ILD610 SERIES DUAL PHOTOTRANSISTOR OPTOCOUPLER FEATURES • Dual Version of SFH610 Series • High Current Transfer Ratios ILD610-1, 40-80% ILD610-2, 63-125% ILD610-3, 100-200% ILD610-4, 160-320% • Isolation Test Voltage, 5300 VRMS • VCEsat 0.25 (≤0.4) V at IF=10 mA, IC=2.5 mA • VCEO=70 V • Underwriters Lab File #E52744 • V VDE #0884 Available with Option 11 Dimensions in inches (mm) Pin One I.D. 4 3 2 1 Anode 1 .268 (6.81) .255 (6.48) 8 Emitter Cathode 2 7 Collector Anode 3 5 6 7 8 6 Emitter Cathode 4 5 Collector .390 (9.91) .379 (9.63) .305 Typ. (7.75) Typ. .045 (1.14) .150 (3.81) .030 (.76) .130 (3.30) D E DESCRIPTION The ILD610 Series is a dual channel optocoupler series for high density applications. Each channel consists of an optically coupled pair with a Gallium Arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. The ILD610 Series is the dual version of SFH610 Series and uses a repetitive pin-out configuration instead of the more common alternating pin-out used in most dual couplers. 4° Typ. .022 (.56) .018 (.46) 10 ° Typ. .040 (1.02) .030 (.76 ) .135 (3.43) .115 (2.92) 3°–9° .012 (.30) .008 (.20) .100 (2.54) Typ. Electrical Characteristics (TA=25°C) Symbol Typ. Unit Condition Maximum Ratings (Each Channel) Emitter Emitter Reverse Voltage .................................................6 V Surge Forward Current (t £10 ms)...................1.5 A Total Power Dissipation ..............................100 mW Derate Linearly from 25°C......................1.3 mW/°C DC Forward Current ......................................60 mA Forward Voltage VF 1.25 (≤1.65) V IF=60mA Reverse Current IR 0.01 (≤10) µA VR=6V Capacitance CO 25 pF VR=0 V, f=1 MHz BVCEO BVCEO 90 (≥70) 7.0 (≥6.0) V V IC=10 µA IE=10 µA Collector-Emitter Dark Current ICEO 2 (≤50) nA VCE=10 V Capacitance CCE 7 pF VCE=5 V, f=1 MHz Collector-Emitter Saturation Voltage VCEsat 0.25 (≤0.40) V IF=10 mA, IC=2.5 mA Coupling Capacitance CC 0.35 pF Detector Collector-Emitter Voltage..................................70 V Collector Current ..........................................50 mA Collector Current (t ≤1 ms) ..........................100 mA Total Power Dissipation ..............................150 mW Derate Linearly from 25°C......................2.0 mW/°C Package Isolation Test Voltage (t=1 sec.) ........ 5300 VACRMS Isolation Resistance VIO=500 V, TA=25°C ............................... ≥1012 Ω VIO=500 V, TA=100°C ............................. ≥1011 Ω Storage Temperature ...................–55°C to +150°C Operating Temperature ...............–55°C to +100°C Junction Temperature ................................... 100°C Lead Soldering Time at 260°C .................... 10 sec. Detector Breakdown Voltage Collector-Emitter Emitter-Collector Package 5–1 -1 -2 -3 -4 CTR1, IF =10 mA, VCE=5 V 40-80 63-125 100-200 160-320 % CTR1, IF =1 mA, VCE=5 V 13 min. 22 min. 34 min. 56 min. % ICEO (VCE=10 V) 2 (≤50) 2 (≤50) 5 (≤100) 5 (≤100) nA CTR will match within a ratio of 1.7:1 Switching Characteristics Linear Operation (without saturation) IF=10 mA, VCC=5 V, RC=75 Ω, Typical -1 -2 -3 -4 Turn on time ton 3.0 3.2 3.6 4.1 µs Rise time tr 2.0 2.5 2.9 3.3 µs Turn off time toff 2.3 2.9 3.4 3.7 µs Fall time tf 2.0 2.6 3.1 3.5 µs Switching Operation (with saturation) VCC=5 V, RC=1 Ω, Typicall -1 IF = 20 mA -2 IF = 10 mA -3 IF = 10 mA -4 IF = 5 mA Turn on time ton 3.0 4.3 4.6 6.0 µs Rise time tr 2.0 2.8 3.3 4.6 µs Turn off time toff 18 2.9 3.4 25 µs Fall time tf 11 2.6 3.1 15 µs Figure 3. Normalized non-saturated and saturated CTR at TA=50°C versus LED current Figure 1. Forward voltage versus forward current 1.5 1.3 Ta = -55°C NCTR - Normalized CTR VF - Forward Voltage - V 1.4 1.2 Ta = 25°C 1.1 1.0 0.9 Ta = 85°C 0.8 0.7 .1 1 10 IF - Forward Current - mA 100 NCTR - Normalized CTR NCTR - Normalized CTR 1.5 CTRce(sat) Vce = 0.4V 0.5 NCTR(SAT) NCTR 0.0 .1 NCTR(SAT) NCTR 1 10 IF - LED Current - mA 1 10 IF - LED Current - mA 100 Figure 4. Normalized non-saturated and saturated CTR at TA=70°C versus LED curent Normalized to: Vce = 5V, IF = 10mA Ta = 25°C 1.0 Ta = 50°C 0.5 0.0 .1 Figure 2. Normalized non-saturated and saturated CTR at TA=25°C versus LED current 1.5 1.0 Normalized to: Vce = 5V, IF = 10mA, Ta = 25°C CTRce(sat) Vce = 0.4V Normalized to: Vce = 5V, IF = 10mA Ta = 25°C 1.0 CTRce(sat) Vce = 0.4V 0.5 Ta = 70°C NCTR(SAT) NCTR 0.0 100 .1 1 10 IF - LED Current - mA 100 ILD610 5–2 Figure 5. Normalized non-saturated and saturated CTR at TA=85°C versus LED current Figure 9. Switching timing IF NCTR - Normalized CTR 1.5 Normalized to: Vce = 10V, IF = 10mA, Ta = 25°C CTRce(sat) Vce = 0.4V 1.0 tD tR VO tPLH 0.5 0.0 Ta = 85°C NCTR(SAT) NCTR .1 1 10 IF - LED Current - mA tS tPHL 100 VTH=1.5 V tF Figure 10. Non-saturated switching schematic Figure 6. Collector-emitter current versus temperature and LED current VCC=5 V F=10 KHz DF=50% Ice - Collector Current - mA 35 RL 30 25 IF=10 mA 50°C VO 20 15 70°C 25°C 85°C 10 5 Figure 11. Saturated switching time test waveform 0 0 10 20 30 40 IF - LED Current - mA 50 Input 0 60 ton toff tpdon Iceo - Collector-Emitter - nA Figure 7. Collector-emitter leakage current versus temperature 10 10 10 Output td 0 10% 5 4 3 tpdof tr ts tr 10% 50% 50% 90% 90% 10 2 10 Vce = 10V 1 TYPICAL 10 0 10 -1 10 -2 -20 0 20 40 60 80 100 Ta - Ambient Temperature - °C 1000 Ta = 25°C, IF = 10mA Vcc = 5 V, Vth = 1.5 V tpHL 100 2.5 2.0 1.5 10 tpLH 1 1.0 .1 tpHL - Propagation Delay - µs tpLH - Propagation Delay - µs Figure 8. Propagation delay versus collector load resistor 1 10 100 RL - Collector Load Resistor - KΩ ILD610 5–3