Data Sheet No. PD60019 Rev.P IR2130/IR2132(J)(S) & (PbF) 3-PHASE BRIDGE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • • • Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for all channels Over-current shutdown turns off all six drivers Independent half-bridge drivers Matched propagation delay for all channels 2.5V logic compatible Outputs out of phase with inputs Cross-conduction prevention logic Also available LEAD-FREE Description Product Summary VOFFSET 600V max. IO+/- 200 mA / 420 mA VOUT 10 - 20V ton/off (typ.) 675 & 425 ns Deadtime (typ.) 2.5 µs (IR2130) 0.8 µs (IR2132) Packages The IR2130/IR2132(J)(S) is a high voltage, high speed power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized 28-Lead SOIC monolithic construction. Logic inputs are compatible with CMOS or LSTTL outputs, down to 2.5V logic. A 28-Lead PDIP ground-referenced operational amplifier provides analog feedback of bridge current via an external current sense resistor. A current trip function which termi44-Lead PLCC w/o 12 Leads nates all six outputs is also derived from this resistor. An open drain FAULT signal indicates if an over-current or undervoltage shutdown has occurred. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use at high frequencies. The floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration which operate up to 600 volts. Typical Connection (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2130/IR2132(J)(S) & (PbF) Absolute Maximum Ratings Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to VS0. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 50 through 53. Symbol VB1,2,3 VS1,2,3 VHO1,2,3 VCC VSS VLO1,2,3 VIN VFLT VCAO VCAdVS/dt PD RthJA TJ TS TL Definition High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Low Side and Logic Fixed Supply Voltage Logic Ground Low Side Output Voltage Logic Input Voltage ( HIN1,2,3 , LIN1,2,3 & ITRIP) FAULT Output Voltage Operational Amplifier Output Voltage Operational Amplifier Inverting Input Voltage Allowable Offset Supply Voltage Transient Package Power Dissipation @ TA ≤ +25°C Thermal Resistance, Junction to Ambient (28 Lead DIP) (28 Lead SOIC) (44 Lead PLCC) (28 Lead DIP) (28 Lead SOIC) (44 Lead PLCC) Junction Temperature Storage Temperature Lead Temperature (Soldering, 10 seconds) Min. Max. -0.3 VB1,2,3 - 25 VS1,2,3 - 0.3 -0.3 VCC - 25 -0.3 VSS - 0.3 625 VB1,2,3 + 0.3 VB1,2,3 + 0.3 25 VCC + 0.3 VCC + 0.3 (V SS + 15) or (VCC + 0.3) whichever is lower VCC + 0.3 VCC + 0.3 VCC + 0.3 50 1.5 1.6 2.0 83 78 63 150 150 300 VSS - 0.3 VSS - 0.3 VSS - 0.3 — — — — — — — — -55 — Units V V/ns W °C/W °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54. Symbol Definition Min. Max. Units VB1,2,3 High Side Floating Supply Voltage VS1,2,3 + 10 VS1,2,3 + 20 VS1,2,3 High Side Floating Offset Voltage Note 1 600 VHO1,2,3 High Side Floating Output Voltage VS1,2,3 VB1,2,3 VCC Low Side and Logic Fixed Supply Voltage 10 20 VSS Logic Ground -5 5 VLO1,2,3 Low Side Output Voltage 0 VCC V VIN Logic Input Voltage ( HIN1,2,3 , LIN1,2,3 & ITRIP) VSS VSS + 5 VFLT VSS VCC FAULT Output Voltage VCAO Operational Amplifier Output Voltage VSS VSS + 5 VCAOperational Amplifier Inverting Input Voltage VSS VSS + 5 TA Ambient Temperature -40 125 °C Note 1: Logic operational for VS of (VS0 - 5V) to (VS0 + 600V). Logic state held for VS of (VS0 - 5V) to (VS0 - VBS). (Please refer to the Design Tip DT97-3 for more details). Note 2: All input pins, CA- and CAO pins are internally clamped with a 5.2V zener diode. 2 www.irf.com IR2130/IR2132(J)(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics are defined in Figures 3 through 5. Symbol Definition ton toff tr tf titrip tbl tflt tflt,in tfltclr DT Turn-On Propagation Delay Turn-Off Propagation Delay Turn-On Rise Time Turn-Off Fall Time ITRIP to Output Shutdown Prop. Delay ITRIP Blanking Time ITRIP to FAULT Indication Delay Input Filter Time (All Six Inputs) LIN1,2,3 to FAULT Clear Time Deadtime (IR2130) (IR2132) Operational Amplifier Slew Rate (+) Operational Amplifier Slew Rate (-) SR+ SR- Figure Min. Typ. Max. Units Test Conditions 11 12 13 14 15 — 16 — 17 18 18 19 20 500 300 — — 400 — 335 — 6.0 1.3 0.4 4.4 2.4 675 425 80 35 660 400 590 310 9.0 2.5 0.8 6.2 3.2 850 550 125 55 920 — 845 — 12.0 3.7 1.2 — — VIN = 0 & 5V VS1,2,3 = 0 to 600V ns µs VIN, VITRIP = 0 & 5V VITRIP = 1V VIN, VITRIP = 0 & 5V VIN = 0 & 5V VIN, VITRIP = 0 & 5V VIN = 0 & 5V V/µs NOTE: For high side PWM, HIN pulse width must be ≥ 1.5µsec Static Electrical Characteristics VBIAS (VCC, V BS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3. Symbol VIH VIL VIT,TH+ VOH VOL ILK IQBS IQCC IIN+ IINIITRIP+ IITRIPVBSUV+ VBSUVVCCUV+ VCCUVRon,FLT www.irf.com Definition Logic “0” Input Voltage (OUT = LO) Logic “1” Input Voltage (OUT = HI) ITRIP Input Positive Going Threshold High Level Output Voltage, VBIAS - VO Low Level Output Voltage, VO Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Logic “1” Input Bias Current (OUT = HI) Logic “0” Input Bias Current (OUT = LO) “High” ITRIP Bias Current “Low” ITRIP Bias Current VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold VCC Supply Undervoltage Positive Going Threshold VCC Supply Undervoltage Negative Going Threshold FAULT Low On-Resistance Figure Min. Typ. Max. Units Test Conditions 21 22 23 24 25 26 27 28 29 30 31 32 33 2.2 — 400 — — — — — — — — — 7.5 — — 490 — — — 15 3.0 450 225 75 — 8.35 — 0.8 580 100 100 50 30 4.0 650 400 150 100 9.2 34 7.1 7.95 8.8 35 8.3 9.0 9.7 36 8.0 8.7 9.4 37 — 55 75 V mV µA mA µA nA VIN = 0V, IO = 0A VIN = 5V, IO = 0A VB = VS = 600V VIN = 0V or 5V VIN = 0V or 5V VIN = 0V VIN = 5V ITRIP = 5V ITRIP = 0V V Ω 3 IR2130/IR2132(J)(S) & (PbF) Static Electrical Characteristics -- Continued VBIAS (VCC , VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3. Symbol Definition Figure Min. Typ. Max. Units Test Conditions IO+ Output High Short Circuit Pulsed Current 38 200 250 — IO- Output Low Short Circuit Pulsed Current 39 420 500 — mA VOS ICACMRR PSRR Operational Amplifer Input Offset Voltage CA- Input Bais Current Op. Amp. Common Mode Rejection Ratio Op. Amp. Power Supply Rejection Ratio 40 41 42 43 — — 60 55 — — 80 75 30 4.0 — — mV nA VOH,AMP VOL,AMP ISRC,AMP Op. Amp. High Level Output Voltage Op. Amp. Low Level Output Voltage Op. Amp. Output Source Current 44 45 46 5.0 — 2.3 5.2 — 4.0 5.4 20 — V mV ISRC,AMP Op. Amp. Output Sink Current 47 1.0 2.1 — IO+,AMP Operational Amplifier Output High Short Circuit Current Operational Amplifier Output Low Short Circuit Current 48 — 4.5 6.5 49 — 3.2 5.2 dB mA IO-,AMP VO = 0V, VIN = 0V PW ≤ 10 µs VO = 15V, VIN = 5V PW ≤ 10 µs VS0 = VCA- = 0.2V VCA- = 2.5V VS0=VCA-=0.1V & 5V VS0 = VCA- = 0.2V VCC = 10V & 20V VCA- = 0V, VS0 = 1V VCA- = 1V, VS0 = 0V VCA- = 0V, VS0 = 1V VCAO = 4V VCA- = 1V, VS0 = 0V VCAO = 2V VCA- = 0V, VS0 = 5V VCAO = 0V VCA- = 5V, VS0 = 0V VCAO = 5V Lead Assignments 4 28 Lead PDIP 44 Lead PLCC w/o 12 Leads 28 Lead SOIC (Wide Body) IR2130 / IR2132 IR2130J / IR2132J Part Number IR2130S / IR2132S www.irf.com IR2130/IR2132(J)(S) & (PbF) Functional Block Diagram Lead Definitions Symbol Description HIN1,2,3 Logic inputs for high side gate driver outputs (HO1,2,3), out of phase LIN1,2,3 Logic inputs for low side gate driver output (LO1,2,3), out of phase FAULT Indicates over-current or undervoltage lockout (low side) has occurred, negative logic VCC Low side and logic fixed supply ITRIP Input for over-current shutdown CAO Output of current amplifier CA- Negative input of current amplifier VSS Logic ground VB1,2,3 High side floating supplies HO1,2,3 High side gate drive outputs VS1,2,3 High side floating supply returns LO1,2,3 Low side gate drive outputs VS0 Low side return and positive input of current amplifier www.irf.com 5 IR2130/IR2132(J)(S) & (PbF) HIN1,2,3 LIN1,2,3 ITRIP <50 V/ns FAULT HO1,2,3 LO1,2,3 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit HIN1,2,3 LIN1,2,3 HIN1,2,3 50% 50% 50% 50% LIN1,2,3 ton tr toff tf LO1,2,3 90% 50% HO1,2,3 HO1,2,3 LO1,2,3 DT 10% 10% DT Figure 3. Deadtime Waveform Definitions 6 90% 50% Figure 4. Input/Output Switching Time Waveform Definitions www.irf.com IR2130/IR2132(J)(S) & (PbF) 50% LIN1,2,3 50% ITRIP FAULT 50% 50% LO1,2,3 50% tflt tfltclr t itrip Figure 5. Overcurrent Shutdown Switching Time Waveform Definitions HIN/LIN t in,fil on on off off U t in,fil on off high HO/LO low Figure 5.5 Input Filter Function VCC VS0 + CA- - CAO VSS VSS Figure 6. Diagnostic Feedback Operational Amplifier Circuit www.irf.com 7 IR2130/IR2132(J)(S) & (PbF) 15V VCC 3V CA0V VS0 15V VS0 + CAO - VSS CA- 50 pF VCC + CAO VSS + ∆T1 3V 20k 0.2V ∆T2 1k 90% ∆V 10% 0V ∆V SR+ = SR- = ∆T1 ∆V VOS = ∆T2 Figure 7. Operational Amplifier Slew Rate Measurement VCAO 21 - 0.2V Figure 8. Operational Amplifier Input Offset Voltage Measurement VCC VS0 15V VCC CAVS0 - VSS + 20k VSS Measure VCAO1 at VS0 = 0.1V VCAO2 at V S0 = 5V (VCAO1-0.1V) - (VCAO2 -5V) (dB) CMRR = -20 *LOG 4.9V Figure 9. Operational Amplifier Common Mode Rejection Ratio Measurements CAO - CAO + 0.2V 8 + CA- 1k Measure VCAO1 at VCC = 10V VCAO2 at V CC = 20V VCAO1 - VCAO2 PSRR = -20*LOG (10V) (21) Figure 10. Operational Amplifier Power Supply Rejection Ratio Measurements www.irf.com 1.50 1.50 1.20 1.20 Turn-On Delay Time (µs) Turn-On Delay Time (µs) IR2130/IR2132(J)(S) & (PbF) Max. 0.90 Typ. 0.60 Min. 0.30 0.90 Max. Typ. 0.60 Min. 0.30 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 14 Temperature (°C) 16 18 20 VBIAS Supply Voltage (V) Figure 11A. Turn-On Time vs. Temperature Figure 11B. Turn-On Time vs. Supply Voltage 1.50 1.00 Max 1.20 0.80 Turn-Off Delay Time (µs) Typ. Turn-On Time (µs) 0.90 0.60 0.30 0.60 0.40 Max. Typ. Min. 0.20 0.00 0.00 0 1 2 3 4 5 -50 6 -25 0 50 75 100 125 Figure 12A. Turn-Off Time vs. Temperature 1.00 1.50 0.80 1.20 Turn-Off Time (µs) Turn-Off Delay Time (µs) Figure 11C. Turn-On Time vs. Voltage 0.60 25 Temperature (°C) Input Voltage (V) Max. Typ. 0.40 Min. 0.90 Max 0.60 Typ 0.30 0.20 Min. 0.00 0.00 10 12 14 16 18 VBIAS Supply Voltage (V) Figure 12B. Turn-Off Time vs. Supply Voltage www.irf.com 20 0 1 2 3 4 5 6 Input Voltage (V) Figure 12C. Turn-Off Time vs. Input Voltage 9 250 250 200 200 Turn-On Rise Time (ns) Turn-On Rise Time (ns) IR2130/IR2132(J)(S) & (PbF) 150 Max. 100 Typ. 50 Max. 150 Typ. 100 50 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 13A. Turn-On Rise Time vs. Temperature 100 Turn-Off Fall Time (ns) 100 Turn-Off Fall Time (ns) 125 75 50 Max. Typ. 20 75 Max. 50 Typ. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 14A. Turn-Off Fall Time vs. Temperature Figure 14B. Turn-Off Fall Time vs. Voltage 1.50 ITRIP to Output Shutdown Delay Time (µs) 1.50 ITRIP to Output Shutdown Delay Time (µs) 18 25 0 1.20 Max. 0.90 Typ. 0.60 Min. 0.30 0.00 1.20 Max. 0.90 Typ. 0.60 Min. 0.30 0.00 -50 -25 0 25 50 75 100 Temperature (°C) Figure 15A. ITRIP to Output Shutdown Time vs. Temperature 10 16 Figure 13B. Turn-On Rise Time vs. Voltage 125 25 14 VBIAS Supply Voltage (V) 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 15B. ITRIP to Output Shutdown Time vs. Voltage www.irf.com IR2130/IR2132(J)(S) & (PbF) 1.50 ITRIP to FAULT Indication Delay Time (µs) ITRIP to FAULT Indication Delay Time (µs) 1.50 1.20 Max. 0.90 Typ. 0.60 Min. 0.30 0.00 1.20 0.90 Max. Typ. 0.60 Min. 0.30 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 25.0 25.0 20.0 20.0 15.0 Max. 18 20 Typ. Min. 5.0 15.0 Max. 10.0 Typ. Min. 5.0 0.0 0.0 -50 -25 0 25 50 75 100 10 125 12 Figure 17A. LIN1,2,3 to FAULT Clear Time vs. Temperature 7.50 6.00 6.00 1.50 Max. Deadtime (µs) 3.00 16 18 20 Figure 17B. LIN1,2,3 to FAULT Clear Time vs. Voltage 7.50 4.50 14 VCC Supply Voltage (V) Temperature (°C) Deadtime (µs) 16 Figure 16B. ITRIP to FAULT Indication Time vs. Voltage LIN1,2,3 to FAULT Clear Time (µs) LIN1,2,3 to FAULT Clear Time (µs) Figure 16A. ITRIP to FAULT Indication Time vs. Temperature 10.0 14 VCC Supply Voltage (V) Typ. Min. 4.50 Max. 3.00 1.50 Typ. Min. 0.00 0.00 -50 -25 0 25 50 75 100 Temperature (°C) Figure 18A. Deadtime vs. Temperature (IR2130) www.irf.com 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 18B. Deadtime vs. Voltage (IR2130) 11 2.50 2.50 2.00 2.00 1.50 Max. 1.00 Typ. Deadtime (µs) Deadtime (µs) IR2130/IR2132(J)(S) & (PbF) 1.50 Max. 1.00 Typ. Min. 0.50 Min. 0.50 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 18C. Deadtime vs. Temperature (IR2132) 20 8.0 Amplifier Slew Rate + (V/µs) Amplifier Slew Rate + (V/µs) 18 10.0 8.0 Typ. 6.0 Min. 4.0 2.0 Typ. 6.0 Min. 4.0 2.0 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VCC Supply Voltage (V) Figure 19A. Amplifier Slew Rate (+) vs. Temperature Figure 19B. Amplifier Slew Rate (+) vs. Voltage 5.00 5.00 4.00 4.00 Typ. Amplifier Slew Rate - (V/µs) Amplifier Slew Rate - (V/µs) 16 Figure 18D. Deadtime vs. Voltage (IR2132) 10.0 3.00 Min. 2.00 Typ. 3.00 Min. 2.00 1.00 1.00 0.00 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 20A. Amplifier Slew Rate (-) vs. Temperature 12 14 VBIAS Supply Voltage (V) 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 20B. Amplifier Slew Rate (-) vs. Voltage www.irf.com 5.00 5.00 4.00 4.00 Logic "0" Input Threshold (V) Logic "0" Input Threshold (V) IR2130/IR2132(J)(S) & (PbF) 3.00 Min. 2.00 1.00 3.00 Min. 2.00 1.00 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 5.00 5.00 4.00 4.00 3.00 2.00 18 20 3.00 2.00 1.00 Max. 0.00 Max. 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 22B. Logic “1” Input Threshold vs. Voltage 750 ITRIP Input Positive Going Threshold (mV) 750 600 14 VCC Supply Voltage (V) Figure 22A. Logic “1” Input Threshold vs. Temperature ITRIP Input Positive Going Threshold (mV) 16 Figure 20B. Logic “0” Input Threshold vs. Voltage Logic "1" Input Threshold (V) Logic "1" Input Threshold (V) Figure 21A. Logic “0” Input Threshold vs. Temperature 1.00 14 VCC Supply Voltage (V) Max. Typ. 450 Min. 300 150 600 Max. Typ. 450 Min. 300 150 0 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 23A. ITRIP Input Positive Going Threshold vs. Temperature www.irf.com 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 23B. ITRIP Input Positive Going Threshold vs. Voltage 13 1.00 1.00 0.80 0.80 High Level Output Voltage (V) High Level Output Voltage (V) IR2130/IR2132(J)(S) & (PbF) 0.60 0.40 0.20 0.60 0.40 0.20 Max. Max. 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 24B. High Level Output vs. Voltage 1.00 1.00 0.80 0.80 Low Level Output Voltage (V) Low Level Output Voltage (V) Figure 24A. High Level Output vs. Temperature 0.60 0.40 0.20 0.60 0.40 0.20 Max. Max. 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 25A. Low Level Output vs. Temperature Figure 25B. Low Level Output vs. Voltage 500 500 400 400 Offset Supply Leakage Current (µA) Offset Supply Leakage Current (µA) 14 VBIAS Supply Voltage (V) 300 200 100 300 200 100 Max. Max. 0 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 26A. Offset Supply Leakage Current vs. Temperature 14 125 0 100 200 300 400 500 600 VB Boost Voltage (V) Figure 26B. Offset Supply Leakage Current vs. Voltage www.irf.com 100 100 80 80 VBS Supply Current (µA) VBS Supply Current (µA) IR2130/IR2132(J)(S) & (PbF) 60 40 60 40 Max. 20 20 Max. Typ. Typ. 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 27B. VBS Supply Current vs. Voltage 10.0 10.0 8.0 8.0 VCC Supply Current (mA) VCC Supply Current (mA) Figure 27A. VBS Supply Current vs. Temperature 6.0 4.0 Max. Typ. 2.0 14 VBS Floating Supply Voltage (V) 6.0 4.0 Max. 2.0 Typ. 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 28B. VCC Supply Current vs. Voltage 1.25 1.25 1.00 1.00 Logic "1" Input Bias Current (mA) Logic "1" Input Bias Current (mA) Figure 28A. VCC Supply Current vs. Temperature 0.75 0.50 14 VCC Supply Voltage (V) Max. Typ. 0.25 0.00 0.75 0.50 Max. Typ. 0.25 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 29A. Logic “1” Input Current vs. Temperature www.irf.com 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 29A. Logic “1” Input Current vs. Voltage 15 1.25 1.25 1.00 1.00 Logic "0" Input Bias Current (mA) Logic "0" Input Bias Current (mA) IR2130/IR2132(J)(S) & (PbF) 0.75 0.50 Max. 0.25 0.75 0.50 Max. 0.25 Typ. Typ. 0.00 0.00 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 500 500 400 400 300 Max. 100 20 200 Max. Typ. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VCC Supply Voltage (V) Figure 31A. “High” ITRIP Current vs. Temperature Figure 31B. “High” ITRIP Current vs. Voltage 250 500 200 400 "Low" ITRIP Bias Current (µA) "Low" ITRIP Bias Current (nA) 18 300 100 Typ. 0 150 100 Max. 50 300 200 100 0 Max. 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 32A. “Low” ITRIP Current vs. Temperature 16 16 Figure 30B. Logic “0” Input Current vs. Voltage "High" ITRIP Bias Current (µA) "High" ITRIP Bias Current (µA) Figure 30A. Logic “0” Input Current vs. Temperature 200 14 VCC Supply Voltage (V) 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 32B. “Low” ITRIP Current vs. Voltage www.irf.com 11.0 11.0 10.0 10.0 VBS Undervoltage Lockout - (V) VBS Undervoltage Lockout + (V) IR2130/IR2132(J)(S) & (PbF) Max. 9.0 Typ. 8.0 Min. 7.0 9.0 Max. 8.0 Typ. Min. 7.0 6.0 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (°C) Figure 33. VBS Undervoltage (+) vs. Temperature 75 100 125 11.0 10.0 10.0 Max. VCC Undervoltage Lockout - (V) VCC Undervoltage Lockout + (V) 50 Figure 34. VBS Undervoltage (-) vs. Temperature 11.0 Typ. 9.0 Min. 8.0 7.0 Max. 9.0 Typ. Min. 8.0 7.0 6.0 6.0 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature (°C) 25 50 75 100 125 Temperature (°C) Figure 35. VCC Undervoltage (+) vs. Temperature Figure 36. VCC Undervoltage (-) vs. Temperature 250 250 200 200 FAULT- Low On Resistance (ohms) FAULT- Low On Resistance (ohms) 25 Temperature (°C) 150 100 Max. 50 150 100 Max. Typ. 50 Typ. 0 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 37A. FAULT Low On Resistance vs. Temperature www.irf.com 125 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 37B. FAULT Low On Resistance vs. Voltage 17 500 500 400 400 Output Source Current (mA) Output Source Current (mA) IR2130/IR2132(J)(S) & (PbF) Typ. 300 Min. 200 100 300 200 Typ. 100 0 Min. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 38A. Output Source Current vs. Temperature Output Sink Current (mA) 18 20 750 625 Typ. 600 Output Sink Current (mA) Min. 450 300 150 500 375 Typ. 250 Min. 125 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VBIAS Supply Voltage (V) Figure 39A. Output Sink Current vs. Temperature Figure 39B. Output Sink Current vs. Voltage 50 50 40 40 Amplifier Input Offset Voltage (mV) Amplifier Input Offset Voltage (mV) 16 Figure 38B. Output Source Current vs. Voltage 750 Max. 30 20 10 0 30 Max. 20 10 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 40A. Amplifier Input Offset vs. Temperature 18 14 VBIAS Supply Voltage (V) 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 40B. Amplifier Input Offset vs. Voltage www.irf.com 10.0 10.0 8.0 8.0 CA- Input Bias Current (nA) CA- Input Bias Current (nA) IR2130/IR2132(J)(S) & (PbF) 6.0 Max. 4.0 2.0 6.0 Max. 4.0 2.0 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 41A. CA- Input Current vs. Temperature 18 20 100 80 Typ. 60 Min. 80 Amplifier CMRR (dB) Amplifier CMRR (dB) 16 Figure 41B. CA- Input Current vs. Voltage 100 40 20 60 Typ. Min. 40 20 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VCC Supply Voltage (V) Figure 42A. Amplifier CMRR vs. Temperature Figure 42B. Amplifier CMRR vs. Voltage 100 100 80 80 Typ. 60 Min. Amplifier PSRR (dB) Typ. Amplifier PSRR (dB) 14 VCC Supply Voltage (V) 60 Min. 40 20 40 20 0 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 43A. Amplifier PSRR vs. Temperature www.irf.com 125 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 43B. Amplifier PSRR vs. Voltage 19 6.00 6.00 5.70 5.70 5.40 Amplifier High Level Output Voltage (V) Amplifier High Level Output Voltage (V) IR2130/IR2132(J)(S) & (PbF) Max. Typ. 5.10 Min. 4.80 4.50 5.40 Max. Typ. 5.10 Min. 4.80 4.50 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) Figure 44A. Amplifier High Level Output vs. Temperature 18 20 100 Amplifier Low Level Output Voltage (mV) Amplifier Low Level Output Voltage (mV) 16 Figure 44B. Amplifier High Level Output vs. Voltage 100 80 60 40 Max. 20 0 80 60 40 Max. 20 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 14 16 18 20 VCC Supply Voltage (V) Figure 45A. Amplifier Low Level Output vs. Temperature Figure 45B. Amplifier Low Level Output vs. Voltage 10.0 8.0 8.0 Amplifier Output Source Current (mA) 10.0 Amplifier Output Source Current (mA) 14 VCC Supply Voltage (V) 6.0 Typ. 4.0 Min. 2.0 6.0 4.0 Typ. 2.0 Min. 0.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 46A. Amplifier Output Source Current vs. Temperature 20 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 46B. Amplifier Output Source Current vs. Voltage www.irf.com 5.00 5.00 4.00 4.00 Amplifier Output Sink Current (mA) Amplifier Output Sink Current (mA) IR2130/IR2132(J)(S) & (PbF) 3.00 Typ. 2.00 Min. 1.00 3.00 2.00 Typ. Min. 1.00 0.00 0.00 -50 -25 0 25 50 75 100 10 125 12 16 18 20 Figure 47B. Amplifier Output Sink Current vs. Voltage 15.0 15.0 12.0 12.0 Output High Short Circuit Current (mA) Output High Short Circuit Current (mA) Figure 47A. Amplifier Output Sink Current vs. Temperature 9.0 Max. 6.0 14 VCC Supply Voltage (V) Temperature (°C) Typ. 3.0 9.0 6.0 Max. 3.0 Typ. 0.0 0.0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 48B. Amplifier Output High Short Circuit Current vs. Voltage 15.0 15.0 12.0 12.0 Output Low Short Circuit Current (mA) Output Low Short Circuit Current (mA) Figure 48A. Amplifier Output High Short Circuit Current vs. Temperature 9.0 6.0 14 VCC Supply Voltage (V) Max. Typ. 3.0 9.0 6.0 Max. 3.0 Typ. 0.0 0.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 49A. Amplifier Output Low Short Circuit Current vs. Temperature www.irf.com 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 49B. Amplifier Output Low Short Circuit Current vs. Voltage 21 IR2130/IR2132(J)(S) & (PbF) 0.0 VS Offset Supply Voltage (V) -3.0 Typ. -6.0 -9.0 -12.0 -15.0 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 50. Maximum VS Negative Offset vs. VBS Supply Voltage 50 50 480V 480V 45 40 320V 35 160V 30 0V Junction Temperature (°C) Junction Temperature (°C) 45 25 20 1E+2 40 320V 35 160V 30 0V 25 1E+3 1E+4 20 1E+2 1E+5 1E+3 Frequency (Hz) 1E+4 1E+5 Frequency (Hz) Figure 52. IR2130/IR2132 TJ vs. Frequency (IRF830) Ω, VCC = 15V RGATE = 20Ω Figure 51. IR2130/IR2132 TJ vs. Frequency (IRF820) Ω, VCC = 15V RGATE = 33Ω 100 140 480V 120 320V 60 480V 320V 40 Junction Temperature (°C) Junction Temperature (°C) 80 100 80 160V 60 0V 160V 40 0V 20 1E+2 1E+3 1E+4 1E+5 Frequency (Hz) Figure 53. IR2130/IR2132 TJ vs. Frequency (IRF840) Ω, VCC = 15V RGATE = 15Ω 22 20 1E+2 1E+3 1E+4 1E+5 Frequency (Hz) Figure 54. IR2130/IR2132 TJ vs. Frequency (IRF450) Ω, VCC = 15V RGATE = 10Ω www.irf.com 120 110 100 90 80 70 60 50 40 30 20 1E+2 480V 320V 160V 0V 1E+3 1E+4 Jun c tio n T em p era ture (°C ) Junction Tem perature (°C ) IR2130/IR2132(J)(S) & (PbF) 1E+5 1 20 1 10 1 00 90 80 70 60 50 40 30 20 1 E+ 2 4 80 V 3 20 V 1 60 0V 1 E+ 3 Frequency (Hz) 480V 320V 160V 0V 1E+3 1E+4 Frequency (Hz) Figure 57. IR2130J/IR2132J TJ vs. Frequency (IRGPC40KD2) Ω, VCC = 15V RGATE = 15Ω www.irf.com 1 E+ 5 Figure 56. IR2130J/IR2132J TJ vs. Frequency (IRGPC30KD2) Ω, VCC = 15V RGATE = 20Ω 1E+5 Ju nction Tem p erature (°C ) Junction Tem perature (°C ) Figure 55. IR2130J/IR2132J TJ vs. Frequency (IRGPC20KD2) Ω, VCC = 15V RGATE = 33Ω 120 110 100 90 80 70 60 50 40 30 20 1E+2 1 E+ 4 Frequency (Hz) 120 110 100 90 80 70 60 50 40 30 20 1E+2 480V 320V 160V 0V 1E+3 1E+4 1E+5 Frequency (Hz) Figure 58. IR2130J/IR2132J TJ vs. Frequency (IRGPC50KD2) Ω, VCC = 15V RGATE = 10Ω 23 IR2130/IR2132(J)(S) & (PbF) Case outlines 28-Lead PDIP (wide body) 28-Lead SOIC (wide body) 24 01-6011 01-3024 02 (MS-011AB) 01-6013 01-304002 (MS-013AE) www.irf.com IR2130/IR2132(J)(S) & (PbF) Case outline NOTES 44-Lead PLCC w/o 12 leads www.irf.com 01-6009 00 01-3004 02(mod.) (MS-018AC) 25 IR2130/IR2132(J)(S) & (PbF) LEADFREE PART MARKING INFORMATION Part number IRxxxxxx YWW? Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 28-Lead PDIP IR2130 order IR2130 28-Lead SOIC IR2130S order IR2130S 28-Lead PDIP IR2132 order IR2132 28-Lead SOIC IR2132S order IR2132S 44-Lead PLCC IR2130J order IR2130J 44-Lead PLCC IR2132J order IR2132J Leadfree Part 28-Lead PDIP IR2130 order IR2130PbF 28-Lead SOIC IR2130S order IR2130SPbF 28-Lead PDIP IR2132 order IR2132PbF 28-Lead SOIC IR2132S order IR2132SPbF 44-Lead PLCC IR2130J order IR2130JPbF 44-Lead PLCC IR2132J order IR2132JPbF IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice. 4/2/2004 26 www.irf.com