ILD32 DUAL CHANNEL ILQ32 QUAD CHANNEL PHOTODARLINGTON OPTOCOUPLER FEATURES • Very High Current Transfer Ratio, 500% Min. • Isolation Test Voltage, 5300 VACRMS • High Isolation Resistance, 1011 Ω Typical • Low Coupling Capacitance • Standard Plastic DIP Package • Underwriters Lab File #E52744 V • VDE 0884 Available with Option 1 Dimensions in inches (mm) Dual Channel 4 2 3 Pin One I.D. 1 Anode .268 (6.81) .255 (6.48) 5 7 6 1 8 Emitter Cathode 2 7 Collector Cathode 3 6 Collector 8 .390 (9.91) .379 (9.63) Anode 4 5 Emitter D E Maximum Ratings (Each Channel) Detector Collector-Emitter Breakdown Voltage .............30 V Collector (Load) Current..............................125 mA Power Dissipation at 25°C Ambient ...........150 mW Derate Linearly from 25°C......................2.0 mW/°C Package Isolation Test Voltage (between emitter and detector refer to standard climate 23°C/50%RH, DIN 50014) t=1 sec........................................... 5300 VACRMS Creepage ............................................... 7 mm min. Clearance............................................... 7 mm min. Comparative Tracking Index per DIN IEC 112/VDE303, part 1 ........................ ≥175 Isolation Resistance VIO=500V, TA=25°C ......................... RIO=1012 Ω VIO=500V, TA=100°C ....................... RIO=1011 Ω Total Dissipation at 25°C Ambient ILD32 .....................................................400 mW ILQ32 .....................................................500 mW Derate Linearly from 25°C ILD32 ...............................................5.33 mW/°C ILQ32 ...............................................6.67 mW/°C Storage Temperature ...................–55°C to +150°C Operating Temperature ...............–55°C to +100°C Lead Soldering Time at 260°C .................... 10 sec. DESCRIPTION The ILD32/ILQ32 are optically coupled isolators with a Gallium Arsenide infrared LED and a silicon photodarlington sensor. Switching can be achieved while maintaining a high degree of isolation between driving and load circuits. These optocouplers can be used to replace reed and mercury relays with advantages of long life, high speed switching and elimination of magnetic fields. The ILD32 has two isolated channels in a DIP package, and the ILQ32 has four channels. These devices can be used to replace 4N32s or 4N33s in applications calling for several single channel optocouplers on a board. .305 typ. (7.75) typ. .045 (1.14) .030 (.76) Emitter Peak Reverse Voltage ........................................3 V Continuous Forward Current .........................60 mA Power Dissipation at 25°C.........................100 mW Derate Linearly from 25°C....................1.33 mW/°C .150 (3.81) .130 (3.30) 4° Typ. .022 (.56) .018 (.46) 3°–9° .012 (.30) .008 (.20) .100 (2.54) Typ. Quad Channel .135 (3.43) .115 (2.92) 10° Typ. .040 (1.02) .030 (.76 ) Pin One I.D. Anode .268 (6.81) .255 (6.48) 16 Emitter 15 Collector Cathode 3 14 Collector Anode 4 13 Emitter 5 12 Emitter Anode .790 (20.07) .779 (19.77 ) 1 Cathode 2 Cathode 6 11 Collector Cathode 7 10 Collector Anode 8 9 .305 typ. (7.75) typ. .045 (1.14) .030 (.76) .150 (3.81) .130 (3.30) 4° Typ. .022 (.56) .018 (.46) Emitter .135 (3.43) .115 (2.92) 10° Typ. .040 (1.02) .030 (.76 ) 3°–9° .012 (.30) .008 (.20) .100 (2.54) Typ. Electrical Characteristics (TA=25°C) Symbol Min. Typ. Max. Unit Condition Emitter Forward Voltage VF 1.25 1.5 V IF=10 mA Reverse Current IR 0.1 100 µA VR=3.0 V Capacitance CO 25 pF VR=0 V V IC=100 µA, IF=0 V IE=100 µA nA VCE=10V, IF=0 % IF=10 mA V IC=2 mA, IF=8 mA Detector Breakdown Voltage Collector-Emitter BVCEO 30 Breakdown Voltage Emitter-Collector BVECO 5 Collector-Emitter Leakage Current ICEO 10 1.0 100 Package Current Transfer Ratio CTR Collector Emitter Saturation Voltage VCEsat Isolation Capacitance CISOL 0.5 pF Turn-On Time ton 15 µs VCC=10 V Turn-Off Time toff 30 µs IF=5 mA, RL=100 Ω 5–1 500 1.0 1.3 Figure 5. High to low propagation delay versus collector load resistamce and LED current tpHL - High/Low Propagation delay - µs VF - Forward Voltage - V Figure 1. Forward voltage versus forward current 1.4 Ta = -55°C 1.2 Ta = 25°C 1.1 1.0 0.9 Ta = 85°C 0.8 0.7 .1 1 10 IF - Forward Current - mA 100 NCTRce - Normalized CTR 1KΩ Ta = 25°C Vcc = 10 V Vth = 1.5 V 15 10 100Ω 5 0 0 Figure 2. Normalized non-saturated and saturated CTRce at TA=25°C versus LED current 1.2 Normalized to: Vce = 10 V 1.0 IF = 10 mA 0.8 Ta = 25 °C Vce = 10V 5 10 15 IF - LED Current - mA 20 Figure 6. Switching timing IF 0.6 VO 0.4 tD tR tPLH 0.2 Vce =1V 0.0 .1 1 10 100 IF - LED Current - mA tPHL 1000 10 Normalized to: Ta = 25°C IF = 10 mA 1 Vce = 10 V tS VTH=1.5 V tF Figure 7. Switching schematic Figure 3. Normalized non-saturated and saturated collector-emitter current versus LED current N Ice - Normalized Ice 20 VCC=10 V Vce = 10 V F=10 KHz, DF=50% RL VO Vce = 1V .1 IF=5 mA .01 .001 .1 100 1 10 IF - LED Current - mA tpLH - Low/High Propagation Delay - µ s Figure 4. Low to high propagation delay versus collector load resistance and LED current 80 Ta = 25°C, Vcc = 10 V Vth = 1.5 V 1KΩ 60 220Ω 40 470Ω 20 100Ω 0 0 5 10 15 IF - LED Current - mA 20 ILD32/ILQ32 5–2