PD - 94592A IRF6156 Ultra Low RSS(on) per Footprint Area l Low Thermal Resistance l Bi-Directional N-Channel Switch l Super Low Profile (<.8mm) l Available Tested on Tape & Reel l ESD Protection Diode Description l FlipFET Power MOSFET VSS 20V RSS(on) max IS 40m @VGS1,2 = 4.5V ±6.5 : 60m:@VGS1,2 = 2.5V ±5.2 True chip-scale packaging is available from International Rectifier. Through the use of advanced processing techniques and a unique packaging concept, extremely low on-resistance and the highest power densities in the industry have been made available for battery and load management applications. These benefits, combined with the ruggedized device design that International Rectifier is well known for, provide the designer with an extremely efficient and reliable device. The FlipFET package, is one-fifth the footprint of a comparable TSSOP-8 package and has a profile of less than .8mm. Combined with the low thermal resistance of the die level device, this makes the FlipFET the best device for applications where printed circuit board space is at a premium and in extremely thin application environments such as battery packs, mobile phones and PCMCIA cards. Absolute Maximum Ratings Parameter VSS IS @ TA = 25°C IS @ TA = 70°C Source-to-Source Voltage Continuous Current, VGS1 = VGS2 = 4.5V ISM Continuous Current, VGS1 = VGS2 Pulsed Current PD @TA = 25°C Power Dissipation c e = 4.5V e Max. Units 20 V ±6.5 A ±5.2 33 PD @TA = 70°C e Power Dissipation e 1.6 VGS Linear Derating Factor Gate-to-Source Voltage 20 ±12 mW/°C V TJ Operating Junction and -55 to + 150 °C TSTG Storage Temperature Range 2.5 W Thermal Resistance Parameter RθJA Junction-to-Ambient RθJ-PCB Junction-to-PCB www.irf.com e Typ. Max. Units ––– 50 °C/W 35 ––– 1 09/25/03 IRF6156 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)SSS Min. Typ. Max. Units Source-to-Source Breakdown Voltage 20 ––– ––– ∆V(BR)SSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 16 ––– Static Source-to-Source On-Resistance ––– 27 40 RSS(on) VGS(th) Gate Threshold Voltage gfs Forward Transconductance ISSS IGSS Zero Gate Voltage Source Current V Conditions VGS=0V, IS=250µA,See Fig. 23a&b mV/°C Reference to 25°C,IS=1mA,Fig.23a&b mΩ VGS1,2 = 4.5V, IS = 6.5A Fig.11a&b d d = 250µA d Fig. 10a&b VGS1,2 = 2.5V, IS = 5.2A ––– 43 60 0.45 ––– 1.2 V VSS = VGS, IS 18 ––– ––– S VSS = 10V, IS = 6.5A, See Fig. 4 ––– ––– 1.0 µA ––– ––– 25 ––– 50 ––– ––– 100 ––– VSS = 20V, VGS = 0V,See Fig.23a&b VSS = 16V, VGS = 0V, TJ = 125°C nA VSS = 4.5V, VGS = 0V, TJ = 25°C VSS = 4.5V, VGS = 0V, TJ = 60°C Gate-to-Source Forward Leakage ––– 8.0 20 µA VGS = 12V, See Fig. 22 Gate-to-Source Reverse Leakage ––– -8.0 -20 VGS = -12V 0.5 µA VGS = 4.5V Gate-to-Source Forward Leakage ––– 0.20 Gate-to-Source Reverse Leakage ––– -0.20 -0.5 Qg Total Gate Charge ––– 12 18 Qgs Gate-to-Source Charge ––– 1.6 2.4 QG1-S2 Miller Charge ––– 4.4 6.6 VGS = 5.0V, See Fig. 14a,b&c td(on) Turn-On Delay Time ––– 8.0 ––– VSS = 10V VGS = -4.5V IS = 6.5A nC VSS = 16V tr Rise Time ––– 13 ––– td(off) Turn-Off Delay Time ––– 33 ––– RG = 3.0Ω tf Fall Time ––– 26 ––– VGS = 5.0V, See Fig. 21a,b&c Ciss Input Capacitance ––– 950 ––– VGS = 0V Coss Output Capacitance ––– 210 ––– Crss Reverse Transfer Capacitance ––– 150 ––– Vssf Source-to-Source Diode Forward ––– ––– 1.2 Voltage, One Device On ns IS = 1.0A pF VSS = 15V V See Fig. 17a&b Iss = 2.5A ƒ = 1.0KHz, See Fig. 13a,b,c,d,e&f Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. Gate voltage applied to both gates. When mounted on 1 inch square 2oz copper on FR-4. Figures 1, 2 and 3: One Fet is biased with VGS = 9.0V and curves show response of the second FET. See Fig.4. Figures 5, 6 and 7: G1 and G2 are shorted. See Fig.9a&b. The diode connected between the gate and source serves only as protection against ESD. No gate over voltage rating is implied. 2 www.irf.com IRF6156 100 100 10 BOTTOM TOP 1 1.0V 0.1 20µs PULSE WIDTH Tj = 25°C IS, Source-to-Source Current (A) IS, Source-to-Source Current (A) TOP VGS 7.0V 5.0V 4.5V 2.5V 1.8V 1.5V 1.2V 1.0V 10 BOTTOM VGS 7.0V 5.0V 4.5V 2.5V 1.8V 1.5V 1.2V 1.0V 1.0V 1 20µs PULSE WIDTH Tj = 150°C 0.1 0.01 0.1 1 10 100 0.1 1000 1 10 100 1000 VSS, Source-to-Source Voltage (V) VSS, Source-to-Source Voltage (V) Fig 2. Typical Output Characteristics. Fig 1. Typical Output Characteristics. 100.00 - 9V T J = 25°C Q2 + IS, Source-to-Source Current (Α) S2 G2 T J = 150°C + Q1 - 10.00 VSS G1 S1 VSS = 15V 20µs PULSE WIDTH 1.00 1.0 1.5 2.0 2.5 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics. www.irf.com Fig 4. Output and Transfer Test Circuit. 3 1200 1000 800 600 400 200 ID = 6.5A 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 RSS (on) , Source-to-Source On Resistance ( mΩ) RSS(on) , Source-to -Source On Resistance ( mΩ) IRF6156 60 50 VGS = 2.5V 40 VGS = 4.5V 30 20 0 5 10 VGS, Gate -to -Source Voltage (V) 15 20 25 30 35 IS , Source Current (A) Fig 6. Typical On-Resistance vs. Source Current. Fig 5. Typical On-Resistance vs. Gate Voltage. 100000 10 9 10000 IGSS , Gate Current (µA) IGSS , Gate Current ( mA) 8 7 6 5 4 3 1000 T J = 150°C 100 10 1 2 T J = 25°C 0.1 1 0.01 0 0 5 10 15 VGS , Gate-to-Source Voltage (V) Fig 7a. Gate-Current vs. Gate-Source Voltage 4 20 0 5 10 15 20 25 VGS , Gate-to-Source Voltage (V) Fig 7b. Gate-Current vs. Gate-Source Voltage www.irf.com IRF6156 7 ID = 6.5A VGS = 4.5V IS, Source Current (A) 6 1.5 (Normalized) RSS(on) , Source-to-Source On Resistance 2.0 1.0 5 4 3 2 1 0 0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 8. Normalized On-Resistance vs. Temperature. 25 50 75 S1 S2 DUT G2 G1 S2 To Source Fig 10a. VGS(th) is symmetrical and can be measured when connected as shown on figure 10a. www.irf.com To Drain Q1 Q2 G2 150 Fig 9. Maximum Source Current vs. Case Temperature. Q2 DUT G1 125 T C , Case Temperature (°C) To Drain Q1 100 S1 To Source Fig 10b. VGS(th) is symmetrical and can be measured when connected as shown on figure 10b. 5 IRF6156 2.5V 4.5V - Q1 S1 2.5V 4.5V + - Q2 + G2 Q1 Q2 G2 DUT DUT G1 S2 G1 S2 Fig 11a S1 Fig 11b RSS(on) is symmetrical and can be measured when connected as shown in either figures 11a or 11b. 10000 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds Crss = Cgd SHORTED C, Capacitance(pF) Coss = Cds + Cgd Ciss 1000 Coss Crss 100 0 5 10 15 20 VSS, Source-to-Source Voltage (V) Fig 12. Typical Capacitance vs. Source-to-Source Voltage. 6 www.irf.com IRF6156 33K - Low S2 + 4.5V 1µF Capacitance Bridge S2 High + 1µF 10MΩ G2 16V 1µF G1 1µF 16V + G1 - + S1 S1 4.5V 10MΩ - 33K Low - DUT DUT G2 High 33K Capacitance Bridge 33K Fig 13b Fig 13a Ciss capacitance is symmetrical and can be measured as shown either in figures 13a or 13b. - 33K 4.5V + H S2 + G2 1µF 16V 1µF - G1 G2 L 33K DUT DUT L Capacitance Bridge H S2 Capacitance Bridge - G1 16V + S1 S1 + 33K 4.5V 33K - Fig 13c Fig 13d Coss capacitance is symmetrical and can be measured as shown either in figures 13c or 13d. - 33K 4.5V Common 33K + S2 + DUT G2 1µF - G1 H Capacitance Bridge L DUT L Capacitance Bridge H S2 16V G2 1µF - G1 16V S1 + 33K Common S1 + - Fig 13e 4.5V 33K Fig 13f Crss capacitance is symmetrical and can be measured as shown either in figures 13e or 13f. www.irf.com 7 IRF6156 6.0 VGS , Gate-to-Source Voltage (V) ID= 6.5A 5.0 VDS= 16V VDS= 10V 4.0 QG QGS 3.0 QGD QG1-S2 VG 2.0 1.0 Charge 0.0 0 2 4 6 8 10 12 14 Q G Total Gate Charge (nC) Fig 14. Typical Gate Charge vs. Gate-to-Source Voltage. Fig 14a. Basic Gate Charge Waveform. Current Regulator S2 4.5 V 50K + 12V - 2µ F G1 + 12V 2µF G2 50K + .5µF S2 .5µF - G1 + S1 16V - 4.5 V Same type as DUT G2 Current Regulator Same type as DUT + + 16V S1 - - S2 IG 4.5V + DUT DUT G2 G2 G1 ID S2 3mA G1 + S1 3mA 4.5V - IG Fig 14b S1 ID Fig 14c Gate Charge is symmetrical and can be measured as shown in either figures 14b or 14c. 8 www.irf.com IRF6156 100.00 100 Iss , Reverse Source Current (A) IS, Source-to-Source Current (A) OPERATION IN THIS AREA LIMITED BY R SS(on) 100µsec 10 1msec 1 10msec TA = 25°C Tj = 150°C Single Pulse TJ = 150°C 10.00 1.00 TJ = 25°C VGS = 0V 0.10 0.1 1 10 0.0 100 VSS , Source-to-Source Voltage (V) Fig 15. Maximum Safe Operating Area. 0.5 1.0 1.5 - Q1 S1 Fig 16. Typical Source-Source Diode Forward Voltage. (See Fig.17a&b for Connection) - Q2 S2 DUT Q2 G2 To Drain (-VS) 4.5V+ DUT G1 2.5 Vssf , Source-to-Source Diode Forward Voltage (V) To Drain (-VS) 4.5V+ 2.0 G2 Q1 G1 S2 S1 To Source Fig 17a To Source Fig 17b Vssf is symmetrical and can be measured when connected as shown either in figures 17a or 17b. www.irf.com 9 IRF6156 50 VGS(th) Gate threshold Voltage (V) 1.0 40 Power (W) 30 20 10 0 0.8 0.6 ID = 250µA 0.4 0.2 0.0 1.00 10.00 100.00 1000.00 -75 -50 -25 Time (sec) 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 18. Typical Power vs. Time. Fig 19. Threshold Voltage vs. Temperature. 100 Thermal Response ( Z thJA ) D = 0.50 0.20 10 0.10 0.05 0.02 0.01 1 P DM t1 t2 0.1 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty factor D = 2. Peak T t1 / t 2 J = P DM x Z thJA +TA 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 20. Typical Effective Transient Thermal Impedance, Junction-to-Ambient. 10 www.irf.com IRF6156 RS = 10ohm S2 4.5V 10V G2 VGS DUT 6ohm G2 S2 6ohm + DUT VGS 4.5V G1 10V - + S1 G1 S1 RS = 10ohm Fig 21b Fig 21a Switching times are symmetrical and can be measured as shown in either figures 21a or 21b. td(on) tr t d(off) tf VGS 10% 90% VDS Fig 21c. Switching Time Waveforms. www.irf.com 11 IRF6156 S1 S2 Q1 Q2 G2 Q1 Q2 G2 DUT DUT G1 G1 S2 S1 Fig 22b Fig 22a IGSS Test Connection Q1 S1 S2 DUT DUT G1 G2 Q1 Q2 G2 Q2 S2 Fig 23a G1 S1 Fig 23b ISSS and V(BR)SSS are symmetrical and can be measured when connected either as figures 23a or 23b. 12 www.irf.com IRF6156 Bi-Directional MOSFET Pinout Outline Dimension and Tape and Reel Information Drawing No. 01-0115 A1 BALL LOCATION MARK NOTES: PART NUMBER 1. DIMENSIONING & TOLERANCINGPER ASME Y14.5M-1994. LOT NUMBER 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. DATE CODE 0.10 [.004] C 0.05 [.002] C 1.524 [.060] B 0.280 [.0110] 0.240 [.0094] A C 0.10 [.004] C PAD ASSIGNMENTS A1 = A2 = B1 = B2 = C1 = C2 = 0.80 2X [.032] 2.324 [.092] 6X Ø 0.537 [.0211] 0.507 [.0199] 0.388 [.0153] 0.338 [.0133] 0.15 [.006] 0.08 [.003] C AB C G1 G2 S1 S2 S1 S2 0.812 [.032] 0.752 [.029] 0.20 [.008] C 0.800 [.032] Gate 1 A1 Gate 2 A2 Ø 13" S ource 1 B1 S ource 2 B2 S ource 1 C1 S ource 2 C2 0.800 [.032] 2x 12mm 6X Ø 0.25 [.010] R E COMME NDE D F OOT PR INT A1 B ALL L OCAT ION 12mm 4mm F E E D DIRE CT ION NOT E S : 1. T AP E AND RE E L OU T LINE CONF ORMS T O E IA-481 & E IA-541. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.09/03 www.irf.com 13