor - KΩ 1000 Vce = 10V TYPICAL 10 -1 10 -2 -20 Vcc = 5V, Vth = 1.5V 100 tPLH - Propagation Low-High - µs 1 2.5 Ta = 25°C, IF = 10mA Figure 19. -4 Propagation delay versus collector load resistor Figure 16. Collector-emitter leakage versus temperature 10 3.0 tPLH 100 Figure 15. Collector-emitter current versus temperature and LED current Iceo - Collector-Emitter - nA 100 0.0 .1 3.5 Vcc = 5V, Vth = 1.5V 0 20 40 60 80 100 Ta - Ambient Temperature - °C 2.5 Ta = 25°C, IF = 10mA Vcc = 5V, Vth = 1.5V 100 2.0 tPLH 10 1.5 tPHL 1 .1 1 10 RL - Collector Load Resistor - KΩ 1.0 100 tPHL - Propagation High-Low - µs 1.5 4.0 Ta = 25°C, IF = 10mA tPHL - Propagation High-Low - µs CTRNF - Normalized CTR Factor 2.0 tPHL - Propagation High- Low - µs Figure 14. Normalization factor for non-saturated and saturated CTR TA=85°C versus if ILD/Q615 5–5