INFINEON ILQ32

ILD32
DUAL CHANNEL
ILQ32
QUAD CHANNEL
PHOTODARLINGTON OPTOCOUPLER
FEATURES
• Very High Current Transfer Ratio, 500% Min.
• Isolation Test Voltage, 5300 VACRMS
• High Isolation Resistance, 1011 Ω Typical
• Low Coupling Capacitance
• Standard Plastic DIP Package
• Underwriters Lab File #E52744
V
•
VDE 0884 Available with Option 1
Dimensions in inches (mm)
Dual
Channel
4
2
3
Pin One I.D.
1
Anode
.268 (6.81)
.255 (6.48)
5
7
6
1
8 Emitter
Cathode 2
7 Collector
Cathode 3
6 Collector
8
.390 (9.91)
.379 (9.63)
Anode 4
5 Emitter
D E
Maximum Ratings (Each Channel)
Detector
Collector-Emitter Breakdown Voltage .............30 V
Collector (Load) Current..............................125 mA
Power Dissipation at 25°C Ambient ...........150 mW
Derate Linearly from 25°C......................2.0 mW/°C
Package
Isolation Test Voltage (between emitter
and detector refer to standard climate
23°C/50%RH, DIN 50014)
t=1 sec........................................... 5300 VACRMS
Creepage ............................................... 7 mm min.
Clearance............................................... 7 mm min.
Comparative Tracking Index per
DIN IEC 112/VDE303, part 1 ........................ ≥175
Isolation Resistance
VIO=500V, TA=25°C ......................... RIO=1012 Ω
VIO=500V, TA=100°C ....................... RIO=1011 Ω
Total Dissipation at 25°C Ambient
ILD32 .....................................................400 mW
ILQ32 .....................................................500 mW
Derate Linearly from 25°C
ILD32 ...............................................5.33 mW/°C
ILQ32 ...............................................6.67 mW/°C
Storage Temperature ...................–55°C to +150°C
Operating Temperature ...............–55°C to +100°C
Lead Soldering Time at 260°C .................... 10 sec.
DESCRIPTION
The ILD32/ILQ32 are optically coupled isolators
with a Gallium Arsenide infrared LED and a silicon
photodarlington sensor. Switching can be achieved
while maintaining a high degree of isolation
between driving and load circuits. These optocouplers can be used to replace reed and mercury
relays with advantages of long life, high speed
switching and elimination of magnetic fields.
The ILD32 has two isolated channels in a DIP package, and the ILQ32 has four channels. These
devices can be used to replace 4N32s or 4N33s in
applications calling for several single channel optocouplers on a board.
.305 typ.
(7.75) typ.
.045 (1.14)
.030 (.76)
Emitter
Peak Reverse Voltage ........................................3 V
Continuous Forward Current .........................60 mA
Power Dissipation at 25°C.........................100 mW
Derate Linearly from 25°C....................1.33 mW/°C
.150 (3.81)
.130 (3.30)
4°
Typ.
.022 (.56)
.018 (.46)
3°–9°
.012 (.30)
.008 (.20)
.100 (2.54)
Typ.
Quad
Channel
.135 (3.43)
.115 (2.92)
10°
Typ.
.040 (1.02)
.030 (.76 )
Pin One I.D. Anode
.268 (6.81)
.255 (6.48)
16 Emitter
15 Collector
Cathode 3
14 Collector
Anode 4
13 Emitter
5
12 Emitter
Anode
.790 (20.07)
.779 (19.77 )
1
Cathode 2
Cathode 6
11 Collector
Cathode 7
10 Collector
Anode 8
9
.305 typ.
(7.75) typ.
.045 (1.14)
.030 (.76)
.150 (3.81)
.130 (3.30)
4°
Typ.
.022 (.56)
.018 (.46)
Emitter
.135 (3.43)
.115 (2.92)
10°
Typ.
.040 (1.02)
.030 (.76 )
3°–9°
.012 (.30)
.008 (.20)
.100 (2.54)
Typ.
Electrical Characteristics (TA=25°C)
Symbol
Min.
Typ.
Max.
Unit
Condition
Emitter
Forward Voltage
VF
1.25
1.5
V
IF=10 mA
Reverse Current
IR
0.1
100
µA
VR=3.0 V
Capacitance
CO
25
pF
VR=0 V
V
IC=100 µA,
IF=0
V
IE=100 µA
nA
VCE=10V,
IF=0
%
IF=10 mA
V
IC=2 mA,
IF=8 mA
Detector
Breakdown Voltage
Collector-Emitter
BVCEO
30
Breakdown Voltage
Emitter-Collector
BVECO
5
Collector-Emitter
Leakage Current
ICEO
10
1.0
100
Package
Current Transfer Ratio
CTR
Collector Emitter
Saturation Voltage
VCEsat
Isolation Capacitance
CISOL
0.5
pF
Turn-On Time
ton
15
µs
VCC=10 V
Turn-Off Time
toff
30
µs
IF=5 mA,
RL=100 Ω
5–1
500
1.0
1.3
Figure 5. High to low propagation delay versus
collector load resistamce and LED current
tpHL - High/Low Propagation
delay - µs
VF - Forward Voltage - V
Figure 1. Forward voltage versus forward current
1.4
Ta = -55°C
1.2
Ta = 25°C
1.1
1.0
0.9
Ta = 85°C
0.8
0.7
.1
1
10
IF - Forward Current - mA
100
NCTRce - Normalized CTR
1KΩ
Ta = 25°C
Vcc = 10 V
Vth = 1.5 V
15
10
100Ω
5
0
0
Figure 2. Normalized non-saturated and saturated
CTRce at TA=25°C versus LED current
1.2
Normalized to:
Vce = 10 V
1.0
IF = 10 mA
0.8
Ta = 25 °C
Vce = 10V
5
10
15
IF - LED Current - mA
20
Figure 6. Switching timing
IF
0.6
VO
0.4
tD
tR
tPLH
0.2
Vce =1V
0.0
.1
1
10
100
IF - LED Current - mA
tPHL
1000
10
Normalized to:
Ta = 25°C
IF = 10 mA
1
Vce = 10 V
tS
VTH=1.5 V
tF
Figure 7. Switching schematic
Figure 3. Normalized non-saturated and saturated
collector-emitter current versus LED current
N Ice - Normalized Ice
20
VCC=10 V
Vce = 10 V
F=10 KHz,
DF=50%
RL
VO
Vce = 1V
.1
IF=5 mA
.01
.001
.1
100
1
10
IF - LED Current - mA
tpLH - Low/High Propagation
Delay - µ s
Figure 4. Low to high propagation delay versus
collector load resistance and LED current
80 Ta = 25°C, Vcc = 10 V
Vth = 1.5 V
1KΩ
60
220Ω
40
470Ω
20
100Ω
0
0
5
10
15
IF - LED Current - mA
20
ILD32/ILQ32
5–2