IRF IRFU1N60APBF

SMPS MOSFET
Applications
l Switch Mode Power Supply (SMPS)
l Uninterruptable Power Supply
l Power Factor Correction
l Lead-Free
Benefits
l Low Gate Charge Qg results in Simple
Drive Requirement
l Improved Gate, Avalanche and dynamic
dv/dt Ruggedness
l Fully Characterized Capacitance and
Avalanche Voltage and Current
PD - 95518A
IRFR1N60APbF
IRFU1N60APbF
HEXFET® Power MOSFET
VDSS
Rds(on) max
ID
600V
7.0Ω
1.4A
D-Pak
IRFR1N60A
I-Pak
IRFU1N60A
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
1.4
0.89
5.6
36
0.28
± 30
3.8
-55 to + 150
Units
A
W
W/°C
V
V/ns
°C
300 (1.6mm from case )
Applicable Off Line SMPS Topologies:
l
Low Power Single Transistor Flyback
Notes 
through …
www.irf.com
are on page 9
1
12/03/04
IRFR/U1N60APbF
Static @ TJ = 25°C (unless otherwise specified)
V(BR)DSS
RDS(on)
VGS(th)
Parameter
Drain-to-Source Breakdown Voltage
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
600
–––
2.0
–––
–––
–––
–––
Typ.
–––
–––
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
7.0
Ω
VGS = 10V, ID = 0.84A „
4.0
V
VDS = VGS, ID = 250µA
25
VDS = 600V, VGS = 0V
µA
250
VDS = 480V, VGS = 0V, TJ = 150°C
100
VGS = 30V
nA
-100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
0.88
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
–––
–––
–––
9.8
14
18
20
229
32.6
2.4
320
11.5
130
Max. Units
Conditions
–––
S
VDS = 50V, ID = 0.84A
14
ID = 1.4A
2.7
nC
VDS = 400V
8.1
VGS = 10V, See Fig. 6 and 13 „
–––
VDD = 250V
–––
ID = 1.4A
ns
–––
RG = 2.15Ω
–––
RD = 178Ω,See Fig. 10 „
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 480V, ƒ = 1.0MHz
–––
VGS = 0V, V DS = 0V to 480V …
Avalanche Characteristics
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Typ.
Max.
Units
–––
–––
–––
93
1.4
3.6
mJ
A
mJ
Typ.
Max.
Units
–––
–––
–––
3.5
50
110
°C/W
Thermal Resistance
Parameter
RθJC
RθJA
RθJA
Junction-to-Case
Junction-to-Ambient (PCB mount)ˆ
Junction-to-Ambient
Diode Characteristics
IS
ISM
VSD
trr
Qrr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 1.4
showing the
A
G
integral reverse
––– –––
5.6
S
p-n junction diode.
––– ––– 1.6
V
TJ = 25°C, IS = 1.4A, VGS = 0V „
––– 290 440
ns
TJ = 25°C, IF = 1.4A
––– 510 760
nC
di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFR/U1N60APbF
10
10
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
1
0.1
4.5V
20µs PULSE WIDTH
TJ = 25 °C
0.01
0.1
1
10
1
4.5V
20µs PULSE WIDTH
TJ = 150 ° C
0.1
1
100
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
10
TJ = 150 ° C
1
TJ = 25 ° C
V DS = 100V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
100
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
0.1
4.0
10
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
9.0
ID = 1.4A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRFR/U1N60APbF
10000
20
VGS , Gate-to-Source Voltage (V)
V GS = 0V,
f = 1MHz
C iss = C gs + C gd, C dsSHORTED
C rss = C gd
C oss = C ds + C gd
C, Capacitance (pF)
1000
C iss
100
C oss
10
ID = 1.4A
VDS = 480V
VDS = 300V
VDS = 120V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
Crss
1
A
1
10
100
0
1000
0
2
8
10
12
14
100
10
OPERATION IN THIS AREA LIMITED
BY RDS(on)
ID , Drain Current (A)
ISD , Reverse Drain Current (A)
6
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
TJ = 150 ° C
1
TJ = 25 ° C
10
10us
100us
1
1ms
0.1
0.4
V GS = 0 V
0.6
0.8
1.0
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
4
QG , Total Gate Charge (nC)
V DS , Drain-to-Source Voltage (V)
1.2
0.1
TC = 25 ° C
TJ = 150 ° C
Single Pulse
10
10ms
100
1000
10000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFR/U1N60APbF
1.6
RD
V DS
ID , Drain Current (A)
VGS
D.U.T.
RG
1.2
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
0.8
Fig 10a. Switching Time Test Circuit
0.4
VDS
90%
0.0
25
50
75
100
125
150
TC , Case Temperature ( ° C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
0.01
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.01
0.00001
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
A
EAS , Single Pulse Avalanche Energy (mJ)
IRFR/U1N60APbF
200
ID
0.65A
0.9A
BOTTOM 1.4A
TOP
160
120
80
40
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
770
QGD
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
V DSav , Avalanche Voltage (V)
QGS
750
730
710
690
.3µF
D.U.T.
+
V
- DS
670
0.0
VGS
0.8
1.2
1.6
I av , Avalanche Current (A)
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
A
0.4
Fig 12d. Typical Drain-to-Source Voltage
Vs. Avalanche Current
www.irf.com
IRFR/U1N60APbF
Peak Diode Recovery dv/dt Test Circuit
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D.U.T
ƒ
+
‚
-
-
„
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
Period
D=
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFETS
www.irf.com
7
IRFR/U1N60APbF
D-Pak (TO-252AA) Package Outline
D-Pak (TO-252AA) Part Marking Information
EXAMPLE: T HIS IS AN IRFR120
WIT H AS SEMBLY
LOT CODE 1234
ASS EMBLED ON WW 16, 1999
IN T HE ASS EMBLY LINE "A"
PART NUMBER
INTERNAT IONAL
RECT IF IER
LOGO
Note: "P" in ass embly line pos ition
indicates "Lead-F ree"
IRFU120
12
916A
34
ASS EMBLY
LOT CODE
DAT E CODE
YEAR 9 = 1999
WEEK 16
LINE A
OR
PART NUMBER
INT ERNAT IONAL
RECTIF IER
LOGO
IRFU120
12
AS SEMBLY
LOT CODE
8
34
DAT E CODE
P = DESIGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 9 = 1999
WEEK 16
A = AS SEMBLY S ITE CODE
www.irf.com
IRFR/U1N60APbF
I-Pak (TO-251AA) Package Outline
(Dimensions are shown in millimeters (inches) )
I-Pak (TO-251AA) Part Marking Information
EXAMPLE: T HIS IS AN IRFU120
WITH ASS EMBLY
LOT CODE 5678
AS SEMB LED ON WW 19, 1999
IN THE AS SEMBLY LINE "A"
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRFU120
919A
56
78
ASS EMBLY
LOT CODE
Note: "P" in assembly line
position indicates "Lead-Free"
DATE CODE
YEAR 9 = 1999
WEEK 19
LINE A
OR
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
IRFU120
56
AS SEMBLY
LOT CODE
www.irf.com
78
DAT E CODE
P = DES IGNAT ES LEAD-FREE
PRODUCT (OPT IONAL)
YEAR 9 = 1999
WEEK 19
A = ASS EMBLY SIT E CODE
9
IRFR/U1N60APbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
‚ Starting TJ = 25°C, L = 95mH
RG = 25Ω, IAS = 1.4A. (See Figure 12)
ƒ ISD ≤ 1.4A, di/dt ≤ 180A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 150°C
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
† When mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended footprint and soldering techniques refer to
application note #AN-994.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/04
10
www.irf.com