SMPS MOSFET Applications l Switch Mode Power Supply (SMPS) l Uninterruptable Power Supply l Power Factor Correction l Lead-Free Benefits l Low Gate Charge Qg results in Simple Drive Requirement l Improved Gate, Avalanche and dynamic dv/dt Ruggedness l Fully Characterized Capacitance and Avalanche Voltage and Current PD - 95518A IRFR1N60APbF IRFU1N60APbF HEXFET® Power MOSFET VDSS Rds(on) max ID 600V 7.0Ω 1.4A D-Pak IRFR1N60A I-Pak IRFU1N60A Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Max. 1.4 0.89 5.6 36 0.28 ± 30 3.8 -55 to + 150 Units A W W/°C V V/ns °C 300 (1.6mm from case ) Applicable Off Line SMPS Topologies: l Low Power Single Transistor Flyback Notes through www.irf.com are on page 9 1 12/03/04 IRFR/U1N60APbF Static @ TJ = 25°C (unless otherwise specified) V(BR)DSS RDS(on) VGS(th) Parameter Drain-to-Source Breakdown Voltage Static Drain-to-Source On-Resistance Gate Threshold Voltage IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. 600 ––– 2.0 ––– ––– ––– ––– Typ. ––– ––– ––– ––– ––– ––– ––– Max. Units Conditions ––– V VGS = 0V, ID = 250µA 7.0 Ω VGS = 10V, ID = 0.84A 4.0 V VDS = VGS, ID = 250µA 25 VDS = 600V, VGS = 0V µA 250 VDS = 480V, VGS = 0V, TJ = 150°C 100 VGS = 30V nA -100 VGS = -30V Dynamic @ TJ = 25°C (unless otherwise specified) gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Min. 0.88 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– ––– ––– ––– 9.8 14 18 20 229 32.6 2.4 320 11.5 130 Max. Units Conditions ––– S VDS = 50V, ID = 0.84A 14 ID = 1.4A 2.7 nC VDS = 400V 8.1 VGS = 10V, See Fig. 6 and 13 ––– VDD = 250V ––– ID = 1.4A ns ––– RG = 2.15Ω ––– RD = 178Ω,See Fig. 10 ––– VGS = 0V ––– VDS = 25V ––– pF ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 480V, ƒ = 1.0MHz ––– VGS = 0V, V DS = 0V to 480V Avalanche Characteristics Parameter EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Typ. Max. Units ––– ––– ––– 93 1.4 3.6 mJ A mJ Typ. Max. Units ––– ––– ––– 3.5 50 110 °C/W Thermal Resistance Parameter RθJC RθJA RθJA Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient Diode Characteristics IS ISM VSD trr Qrr ton 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 1.4 showing the A G integral reverse ––– ––– 5.6 S p-n junction diode. ––– ––– 1.6 V TJ = 25°C, IS = 1.4A, VGS = 0V ––– 290 440 ns TJ = 25°C, IF = 1.4A ––– 510 760 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFR/U1N60APbF 10 10 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 1 0.1 4.5V 20µs PULSE WIDTH TJ = 25 °C 0.01 0.1 1 10 1 4.5V 20µs PULSE WIDTH TJ = 150 ° C 0.1 1 100 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) I D , Drain-to-Source Current (A) 10 TJ = 150 ° C 1 TJ = 25 ° C V DS = 100V 20µs PULSE WIDTH 5.0 6.0 7.0 8.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 100 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 0.1 4.0 10 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 9.0 ID = 1.4A 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFR/U1N60APbF 10000 20 VGS , Gate-to-Source Voltage (V) V GS = 0V, f = 1MHz C iss = C gs + C gd, C dsSHORTED C rss = C gd C oss = C ds + C gd C, Capacitance (pF) 1000 C iss 100 C oss 10 ID = 1.4A VDS = 480V VDS = 300V VDS = 120V 16 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 Crss 1 A 1 10 100 0 1000 0 2 8 10 12 14 100 10 OPERATION IN THIS AREA LIMITED BY RDS(on) ID , Drain Current (A) ISD , Reverse Drain Current (A) 6 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage TJ = 150 ° C 1 TJ = 25 ° C 10 10us 100us 1 1ms 0.1 0.4 V GS = 0 V 0.6 0.8 1.0 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 4 QG , Total Gate Charge (nC) V DS , Drain-to-Source Voltage (V) 1.2 0.1 TC = 25 ° C TJ = 150 ° C Single Pulse 10 10ms 100 1000 10000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFR/U1N60APbF 1.6 RD V DS ID , Drain Current (A) VGS D.U.T. RG 1.2 + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 0.8 Fig 10a. Switching Time Test Circuit 0.4 VDS 90% 0.0 25 50 75 100 125 150 TC , Case Temperature ( ° C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 10 D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 PDM SINGLE PULSE (THERMAL RESPONSE) t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.01 0.00001 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp A EAS , Single Pulse Avalanche Energy (mJ) IRFR/U1N60APbF 200 ID 0.65A 0.9A BOTTOM 1.4A TOP 160 120 80 40 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V 770 QGD VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF V DSav , Avalanche Voltage (V) QGS 750 730 710 690 .3µF D.U.T. + V - DS 670 0.0 VGS 0.8 1.2 1.6 I av , Avalanche Current (A) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 A 0.4 Fig 12d. Typical Drain-to-Source Voltage Vs. Avalanche Current www.irf.com IRFR/U1N60APbF Peak Diode Recovery dv/dt Test Circuit Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D.U.T + - - + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. Period D= + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS www.irf.com 7 IRFR/U1N60APbF D-Pak (TO-252AA) Package Outline D-Pak (TO-252AA) Part Marking Information EXAMPLE: T HIS IS AN IRFR120 WIT H AS SEMBLY LOT CODE 1234 ASS EMBLED ON WW 16, 1999 IN T HE ASS EMBLY LINE "A" PART NUMBER INTERNAT IONAL RECT IF IER LOGO Note: "P" in ass embly line pos ition indicates "Lead-F ree" IRFU120 12 916A 34 ASS EMBLY LOT CODE DAT E CODE YEAR 9 = 1999 WEEK 16 LINE A OR PART NUMBER INT ERNAT IONAL RECTIF IER LOGO IRFU120 12 AS SEMBLY LOT CODE 8 34 DAT E CODE P = DESIGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 16 A = AS SEMBLY S ITE CODE www.irf.com IRFR/U1N60APbF I-Pak (TO-251AA) Package Outline (Dimensions are shown in millimeters (inches) ) I-Pak (TO-251AA) Part Marking Information EXAMPLE: T HIS IS AN IRFU120 WITH ASS EMBLY LOT CODE 5678 AS SEMB LED ON WW 19, 1999 IN THE AS SEMBLY LINE "A" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU120 919A 56 78 ASS EMBLY LOT CODE Note: "P" in assembly line position indicates "Lead-Free" DATE CODE YEAR 9 = 1999 WEEK 19 LINE A OR INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU120 56 AS SEMBLY LOT CODE www.irf.com 78 DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 9 = 1999 WEEK 19 A = ASS EMBLY SIT E CODE 9 IRFR/U1N60APbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25°C, L = 95mH RG = 25Ω, IAS = 1.4A. (See Figure 12) ISD ≤ 1.4A, di/dt ≤ 180A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/04 10 www.irf.com