IRF IR2130JPBF

Data Sheet No. PD60019 Rev.P
IR2130/IR2132(J)(S) & (PbF)
3-PHASE BRIDGE DRIVER
Features
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
•
•
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout for all channels
Over-current shutdown turns off all six drivers
Independent half-bridge drivers
Matched propagation delay for all channels
2.5V logic compatible
Outputs out of phase with inputs
Cross-conduction prevention logic
Also available LEAD-FREE
Description
Product Summary
VOFFSET
600V max.
IO+/-
200 mA / 420 mA
VOUT
10 - 20V
ton/off (typ.)
675 & 425 ns
Deadtime (typ.)
2.5 µs (IR2130)
0.8 µs (IR2132)
Packages
The IR2130/IR2132(J)(S) is a high voltage, high speed
power MOSFET and IGBT driver with three independent high and low side referenced output channels. Proprietary HVIC technology enables ruggedized
28-Lead SOIC
monolithic construction. Logic inputs are compatible with
CMOS or LSTTL outputs, down to 2.5V logic. A
28-Lead PDIP
ground-referenced operational amplifier provides
analog feedback of bridge current via an external current sense resistor. A current trip function which termi44-Lead PLCC w/o 12 Leads
nates all six outputs is also derived from this resistor.
An open drain FAULT signal indicates if an over-current or undervoltage shutdown has occurred. The output drivers feature a high pulse current buffer stage designed
for minimum driver cross-conduction. Propagation delays are matched to simplify use at high frequencies. The
floating channels can be used to drive N-channel power MOSFETs or IGBTs in the high side configuration
which operate up to 600 volts.
Typical Connection
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer
to our Application Notes and DesignTips for proper circuit board layout.
www.irf.com
1
IR2130/IR2132(J)(S) & (PbF)
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to VS0. The Thermal Resistance and Power Dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in Figures 50 through 53.
Symbol
VB1,2,3
VS1,2,3
VHO1,2,3
VCC
VSS
VLO1,2,3
VIN
VFLT
VCAO
VCAdVS/dt
PD
RthJA
TJ
TS
TL
Definition
High Side Floating Supply Voltage
High Side Floating Offset Voltage
High Side Floating Output Voltage
Low Side and Logic Fixed Supply Voltage
Logic Ground
Low Side Output Voltage
Logic Input Voltage ( HIN1,2,3 , LIN1,2,3 & ITRIP)
FAULT Output Voltage
Operational Amplifier Output Voltage
Operational Amplifier Inverting Input Voltage
Allowable Offset Supply Voltage Transient
Package Power Dissipation @ TA ≤ +25°C
Thermal Resistance, Junction to Ambient
(28 Lead DIP)
(28 Lead SOIC)
(44 Lead PLCC)
(28 Lead DIP)
(28 Lead SOIC)
(44 Lead PLCC)
Junction Temperature
Storage Temperature
Lead Temperature (Soldering, 10 seconds)
Min.
Max.
-0.3
VB1,2,3 - 25
VS1,2,3 - 0.3
-0.3
VCC - 25
-0.3
VSS - 0.3
625
VB1,2,3 + 0.3
VB1,2,3 + 0.3
25
VCC + 0.3
VCC + 0.3
(V SS + 15) or
(VCC + 0.3)
whichever is
lower
VCC + 0.3
VCC + 0.3
VCC + 0.3
50
1.5
1.6
2.0
83
78
63
150
150
300
VSS - 0.3
VSS - 0.3
VSS - 0.3
—
—
—
—
—
—
—
—
-55
—
Units
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. All voltage parameters are absolute voltages referenced to VS0. The VS offset rating is tested
with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in Figure 54.
Symbol
Definition
Min.
Max.
Units
VB1,2,3
High Side Floating Supply Voltage
VS1,2,3 + 10
VS1,2,3 + 20
VS1,2,3
High Side Floating Offset Voltage
Note 1
600
VHO1,2,3
High Side Floating Output Voltage
VS1,2,3
VB1,2,3
VCC
Low Side and Logic Fixed Supply Voltage
10
20
VSS
Logic Ground
-5
5
VLO1,2,3
Low Side Output Voltage
0
VCC
V
VIN
Logic Input Voltage ( HIN1,2,3 , LIN1,2,3 & ITRIP)
VSS
VSS + 5
VFLT
VSS
VCC
FAULT Output Voltage
VCAO
Operational Amplifier Output Voltage
VSS
VSS + 5
VCAOperational Amplifier Inverting Input Voltage
VSS
VSS + 5
TA
Ambient Temperature
-40
125
°C
Note 1: Logic operational for VS of (VS0 - 5V) to (VS0 + 600V). Logic state held for VS of (VS0 - 5V) to (VS0 - VBS).
(Please refer to the Design Tip DT97-3 for more details).
Note 2: All input pins, CA- and CAO pins are internally clamped with a 5.2V zener diode.
2
www.irf.com
IR2130/IR2132(J)(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS1,2,3) = 15V, VS0,1,2,3 = VSS, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic
electrical characteristics are defined in Figures 3 through 5.
Symbol
Definition
ton
toff
tr
tf
titrip
tbl
tflt
tflt,in
tfltclr
DT
Turn-On Propagation Delay
Turn-Off Propagation Delay
Turn-On Rise Time
Turn-Off Fall Time
ITRIP to Output Shutdown Prop. Delay
ITRIP Blanking Time
ITRIP to FAULT Indication Delay
Input Filter Time (All Six Inputs)
LIN1,2,3 to FAULT Clear Time
Deadtime
(IR2130)
(IR2132)
Operational Amplifier Slew Rate (+)
Operational Amplifier Slew Rate (-)
SR+
SR-
Figure Min. Typ. Max. Units Test Conditions
11
12
13
14
15
—
16
—
17
18
18
19
20
500
300
—
—
400
—
335
—
6.0
1.3
0.4
4.4
2.4
675
425
80
35
660
400
590
310
9.0
2.5
0.8
6.2
3.2
850
550
125
55
920
—
845
—
12.0
3.7
1.2
—
—
VIN = 0 & 5V
VS1,2,3 = 0 to 600V
ns
µs
VIN, VITRIP = 0 & 5V
VITRIP = 1V
VIN, VITRIP = 0 & 5V
VIN = 0 & 5V
VIN, VITRIP = 0 & 5V
VIN = 0 & 5V
V/µs
NOTE: For high side PWM, HIN pulse width must be ≥ 1.5µsec
Static Electrical Characteristics
VBIAS (VCC, V BS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters
are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
Symbol
VIH
VIL
VIT,TH+
VOH
VOL
ILK
IQBS
IQCC
IIN+
IINIITRIP+
IITRIPVBSUV+
VBSUVVCCUV+
VCCUVRon,FLT
www.irf.com
Definition
Logic “0” Input Voltage (OUT = LO)
Logic “1” Input Voltage (OUT = HI)
ITRIP Input Positive Going Threshold
High Level Output Voltage, VBIAS - VO
Low Level Output Voltage, VO
Offset Supply Leakage Current
Quiescent VBS Supply Current
Quiescent VCC Supply Current
Logic “1” Input Bias Current (OUT = HI)
Logic “0” Input Bias Current (OUT = LO)
“High” ITRIP Bias Current
“Low” ITRIP Bias Current
VBS Supply Undervoltage Positive Going
Threshold
VBS Supply Undervoltage Negative Going
Threshold
VCC Supply Undervoltage Positive Going
Threshold
VCC Supply Undervoltage Negative Going
Threshold
FAULT Low On-Resistance
Figure Min. Typ. Max. Units Test Conditions
21
22
23
24
25
26
27
28
29
30
31
32
33
2.2
—
400
—
—
—
—
—
—
—
—
—
7.5
—
—
490
—
—
—
15
3.0
450
225
75
—
8.35
—
0.8
580
100
100
50
30
4.0
650
400
150
100
9.2
34
7.1
7.95
8.8
35
8.3
9.0
9.7
36
8.0
8.7
9.4
37
—
55
75
V
mV
µA
mA
µA
nA
VIN = 0V, IO = 0A
VIN = 5V, IO = 0A
VB = VS = 600V
VIN = 0V or 5V
VIN = 0V or 5V
VIN = 0V
VIN = 5V
ITRIP = 5V
ITRIP = 0V
V
Ω
3
IR2130/IR2132(J)(S) & (PbF)
Static Electrical Characteristics -- Continued
VBIAS (VCC , VBS1,2,3) = 15V, VS0,1,2,3 = VSS and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters
are referenced to VSS and are applicable to all six logic input leads: HIN1,2,3 & LIN1,2,3 . The VO and IO parameters
are referenced to VS0,1,2,3 and are applicable to the respective output leads: HO1,2,3 or LO1,2,3.
Symbol
Definition
Figure Min. Typ. Max. Units Test Conditions
IO+
Output High Short Circuit Pulsed Current
38
200
250
—
IO-
Output Low Short Circuit Pulsed Current
39
420
500
—
mA
VOS
ICACMRR
PSRR
Operational Amplifer Input Offset Voltage
CA- Input Bais Current
Op. Amp. Common Mode Rejection Ratio
Op. Amp. Power Supply Rejection Ratio
40
41
42
43
—
—
60
55
—
—
80
75
30
4.0
—
—
mV
nA
VOH,AMP
VOL,AMP
ISRC,AMP
Op. Amp. High Level Output Voltage
Op. Amp. Low Level Output Voltage
Op. Amp. Output Source Current
44
45
46
5.0
—
2.3
5.2
—
4.0
5.4
20
—
V
mV
ISRC,AMP
Op. Amp. Output Sink Current
47
1.0
2.1
—
IO+,AMP
Operational Amplifier Output High Short
Circuit Current
Operational Amplifier Output Low Short
Circuit Current
48
—
4.5
6.5
49
—
3.2
5.2
dB
mA
IO-,AMP
VO = 0V, VIN = 0V
PW ≤ 10 µs
VO = 15V, VIN = 5V
PW ≤ 10 µs
VS0 = VCA- = 0.2V
VCA- = 2.5V
VS0=VCA-=0.1V & 5V
VS0 = VCA- = 0.2V
VCC = 10V & 20V
VCA- = 0V, VS0 = 1V
VCA- = 1V, VS0 = 0V
VCA- = 0V, VS0 = 1V
VCAO = 4V
VCA- = 1V, VS0 = 0V
VCAO = 2V
VCA- = 0V, VS0 = 5V
VCAO = 0V
VCA- = 5V, VS0 = 0V
VCAO = 5V
Lead Assignments
4
28 Lead PDIP
44 Lead PLCC w/o 12 Leads
28 Lead SOIC (Wide Body)
IR2130 / IR2132
IR2130J / IR2132J
Part Number
IR2130S / IR2132S
www.irf.com
IR2130/IR2132(J)(S) & (PbF)
Functional Block Diagram
Lead Definitions
Symbol
Description
HIN1,2,3
Logic inputs for high side gate driver outputs (HO1,2,3), out of phase
LIN1,2,3
Logic inputs for low side gate driver output (LO1,2,3), out of phase
FAULT
Indicates over-current or undervoltage lockout (low side) has occurred, negative logic
VCC
Low side and logic fixed supply
ITRIP
Input for over-current shutdown
CAO
Output of current amplifier
CA-
Negative input of current amplifier
VSS
Logic ground
VB1,2,3
High side floating supplies
HO1,2,3
High side gate drive outputs
VS1,2,3
High side floating supply returns
LO1,2,3
Low side gate drive outputs
VS0
Low side return and positive input of current amplifier
www.irf.com
5
IR2130/IR2132(J)(S) & (PbF)
HIN1,2,3
LIN1,2,3
ITRIP
<50 V/ns
FAULT
HO1,2,3
LO1,2,3
Figure 1. Input/Output Timing Diagram
Figure 2. Floating Supply Voltage Transient Test Circuit
HIN1,2,3
LIN1,2,3
HIN1,2,3
50%
50%
50%
50%
LIN1,2,3
ton
tr
toff
tf
LO1,2,3
90%
50%
HO1,2,3
HO1,2,3
LO1,2,3
DT
10%
10%
DT
Figure 3. Deadtime Waveform Definitions
6
90%
50%
Figure 4. Input/Output Switching Time Waveform
Definitions
www.irf.com
IR2130/IR2132(J)(S) & (PbF)
50%
LIN1,2,3
50%
ITRIP
FAULT
50%
50%
LO1,2,3
50%
tflt
tfltclr
t itrip
Figure 5. Overcurrent Shutdown Switching Time
Waveform Definitions
HIN/LIN
t in,fil
on
on off
off
U
t in,fil
on off
high
HO/LO
low
Figure 5.5 Input Filter Function
VCC
VS0
+
CA-
-
CAO
VSS
VSS
Figure 6. Diagnostic Feedback Operational Amplifier Circuit
www.irf.com
7
IR2130/IR2132(J)(S) & (PbF)
15V
VCC
3V
CA0V
VS0
15V
VS0
+
CAO
-
VSS
CA-
50 pF
VCC
+
CAO
VSS
+
∆T1
3V
20k
0.2V
∆T2
1k
90%
∆V
10%
0V
∆V
SR+ =
SR- =
∆T1
∆V
VOS =
∆T2
Figure 7. Operational Amplifier Slew Rate
Measurement
VCAO
21
- 0.2V
Figure 8. Operational Amplifier Input Offset Voltage
Measurement
VCC
VS0
15V
VCC
CAVS0
-
VSS
+
20k
VSS
Measure VCAO1 at VS0 = 0.1V
VCAO2 at V S0 = 5V
(VCAO1-0.1V) - (VCAO2 -5V)
(dB)
CMRR = -20 *LOG
4.9V
Figure 9. Operational Amplifier Common Mode
Rejection Ratio Measurements
CAO
-
CAO
+
0.2V
8
+
CA-
1k
Measure VCAO1 at VCC = 10V
VCAO2 at V CC = 20V
VCAO1 - VCAO2
PSRR = -20*LOG
(10V) (21)
Figure 10. Operational Amplifier Power Supply
Rejection Ratio Measurements
www.irf.com
1.50
1.50
1.20
1.20
Turn-On Delay Time (µs)
Turn-On Delay Time (µs)
IR2130/IR2132(J)(S) & (PbF)
Max.
0.90
Typ.
0.60
Min.
0.30
0.90
Max.
Typ.
0.60
Min.
0.30
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
14
Temperature (°C)
16
18
20
VBIAS Supply Voltage (V)
Figure 11A. Turn-On Time vs. Temperature
Figure 11B. Turn-On Time vs. Supply Voltage
1.50
1.00
Max
1.20
0.80
Turn-Off Delay Time (µs)
Typ.
Turn-On Time (µs)
0.90
0.60
0.30
0.60
0.40
Max.
Typ.
Min.
0.20
0.00
0.00
0
1
2
3
4
5
-50
6
-25
0
50
75
100
125
Figure 12A. Turn-Off Time vs. Temperature
1.00
1.50
0.80
1.20
Turn-Off Time (µs)
Turn-Off Delay Time (µs)
Figure 11C. Turn-On Time vs. Voltage
0.60
25
Temperature (°C)
Input Voltage (V)
Max.
Typ.
0.40
Min.
0.90
Max
0.60
Typ
0.30
0.20
Min.
0.00
0.00
10
12
14
16
18
VBIAS Supply Voltage (V)
Figure 12B. Turn-Off Time vs. Supply Voltage
www.irf.com
20
0
1
2
3
4
5
6
Input Voltage (V)
Figure 12C. Turn-Off Time vs. Input Voltage
9
250
250
200
200
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
IR2130/IR2132(J)(S) & (PbF)
150
Max.
100
Typ.
50
Max.
150
Typ.
100
50
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 13A. Turn-On Rise Time vs. Temperature
100
Turn-Off Fall Time (ns)
100
Turn-Off Fall Time (ns)
125
75
50
Max.
Typ.
20
75
Max.
50
Typ.
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 14A. Turn-Off Fall Time vs. Temperature
Figure 14B. Turn-Off Fall Time vs. Voltage
1.50
ITRIP to Output Shutdown Delay Time (µs)
1.50
ITRIP to Output Shutdown Delay Time (µs)
18
25
0
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
0.00
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
0.00
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 15A. ITRIP to Output Shutdown Time vs.
Temperature
10
16
Figure 13B. Turn-On Rise Time vs. Voltage
125
25
14
VBIAS Supply Voltage (V)
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 15B. ITRIP to Output Shutdown Time vs. Voltage
www.irf.com
IR2130/IR2132(J)(S) & (PbF)
1.50
ITRIP to FAULT Indication Delay Time (µs)
ITRIP to FAULT Indication Delay Time (µs)
1.50
1.20
Max.
0.90
Typ.
0.60
Min.
0.30
0.00
1.20
0.90
Max.
Typ.
0.60
Min.
0.30
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
25.0
25.0
20.0
20.0
15.0
Max.
18
20
Typ.
Min.
5.0
15.0
Max.
10.0
Typ.
Min.
5.0
0.0
0.0
-50
-25
0
25
50
75
100
10
125
12
Figure 17A. LIN1,2,3 to FAULT Clear Time vs.
Temperature
7.50
6.00
6.00
1.50
Max.
Deadtime (µs)
3.00
16
18
20
Figure 17B. LIN1,2,3 to FAULT Clear Time vs. Voltage
7.50
4.50
14
VCC Supply Voltage (V)
Temperature (°C)
Deadtime (µs)
16
Figure 16B. ITRIP to FAULT Indication Time vs. Voltage
LIN1,2,3 to FAULT Clear Time (µs)
LIN1,2,3 to FAULT Clear Time (µs)
Figure 16A. ITRIP to FAULT Indication Time vs.
Temperature
10.0
14
VCC Supply Voltage (V)
Typ.
Min.
4.50
Max.
3.00
1.50
Typ.
Min.
0.00
0.00
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 18A. Deadtime vs. Temperature (IR2130)
www.irf.com
125
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 18B. Deadtime vs. Voltage (IR2130)
11
2.50
2.50
2.00
2.00
1.50
Max.
1.00
Typ.
Deadtime (µs)
Deadtime (µs)
IR2130/IR2132(J)(S) & (PbF)
1.50
Max.
1.00
Typ.
Min.
0.50
Min.
0.50
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 18C. Deadtime vs. Temperature (IR2132)
20
8.0
Amplifier Slew Rate + (V/µs)
Amplifier Slew Rate + (V/µs)
18
10.0
8.0
Typ.
6.0
Min.
4.0
2.0
Typ.
6.0
Min.
4.0
2.0
0.0
0.0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VCC Supply Voltage (V)
Figure 19A. Amplifier Slew Rate (+) vs. Temperature
Figure 19B. Amplifier Slew Rate (+) vs. Voltage
5.00
5.00
4.00
4.00
Typ.
Amplifier Slew Rate - (V/µs)
Amplifier Slew Rate - (V/µs)
16
Figure 18D. Deadtime vs. Voltage (IR2132)
10.0
3.00
Min.
2.00
Typ.
3.00
Min.
2.00
1.00
1.00
0.00
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 20A. Amplifier Slew Rate (-) vs. Temperature
12
14
VBIAS Supply Voltage (V)
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 20B. Amplifier Slew Rate (-) vs. Voltage
www.irf.com
5.00
5.00
4.00
4.00
Logic "0" Input Threshold (V)
Logic "0" Input Threshold (V)
IR2130/IR2132(J)(S) & (PbF)
3.00
Min.
2.00
1.00
3.00
Min.
2.00
1.00
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
5.00
5.00
4.00
4.00
3.00
2.00
18
20
3.00
2.00
1.00
Max.
0.00
Max.
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 22B. Logic “1” Input Threshold vs. Voltage
750
ITRIP Input Positive Going Threshold (mV)
750
600
14
VCC Supply Voltage (V)
Figure 22A. Logic “1” Input Threshold vs. Temperature
ITRIP Input Positive Going Threshold (mV)
16
Figure 20B. Logic “0” Input Threshold vs. Voltage
Logic "1" Input Threshold (V)
Logic "1" Input Threshold (V)
Figure 21A. Logic “0” Input Threshold vs. Temperature
1.00
14
VCC Supply Voltage (V)
Max.
Typ.
450
Min.
300
150
600
Max.
Typ.
450
Min.
300
150
0
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 23A. ITRIP Input Positive Going Threshold
vs. Temperature
www.irf.com
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 23B. ITRIP Input Positive Going Threshold
vs. Voltage
13
1.00
1.00
0.80
0.80
High Level Output Voltage (V)
High Level Output Voltage (V)
IR2130/IR2132(J)(S) & (PbF)
0.60
0.40
0.20
0.60
0.40
0.20
Max.
Max.
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 24B. High Level Output vs. Voltage
1.00
1.00
0.80
0.80
Low Level Output Voltage (V)
Low Level Output Voltage (V)
Figure 24A. High Level Output vs. Temperature
0.60
0.40
0.20
0.60
0.40
0.20
Max.
Max.
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 25A. Low Level Output vs. Temperature
Figure 25B. Low Level Output vs. Voltage
500
500
400
400
Offset Supply Leakage Current (µA)
Offset Supply Leakage Current (µA)
14
VBIAS Supply Voltage (V)
300
200
100
300
200
100
Max.
Max.
0
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 26A. Offset Supply Leakage Current
vs. Temperature
14
125
0
100
200
300
400
500
600
VB Boost Voltage (V)
Figure 26B. Offset Supply Leakage Current vs. Voltage
www.irf.com
100
100
80
80
VBS Supply Current (µA)
VBS Supply Current (µA)
IR2130/IR2132(J)(S) & (PbF)
60
40
60
40
Max.
20
20
Max.
Typ.
Typ.
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 27B. VBS Supply Current vs. Voltage
10.0
10.0
8.0
8.0
VCC Supply Current (mA)
VCC Supply Current (mA)
Figure 27A. VBS Supply Current vs. Temperature
6.0
4.0
Max.
Typ.
2.0
14
VBS Floating Supply Voltage (V)
6.0
4.0
Max.
2.0
Typ.
0.0
0.0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 28B. VCC Supply Current vs. Voltage
1.25
1.25
1.00
1.00
Logic "1" Input Bias Current (mA)
Logic "1" Input Bias Current (mA)
Figure 28A. VCC Supply Current vs. Temperature
0.75
0.50
14
VCC Supply Voltage (V)
Max.
Typ.
0.25
0.00
0.75
0.50
Max.
Typ.
0.25
0.00
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 29A. Logic “1” Input Current vs. Temperature
www.irf.com
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 29A. Logic “1” Input Current vs. Voltage
15
1.25
1.25
1.00
1.00
Logic "0" Input Bias Current (mA)
Logic "0" Input Bias Current (mA)
IR2130/IR2132(J)(S) & (PbF)
0.75
0.50
Max.
0.25
0.75
0.50
Max.
0.25
Typ.
Typ.
0.00
0.00
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
500
500
400
400
300
Max.
100
20
200
Max.
Typ.
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VCC Supply Voltage (V)
Figure 31A. “High” ITRIP Current vs. Temperature
Figure 31B. “High” ITRIP Current vs. Voltage
250
500
200
400
"Low" ITRIP Bias Current (µA)
"Low" ITRIP Bias Current (nA)
18
300
100
Typ.
0
150
100
Max.
50
300
200
100
0
Max.
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 32A. “Low” ITRIP Current vs. Temperature
16
16
Figure 30B. Logic “0” Input Current vs. Voltage
"High" ITRIP Bias Current (µA)
"High" ITRIP Bias Current (µA)
Figure 30A. Logic “0” Input Current vs. Temperature
200
14
VCC Supply Voltage (V)
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 32B. “Low” ITRIP Current vs. Voltage
www.irf.com
11.0
11.0
10.0
10.0
VBS Undervoltage Lockout - (V)
VBS Undervoltage Lockout + (V)
IR2130/IR2132(J)(S) & (PbF)
Max.
9.0
Typ.
8.0
Min.
7.0
9.0
Max.
8.0
Typ.
Min.
7.0
6.0
6.0
-50
-25
0
25
50
75
100
125
-50
-25
0
Temperature (°C)
Figure 33. VBS Undervoltage (+) vs. Temperature
75
100
125
11.0
10.0
10.0
Max.
VCC Undervoltage Lockout - (V)
VCC Undervoltage Lockout + (V)
50
Figure 34. VBS Undervoltage (-) vs. Temperature
11.0
Typ.
9.0
Min.
8.0
7.0
Max.
9.0
Typ.
Min.
8.0
7.0
6.0
6.0
-50
-25
0
25
50
75
100
125
-50
-25
0
Temperature (°C)
25
50
75
100
125
Temperature (°C)
Figure 35. VCC Undervoltage (+) vs. Temperature
Figure 36. VCC Undervoltage (-) vs. Temperature
250
250
200
200
FAULT- Low On Resistance (ohms)
FAULT- Low On Resistance (ohms)
25
Temperature (°C)
150
100
Max.
50
150
100
Max.
Typ.
50
Typ.
0
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 37A. FAULT Low On Resistance vs.
Temperature
www.irf.com
125
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 37B. FAULT Low On Resistance vs. Voltage
17
500
500
400
400
Output Source Current (mA)
Output Source Current (mA)
IR2130/IR2132(J)(S) & (PbF)
Typ.
300
Min.
200
100
300
200
Typ.
100
0
Min.
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 38A. Output Source Current vs. Temperature
Output Sink Current (mA)
18
20
750
625
Typ.
600
Output Sink Current (mA)
Min.
450
300
150
500
375
Typ.
250
Min.
125
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VBIAS Supply Voltage (V)
Figure 39A. Output Sink Current vs. Temperature
Figure 39B. Output Sink Current vs. Voltage
50
50
40
40
Amplifier Input Offset Voltage (mV)
Amplifier Input Offset Voltage (mV)
16
Figure 38B. Output Source Current vs. Voltage
750
Max.
30
20
10
0
30
Max.
20
10
0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 40A. Amplifier Input Offset vs. Temperature
18
14
VBIAS Supply Voltage (V)
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 40B. Amplifier Input Offset vs. Voltage
www.irf.com
10.0
10.0
8.0
8.0
CA- Input Bias Current (nA)
CA- Input Bias Current (nA)
IR2130/IR2132(J)(S) & (PbF)
6.0
Max.
4.0
2.0
6.0
Max.
4.0
2.0
0.0
0.0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 41A. CA- Input Current vs. Temperature
18
20
100
80
Typ.
60
Min.
80
Amplifier CMRR (dB)
Amplifier CMRR (dB)
16
Figure 41B. CA- Input Current vs. Voltage
100
40
20
60
Typ.
Min.
40
20
0
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VCC Supply Voltage (V)
Figure 42A. Amplifier CMRR vs. Temperature
Figure 42B. Amplifier CMRR vs. Voltage
100
100
80
80
Typ.
60
Min.
Amplifier PSRR (dB)
Typ.
Amplifier PSRR (dB)
14
VCC Supply Voltage (V)
60
Min.
40
20
40
20
0
0
-50
-25
0
25
50
75
100
Temperature (°C)
Figure 43A. Amplifier PSRR vs. Temperature
www.irf.com
125
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 43B. Amplifier PSRR vs. Voltage
19
6.00
6.00
5.70
5.70
5.40
Amplifier High Level Output Voltage (V)
Amplifier High Level Output Voltage (V)
IR2130/IR2132(J)(S) & (PbF)
Max.
Typ.
5.10
Min.
4.80
4.50
5.40
Max.
Typ.
5.10
Min.
4.80
4.50
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
Figure 44A. Amplifier High Level Output vs.
Temperature
18
20
100
Amplifier Low Level Output Voltage (mV)
Amplifier Low Level Output Voltage (mV)
16
Figure 44B. Amplifier High Level Output vs. Voltage
100
80
60
40
Max.
20
0
80
60
40
Max.
20
0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
14
16
18
20
VCC Supply Voltage (V)
Figure 45A. Amplifier Low Level Output vs.
Temperature
Figure 45B. Amplifier Low Level Output vs. Voltage
10.0
8.0
8.0
Amplifier Output Source Current (mA)
10.0
Amplifier Output Source Current (mA)
14
VCC Supply Voltage (V)
6.0
Typ.
4.0
Min.
2.0
6.0
4.0
Typ.
2.0
Min.
0.0
0.0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 46A. Amplifier Output Source Current vs.
Temperature
20
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 46B. Amplifier Output Source Current vs.
Voltage
www.irf.com
5.00
5.00
4.00
4.00
Amplifier Output Sink Current (mA)
Amplifier Output Sink Current (mA)
IR2130/IR2132(J)(S) & (PbF)
3.00
Typ.
2.00
Min.
1.00
3.00
2.00
Typ.
Min.
1.00
0.00
0.00
-50
-25
0
25
50
75
100
10
125
12
16
18
20
Figure 47B. Amplifier Output Sink Current vs. Voltage
15.0
15.0
12.0
12.0
Output High Short Circuit Current (mA)
Output High Short Circuit Current (mA)
Figure 47A. Amplifier Output Sink Current vs.
Temperature
9.0
Max.
6.0
14
VCC Supply Voltage (V)
Temperature (°C)
Typ.
3.0
9.0
6.0
Max.
3.0
Typ.
0.0
0.0
-50
-25
0
25
50
75
100
125
10
12
Temperature (°C)
16
18
20
Figure 48B. Amplifier Output High Short Circuit
Current vs. Voltage
15.0
15.0
12.0
12.0
Output Low Short Circuit Current (mA)
Output Low Short Circuit Current (mA)
Figure 48A. Amplifier Output High Short Circuit
Current vs. Temperature
9.0
6.0
14
VCC Supply Voltage (V)
Max.
Typ.
3.0
9.0
6.0
Max.
3.0
Typ.
0.0
0.0
-50
-25
0
25
50
75
100
125
Temperature (°C)
Figure 49A. Amplifier Output Low Short Circuit Current
vs. Temperature
www.irf.com
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 49B. Amplifier Output Low Short Circuit Current
vs. Voltage
21
IR2130/IR2132(J)(S) & (PbF)
0.0
VS Offset Supply Voltage (V)
-3.0
Typ.
-6.0
-9.0
-12.0
-15.0
10
12
14
16
18
20
VBS Floating Supply Voltage (V)
Figure 50. Maximum VS Negative Offset vs. VBS Supply Voltage
50
50
480V
480V
45
40
320V
35
160V
30
0V
Junction Temperature (°C)
Junction Temperature (°C)
45
25
20
1E+2
40
320V
35
160V
30
0V
25
1E+3
1E+4
20
1E+2
1E+5
1E+3
Frequency (Hz)
1E+4
1E+5
Frequency (Hz)
Figure 52. IR2130/IR2132 TJ vs. Frequency (IRF830)
Ω, VCC = 15V
RGATE = 20Ω
Figure 51. IR2130/IR2132 TJ vs. Frequency (IRF820)
Ω, VCC = 15V
RGATE = 33Ω
100
140
480V
120
320V
60
480V
320V
40
Junction Temperature (°C)
Junction Temperature (°C)
80
100
80
160V
60
0V
160V
40
0V
20
1E+2
1E+3
1E+4
1E+5
Frequency (Hz)
Figure 53. IR2130/IR2132 TJ vs. Frequency (IRF840)
Ω, VCC = 15V
RGATE = 15Ω
22
20
1E+2
1E+3
1E+4
1E+5
Frequency (Hz)
Figure 54. IR2130/IR2132 TJ vs. Frequency (IRF450)
Ω, VCC = 15V
RGATE = 10Ω
www.irf.com
120
110
100
90
80
70
60
50
40
30
20
1E+2
480V
320V
160V
0V
1E+3
1E+4
Jun c tio n T em p era ture (°C )
Junction Tem perature (°C )
IR2130/IR2132(J)(S) & (PbF)
1E+5
1 20
1 10
1 00
90
80
70
60
50
40
30
20
1 E+ 2
4 80 V
3 20 V
1 60
0V
1 E+ 3
Frequency (Hz)
480V
320V
160V
0V
1E+3
1E+4
Frequency (Hz)
Figure 57. IR2130J/IR2132J
TJ vs. Frequency (IRGPC40KD2)
Ω, VCC = 15V
RGATE = 15Ω
www.irf.com
1 E+ 5
Figure 56. IR2130J/IR2132J
TJ vs. Frequency (IRGPC30KD2)
Ω, VCC = 15V
RGATE = 20Ω
1E+5
Ju nction Tem p erature (°C )
Junction Tem perature (°C )
Figure 55. IR2130J/IR2132J
TJ vs. Frequency (IRGPC20KD2)
Ω, VCC = 15V
RGATE = 33Ω
120
110
100
90
80
70
60
50
40
30
20
1E+2
1 E+ 4
Frequency (Hz)
120
110
100
90
80
70
60
50
40
30
20
1E+2
480V
320V
160V
0V
1E+3
1E+4
1E+5
Frequency (Hz)
Figure 58. IR2130J/IR2132J
TJ vs. Frequency (IRGPC50KD2)
Ω, VCC = 15V
RGATE = 10Ω
23
IR2130/IR2132(J)(S) & (PbF)
Case outlines
28-Lead PDIP (wide body)
28-Lead SOIC (wide body)
24
01-6011
01-3024 02 (MS-011AB)
01-6013
01-304002
(MS-013AE)
www.irf.com
IR2130/IR2132(J)(S) & (PbF)
Case outline
NOTES
44-Lead PLCC w/o 12 leads
www.irf.com
01-6009 00
01-3004 02(mod.) (MS-018AC)
25
IR2130/IR2132(J)(S) & (PbF)
LEADFREE PART MARKING INFORMATION
Part number
IRxxxxxx
YWW?
Date code
Pin 1
Identifier
?
P
MARKING CODE
Lead Free Released
Non-Lead Free
Released
IR logo
?XXXX
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
ORDER INFORMATION
Basic Part (Non-Lead Free)
28-Lead PDIP IR2130 order IR2130
28-Lead SOIC IR2130S order IR2130S
28-Lead PDIP IR2132 order IR2132
28-Lead SOIC IR2132S order IR2132S
44-Lead PLCC IR2130J order IR2130J
44-Lead PLCC IR2132J order IR2132J
Leadfree Part
28-Lead PDIP IR2130 order IR2130PbF
28-Lead SOIC IR2130S order IR2130SPbF
28-Lead PDIP IR2132 order IR2132PbF
28-Lead SOIC IR2132S order IR2132SPbF
44-Lead PLCC IR2130J order IR2130JPbF
44-Lead PLCC IR2132J order IR2132JPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice. 4/2/2004
26
www.irf.com