TLE 4216 G Intelligent Sixfold Low-Side Switch Bipolar IC Features ● ● ● ● ● ● ● ● ● Double low-side switch, 2 x 0.5 A Quad low-side switch, 4 x 50 mA Power limitation Open-collector outputs Overtemperature shutdown Status monitoring Shorted-load protection Integrated clamp Z-Diodes Temperature range – 40 to 110 °C P-DSO-24-3 Type Ordering Code Package TLE 4216 G Q67000-A9108 P-DSO-24-3 (SMD) TLE 4216 G is an integrated, sixfold low-side power switch with power limiting of the 0.5 A outputs, shorted load protection of the 50 mA switches and Z-diodes on all switches from output to ground. TLE 4216 G is particularly suitable for automotive and industrial applications. Semiconductor Group 1 08.96 TLE 4216 G Pin Configuration (top view) TLE 4216 G Semiconductor Group 2 TLE 4216 G Pin Definitions and Functions TLE 4216 G Symbol Function 1, 2, 3, 4 I1, I2, I3, I4 Inputs of 50-mA switches 1, 2, 3, 4 5, 6, 7, 8 GND Ground, cooling 9, 10 I5, I6 Inputs of 0.5 A switches 5, 6 11 QST Status analog output 12 VREF Reference voltage; a higher reference voltage than the internal one can be applied from the exterior as a voltage reference for the status output (A/D converter). 13 VS Supply voltage 14 PREFST Preferred state (low = preferred state of all outputs regardless of inputs) 15, 16 Q6, Q5 Outputs 6, 5 (0.5 A), open collector 17, 18, 19, 20 GND Ground, cooling 21, 22, 23, 24 Q4, Q3, Q2, Q1 Outputs 4, 3, 2, 1 (50 mA), open collector Pin No. Semiconductor Group 3 TLE 4216 G Block Diagram Semiconductor Group 4 TLE 4216 G Circuit Description Input Circuits The control inputs and the preferred-state input consist of TTL-compatible Schmitt triggers with hysteresis. Driven by these stages the buffer amplifiers convert the logic signal necessary for driving the NPN power transistors. Switching Stages The output stages consist of NPN power transistors with open collectors. Each stage has its own protective circuit for limiting power dissipation and shorted-load current, which makes the outputs shorted-load protected to the supply voltage throughout the operating range. Integrated Z-diodes limit positive voltage spikes that occur when inductive loads are discharged. Monitoring and Protective Functions Each output is monitored in its activated status for overload. Furthermore, large parts of the circuitry are shutdown (control, output stages). The information from these malfunctions is ORed and applied to the status output. If several malfunctions appear simultaneously, the highest voltage level will dominate. The IC is also protected against thermal overload. If a chip temperature of typically 160 °C is reached, overtemperature is signalled on the status output. If the temperature continues to increase, all outputs are turned off at 170 °C. If the minimum supply voltage for functioning is not maintained, the output stages become inactive. At a supply voltage of 2 to 4 V, the outputs are switched to a preferred state regardless of the level on pin PREFST. If the preferred state is to be maintained beyond this range, pin PREFST must be switched to low potential. Above a supply voltage of typical 3 V (max. 4 V) the preferred state is controlled by pin PREFST. From 4 to 5.2 V the logic operation of the outputs is guaranteed, but the status output cannot be evaluated. At a supply voltage of 5.2 to 30 V the full function is guaranteed. Semiconductor Group 5 TLE 4216 G Application Description Applications in automotive electronics require intelligent power switches activated by logic signals, which are shorted-load protected and provide error feedback. The IC contains six power switches connected to ground (low-side switch). On inductive loads the integrated Z-diodes clamp the discharging voltage. By means of TTL signals on the control inputs (active high) all six switches can be activated independently of another when a high level appears on the preferred-state input. When there is a low level on the preferred-state input, switches 1 to 4 are switched on, switches 5 and 6 are switched off regardless of the input level. The inputs are highly resistive and therefore must not be left unconnected, but should always be on fixed potential (noise immunity). The status output signals the following malfunctions by analog voltage levels: ● ● Overload Overtemperature Possible Input and Output Levels Supply Voltage VS PREFST I1 … I6 Q1 … Q4 Q5, Q6 2 to 4 V 4 to 30 V 4 to 30 V L H H X L H L H L H H L Semiconductor Group 6 TLE 4216 G Absolute Maximum Ratings Tj = − 40 to 150 °C Parameter Symbol Limit Values min. max. Unit Remarks Voltages Supply voltage VS –1 40 V Supply voltage, load circuit VQ1-6 – 0.7 25 V Input voltage VI1-6, VPREFST 0 VS V Input voltage VREF ext – 0.7 7 V Currents Switching current IQ1-IQ6 Current on reverse poling in load circuit IQ5, Q6 – 0.5 A Current on reverse poling in load circuit IQ1-Q4 – 50 mA Output current positive clamp IZ5-Z6 0.7 A Output current positive clamp IZ1-Z4 70 mA Junction temperature Tj – 40 150 °C Storage temperature Tstg – 50 150 °C Semiconductor Group limited internally 7 Thermal overload shutdown at 170 °C TLE 4216 G Operating Range Parameter Symbol Limit Values min. max. Unit Remarks VREF ≤ VS, functioning is guaranteed at VS = 4 – 5.2 V but status output cannot be evaluated. Supply voltage VS 5.2 30 V Supply voltage in load circuit VQ1-6 – 0.3 24 V Ambient temperature TA – 40 110 °C Supply voltage for load short-circuit VS 16 V Input current (high) IIH 100 µA Thermal resistance Junction-ambient Rth JA 65 K/W Semiconductor Group 8 P-DSO-24-3 TLE 4216 G Characteristics VS = 5 to 12 V; Tj = – 25 to 140 °C Parameter Symbol Limit Values min. typ. max. Unit Test Condition VI > VIH; VIP > VIH VI > VIH; VIP > VIH; VS = 5 V VI < VIL; VIP > VIH General Supply current Supply current IS IS 50 36 70 50 mA mA Quiescent current IS 8 11 mA 1.8 1.2 0.6 2.1 1.5 1.0 V V V 2 20 µA µA 0.9 V < VI < 6 V 0.5 V < VI < 0.9 V mA VS = 2 V V V V µs µs (preferred state) IQ = 0.4 A; VI > VIH IQ = 50 mA; VI > VIH IQ = 20 mA; VI > VIH see Diagrams see Diagrams; IL = Imax Logic (Control inputs + preferred state) H-switching threshold L-switching threshold Hysteresis Input current Input current L-input current VIH VIL ∆VI 1.3 0.9 0.3 II – IIL –2 0 IQ1-Q4 50 Switching Stages Load current Saturation voltage Saturation voltage Saturation voltage Turn-ON time Turn-OFF time Semiconductor Group VQSat 5, 6 VQSat 1-4 VQSat 1-4 tD-ON tD-OFF 0.5 0.4 1 1 0.2 0.2 9 0.8 0.6 0.22 1.5 1.5 TLE 4216 G Characteristics (cont’d) VS = 5 to 12 V; Tj = – 25 to 140 °C Parameter Symbol Limit Values min. typ. Unit Test Condition max. Temperature Protection Overtemperature (signaled on status output) Overtemperature (outputs shut down) 160 °C 170 °C Outputs Output voltage pos. clamp Output voltage pos. clamp Shorted-load current VQ1-4 25.5 33 V I = 50 mA VQ5-6 25.5 35 V I = 0.5 A IQ1max- 50 120 mA VQ < 16 V VQ = 24 V; Tj = 125 °C VQ = 24 V Q4max Leakage current IQ1-4 200 nA Leakage current Shorted-load current IQ5;6 IQ5max- 300 µA see Diagrams Q6max Status output No error Overload output 6 Overload output 5 Overload output 4 Overload output 3 Overload output 2 Overload output 1 Overtemperature 1) Vst Vst Vst Vst Vst Vst Vst Vst 0.5 1.3 1.7 2.1 2.5 2.9 3.3 1.0 1.4 1.8 2.2 2.6 3.0 3.5 The limits shift proportionally for a higher value of reference voltage. Semiconductor Group 10 V V V V V V V V VREF = 5 V 1) VREF = 5 V 1) VREF = 5 V 1) VREF = 5 V 1) VREF = 5 V 1) VREF = 5 V 1) VREF = 5 V 1) VREF = 5 V 1) TLE 4216 G Characteristics (cont’d) VS = 5 to 12 V; Tj = – 25 to 140 °C Parameter Symbol Limit Values min. Source resistance of status output RQSt Delay time of status tdst Reference voltage (internal) VREF Input resistance of reference pin RREF in Semiconductor Group typ. 100 10 11 Test Condition max. 550 Ω 10 µs 2.5 7 Unit Shorted load V 14.5 kΩ VREF = 2.8 V … 6.5 V TLE 4216 G Test Circuit S1 in position 1: all switches can be activated by S2 (position 1) or deactivated (position 2) S1 in position 2: preferred state Semiconductor Group 12 TLE 4216 G Application Circuit *) The capacitance depends on the inductance and current load of the supply. Semiconductor Group 13 TLE 4216 G Diagrams Short-Circuit Current IQO versus Output Voltage VQ (0.5 A outputs) Permissible Load Inductance versus Load Current When switching the maximum inductive loads, the maximum temperature Tj of 150 °C may be briefly exceeded. The IC will not be destroyed by this, but the restrictions concerning useful life should be observed. Semiconductor Group 14