INFINEON ILD610-2

ILD610 SERIES
DUAL PHOTOTRANSISTOR
OPTOCOUPLER
FEATURES
• Dual Version of SFH610 Series
• High Current Transfer Ratios
ILD610-1, 40-80%
ILD610-2, 63-125%
ILD610-3, 100-200%
ILD610-4, 160-320%
• Isolation Test Voltage, 5300 VRMS
• VCEsat 0.25 (≤0.4) V at IF=10 mA, IC=2.5 mA
• VCEO=70 V
• Underwriters Lab File #E52744
• V VDE #0884 Available with Option 11
Dimensions in inches (mm)
Pin One I.D.
4
3
2
1
Anode 1
.268 (6.81)
.255 (6.48)
8 Emitter
Cathode 2
7 Collector
Anode 3
5
6
7
8
6 Emitter
Cathode 4
5 Collector
.390 (9.91)
.379 (9.63)
.305 Typ.
(7.75) Typ.
.045 (1.14) .150 (3.81)
.030 (.76)
.130 (3.30)
D E
DESCRIPTION
The ILD610 Series is a dual channel optocoupler
series for high density applications. Each channel
consists of an optically coupled pair with a Gallium
Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC
level, can be transmitted by the device while maintaining a high degree of electrical isolation between
input and output. The ILD610 Series is the dual version of SFH610 Series and uses a repetitive pin-out
configuration instead of the more common alternating pin-out used in most dual couplers.
4° Typ.
.022 (.56)
.018 (.46)
10 ° Typ.
.040 (1.02)
.030 (.76 )
.135 (3.43)
.115 (2.92)
3°–9°
.012 (.30)
.008 (.20)
.100 (2.54) Typ.
Electrical Characteristics (TA=25°C)
Symbol
Typ.
Unit
Condition
Maximum Ratings (Each Channel)
Emitter
Emitter
Reverse Voltage .................................................6 V
Surge Forward Current (t £10 ms)...................1.5 A
Total Power Dissipation ..............................100 mW
Derate Linearly from 25°C......................1.3 mW/°C
DC Forward Current ......................................60 mA
Forward Voltage
VF
1.25
(≤1.65)
V
IF=60mA
Reverse Current
IR
0.01 (≤10)
µA
VR=6V
Capacitance
CO
25
pF
VR=0 V,
f=1 MHz
BVCEO
BVCEO
90 (≥70)
7.0 (≥6.0)
V
V
IC=10 µA
IE=10 µA
Collector-Emitter Dark
Current
ICEO
2 (≤50)
nA
VCE=10 V
Capacitance
CCE
7
pF
VCE=5 V,
f=1 MHz
Collector-Emitter Saturation
Voltage
VCEsat
0.25
(≤0.40)
V
IF=10 mA,
IC=2.5 mA
Coupling Capacitance
CC
0.35
pF
Detector
Collector-Emitter Voltage..................................70 V
Collector Current ..........................................50 mA
Collector Current (t ≤1 ms) ..........................100 mA
Total Power Dissipation ..............................150 mW
Derate Linearly from 25°C......................2.0 mW/°C
Package
Isolation Test Voltage (t=1 sec.) ........ 5300 VACRMS
Isolation Resistance
VIO=500 V, TA=25°C ............................... ≥1012 Ω
VIO=500 V, TA=100°C ............................. ≥1011 Ω
Storage Temperature ...................–55°C to +150°C
Operating Temperature ...............–55°C to +100°C
Junction Temperature ................................... 100°C
Lead Soldering Time at 260°C .................... 10 sec.
Detector
Breakdown Voltage
Collector-Emitter
Emitter-Collector
Package
5–1
-1
-2
-3
-4
CTR1, IF =10 mA, VCE=5 V
40-80
63-125
100-200
160-320
%
CTR1, IF =1 mA, VCE=5 V
13 min.
22 min.
34 min.
56 min.
%
ICEO (VCE=10 V)
2 (≤50)
2 (≤50)
5 (≤100)
5 (≤100)
nA
CTR will match within a ratio of 1.7:1
Switching Characteristics
Linear Operation (without saturation) IF=10 mA, VCC=5 V, RC=75 Ω, Typical
-1
-2
-3
-4
Turn on time
ton
3.0
3.2
3.6
4.1
µs
Rise time
tr
2.0
2.5
2.9
3.3
µs
Turn off time
toff
2.3
2.9
3.4
3.7
µs
Fall time
tf
2.0
2.6
3.1
3.5
µs
Switching Operation (with saturation) VCC=5 V, RC=1 Ω, Typicall
-1
IF = 20 mA
-2
IF = 10 mA
-3
IF = 10 mA
-4
IF = 5 mA
Turn on time
ton
3.0
4.3
4.6
6.0
µs
Rise time
tr
2.0
2.8
3.3
4.6
µs
Turn off time
toff
18
2.9
3.4
25
µs
Fall time
tf
11
2.6
3.1
15
µs
Figure 3. Normalized non-saturated and saturated
CTR at TA=50°C versus LED current
Figure 1. Forward voltage versus forward current
1.5
1.3
Ta = -55°C
NCTR - Normalized CTR
VF - Forward Voltage - V
1.4
1.2
Ta = 25°C
1.1
1.0
0.9
Ta = 85°C
0.8
0.7
.1
1
10
IF - Forward Current - mA
100
NCTR - Normalized CTR
NCTR - Normalized CTR
1.5
CTRce(sat) Vce = 0.4V
0.5
NCTR(SAT)
NCTR
0.0
.1
NCTR(SAT)
NCTR
1
10
IF - LED Current - mA
1
10
IF - LED Current - mA
100
Figure 4. Normalized non-saturated and saturated
CTR at TA=70°C versus LED curent
Normalized to:
Vce = 5V, IF = 10mA
Ta = 25°C
1.0
Ta = 50°C
0.5
0.0
.1
Figure 2. Normalized non-saturated and saturated
CTR at TA=25°C versus LED current
1.5
1.0
Normalized to:
Vce = 5V, IF = 10mA, Ta = 25°C
CTRce(sat) Vce = 0.4V
Normalized to:
Vce = 5V, IF = 10mA
Ta = 25°C
1.0
CTRce(sat) Vce = 0.4V
0.5
Ta = 70°C
NCTR(SAT)
NCTR
0.0
100
.1
1
10
IF - LED Current - mA
100
ILD610
5–2
Figure 5. Normalized non-saturated and saturated CTR
at TA=85°C versus LED current
Figure 9. Switching timing
IF
NCTR - Normalized CTR
1.5
Normalized to:
Vce = 10V, IF = 10mA, Ta = 25°C
CTRce(sat) Vce = 0.4V
1.0
tD
tR
VO
tPLH
0.5
0.0
Ta = 85°C
NCTR(SAT)
NCTR
.1
1
10
IF - LED Current - mA
tS
tPHL
100
VTH=1.5 V
tF
Figure 10. Non-saturated switching schematic
Figure 6. Collector-emitter current versus temperature
and LED current
VCC=5 V
F=10 KHz
DF=50%
Ice - Collector Current - mA
35
RL
30
25
IF=10 mA
50°C
VO
20
15
70°C
25°C
85°C
10
5
Figure 11. Saturated switching time test waveform
0
0
10
20
30
40
IF - LED Current - mA
50
Input
0
60
ton
toff
tpdon
Iceo - Collector-Emitter - nA
Figure 7. Collector-emitter leakage current versus
temperature
10
10
10
Output td
0
10%
5
4
3
tpdof
tr
ts
tr
10%
50%
50%
90%
90%
10 2
10
Vce = 10V
1
TYPICAL
10 0
10 -1
10 -2
-20
0
20
40
60
80
100
Ta - Ambient Temperature - °C
1000
Ta = 25°C, IF = 10mA
Vcc = 5 V, Vth = 1.5 V
tpHL
100
2.5
2.0
1.5
10
tpLH
1
1.0
.1
tpHL - Propagation Delay - µs
tpLH - Propagation Delay - µs
Figure 8. Propagation delay versus collector load
resistor
1
10
100
RL - Collector Load Resistor - KΩ
ILD610
5–3