PD - 95511A IRFR3505PbF IRFU3505PbF AUTOMOTIVE MOSFET HEXFET® Power MOSFET Features l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free D VDSS = 55V RDS(on) = 0.013Ω G ID = 30A S Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this product are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. The D-Pak is designed for surface mounting using vapor phase, infrared, or wave soldering techniques. The straight lead version (IRFU series) is for through-hole mounting applications. Power dissipation levels up to 1.5 watts are possible in typical surface mount applications. D-Pak IRFR3505 I-Pak IRFU3505 Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS EAS (tested) IAR EAR dv/dt TJ TSTG Max. Continuous Drain Current, VGS @ 10V (Silicon limited) Continuous Drain Current, VGS @ 10V (See Fig.9) Continuous Drain Current, VGS @ 10V (Package limited) Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Units 71 49 30 280 140 0.92 ± 20 210 410 See Fig.12a, 12b, 15, 16 4.0 -55 to + 175 A W W/°C V mJ A mJ V/ns °C 300 (1.6mm from case ) Thermal Resistance Parameter RθJC RθJA RθJA www.irf.com Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient Typ. Max. Units ––– ––– ––– 1.09 40 110 °C/W 1 12/03/04 IRFR/U3505PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 55 ––– ––– 2.0 41 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.057 0.011 ––– ––– ––– ––– ––– ––– 62 17 22 13 74 43 54 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– 4.5 LS Internal Source Inductance ––– 7.5 Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 2030 470 91 2600 330 630 V(BR)DSS ∆V(BR)DSS/∆TJ IGSS Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 0.013 Ω VGS = 10V, ID = 30A 4.0 V VDS = 10V, ID = 250µA ––– S VDS = 25V, ID = 30A 20 VDS = 55V, VGS = 0V µA 250 VDS = 55V, VGS = 0V, TJ = 125°C 200 VGS = 20V nA -200 VGS = -20V 93 ID = 30A 26 nC VDS = 44V 33 VGS = 10V ––– VDD = 28V ––– ID = 30A ns ––– RG = 6.8Ω ––– VGS = 10V D Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact S ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 44V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Notes 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time through Min. Typ. Max. Units Conditions D MOSFET symbol 71 ––– ––– showing the A G integral reverse ––– ––– 280 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 30A, VGS = 0V ––– 70 105 ns TJ = 25°C, IF = 30A, VDD = 28V ––– 180 270 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) are on page 11 www.irf.com IRFR/U3505PbF 1000 1000 VGS VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 100 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 4.5V 20µs PULSE WIDTH Tj = 25°C 1 0.1 1 10 100 4.5V 10 20µs PULSE WIDTH Tj = 175°C 1 0.1 100 1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 Fig 2. Typical Output Characteristics 70 G fs , Forward Transconductance (S) 1000 ID, Drain-to-Source Current (Α) 10 VDS, Drain-to-Source Voltage (V) T J = 25°C T J = 175°C 100 10 VDS = 25V T J = 25°C 60 50 40 T J = 175°C 30 20 10 VDS = 25V 20µs PULSE WIDTH 20µs PULSE WIDTH 1 0 4.0 5.0 6.0 7.0 8.0 9.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10.0 0 10 20 30 40 50 60 70 80 90 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRFR/U3505PbF 4000 ID= 30A VGS , Gate-to-Source Voltage (V) Coss 3000 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd = Cds + Cgd Ciss 2000 Coss 1000 12 8 4 Crss 0 0 1 VDS= 44V VDS= 28V VDS= 11V 16 10 0 100 20 40 60 80 100 Q G Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000.0 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) 100.0 100 T J = 175°C 10.0 T J = 25°C 1.0 100µsec 10 1msec Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10msec 1 2.5 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFR/U3505PbF 80 2.5 60 40 20 0 25 50 75 100 125 150 175 ID = 30A VGS = 10V 2.0 (Normalized) RDS(on) , Drain-to-Source On Resistance ID , Drain Current (A) LIMITED BY PACKAGE 1.5 1.0 0.5 -60 -40 -20 T C , Case Temperature (°C) 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 10. Normalized On-Resistance Vs. Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFR/U3505PbF DRIVER L VDS D.U.T RG + V - DD IAS 20V VGS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 400 15V ID 12A 21A BOTTOM 30A TOP 300 200 100 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) QGS 3.6 3.2 ID = 250µA 2.8 2.4 2.0 1.6 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRFR/U3505PbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 0.05 10 0.10 1 0.1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 240 T OP Single Pulse BOTT OM 10% Duty Cycle ID = 30A 200 160 120 80 40 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFR/U3505PbF D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs VDS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRFR/U3505PbF D-Pak (TO-252AA) Package Outline D-Pak (TO-252AA) Part Marking Information EXAMPLE: T HIS IS AN IRFR120 WIT H ASS EMBLY LOT CODE 1234 ASS EMBLED ON WW 16, 1999 IN T HE AS SEMBLY LINE "A" PART NUMBER INT ERNAT IONAL RECT IFIER LOGO Note: "P" in ass embly line pos ition indicates "Lead-Free" IRFU120 12 916A 34 AS SEMBLY LOT CODE DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A OR PART NUMBER INT ERNAT IONAL RECT IFIER LOGO IRFU120 12 ASS EMBLY LOT CODE www.irf.com 34 DATE CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 16 A = ASS EMBLY SITE CODE 9 IRFR/U3505PbF I-Pak (TO-251AA) Package Outline (Dimensions are shown in millimeters (inches)) I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRFU120 WIT H ASS EMBLY LOT CODE 5678 ASS EMBLED ON WW 19, 1999 IN T HE AS SEMB LY LINE "A" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU120 919A 56 78 AS SEMBLY LOT CODE Note: "P" in ass embly line pos ition indicates "Lead-Free" DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A OR INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFU120 56 AS S EMBLY LOT CODE 10 78 DATE CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 19 A = AS S EMBLY S ITE CODE www.irf.com IRFR/U3505PbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 0.47mH Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive R G = 25Ω, IAS = 30A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% ISD ≤ 30A, di/dt ≤ 300A/µs, VDD ≤ V(BR)DSS, tested to this value in production. TJ ≤ 175°C When mounted on 1" square PCB (FR-4 or G-10 Material) . Pulse width ≤ 1.0ms; duty cycle ≤ 2%. For recommended footprint and soldering techniques refer to application note #AN-994 Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101]market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/04 www.irf.com 11 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/