PD - 94428 IRF2805S IRF2805L AUTOMOTIVE MOSFET Typical Applications ● ● ● ● HEXFET® Power MOSFET Climate Control ABS Electronic Braking Windshield Wipers D VDSS = 55V Features ● ● ● ● ● Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax RDS(on) = 4.7mΩ G S ID = 135AV Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this product are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D2Pak IRF2805S TO-262 IRF2805L Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS EAS (6 sigma) IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Q Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche EnergyR Single Pulse Avalanche Energy Tested ValueX Avalanche CurrentQ Repetitive Avalanche EnergyW Peak Diode Recovery dv/dt S Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Max. Units 135V 96V 700 200 1.3 ± 20 380 1220 See Fig.12a, 12b, 15, 16 2.0 -55 to + 175 A W W/°C V mJ A mJ V/ns °C 300 (1.6mm from case ) Thermal Resistance Parameter RθJC RθJA Junction-to-Case Junction-to-Ambient(PCB Mounted, steady state)** Typ. Max. Units ––– ––– 0.75 40 °C/W HEXFET(R) is a registered trademark of International Rectifier. www.irf.com 1 06/10/02 IRF2805S/IRF2805L Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage gfs Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 55 ––– ––– 2.0 91 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.06 3.9 ––– ––– ––– ––– ––– ––– 150 38 52 14 120 68 110 LD Internal Drain Inductance ––– 4.5 LS Internal Source Inductance ––– 7.5 Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance U ––– ––– ––– ––– ––– ––– 5110 1190 210 6470 860 1600 V(BR)DSS IDSS IGSS Drain-to-Source Leakage Current Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 4.7 mΩ VGS = 10V, ID = 104A T 4.0 V VDS = 10V, ID = 250µA ––– S VDS = 25V, ID = 104A 20 VDS = 55V, VGS = 0V µA 250 VDS = 44V, VGS = 0V, TJ = 150°C 200 VGS = 20V nA -200 VGS = -20V 230 ID = 104A 57 nC VDS = 44V 78 VGS = 10VT ––– VDD = 28V ––– ID = 104A ns ––– RG = 2.5Ω ––– VGS = 10V T D Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact S ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 44V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 44V Source-Drain Ratings and Characteristics IS I SM Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Q Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time VSD t rr Q rr ton Notes: Q Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). R Starting TJ = 25°C, L = 0.08mH RG = 25Ω, IAS = 104A. (See Figure 12). S ISD ≤ 104A, di/dt ≤ 240A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C T Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 175V showing the A G integral reverse ––– ––– 700 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 104A, VGS = 0VT ––– 80 120 ns TJ = 25°C, IF = 104A ––– 290 430 nC di/dt = 100A/µs T Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) U Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . V Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A. W Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. X This value determined from sample failure population. 100% tested to this value in production. www.irf.com IRF2805S/IRF2805L 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 TOP ID , Drain-to-Source Current (A) ID , Drain-to-Source Current (A) TOP 4.5V 10 100 4.5V 20µs PULSE WIDTH Tj = 25°C 20µs PULSE WIDTH Tj = 175°C 1 10 0.1 1 10 100 0.1 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 Fig 2. Typical Output Characteristics 1000 3.0 A) T J = 25°C I D = 175A 2.5 T J = 175°C VDS = 25V 20µs PULSE WIDTH 10 4.0 5.0 6.0 7.0 8.0 9.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10.0 2.0 (Normalized) 100 RDS(on) , Drain-to-Source On Resistance ID , Drain-to-Source Current 10 VDS , Drain-to-Source Voltage (V) 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 80 TJ , Junction Temperature 100 120 140 160 ( ° C) Fig 4. Normalized On-Resistance Vs. Temperature 3 180 IRF2805S/IRF2805L 10000 Crss Coss = Cgd = Cds + Cgd 6000 Ciss 4000 2000 Coss Crss 0 1 VDS = 44V VDS= 28V ID = 104A VGS , Gate-to-Source Voltage (V) 8000 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ C iss = C gs + C gd , C ds SHORTED 16 12 8 4 0 10 0 100 40 80 120 160 200 240 Q G Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000.0 10000 ID , Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS (on) T J = 175°C 100.0 10.0 T J = 25°C 1.0 VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 1000 100 1msec 10 1 1.8 100µsec Tc = 25°C Tj = 175°C Single Pulse 1 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF2805S/IRF2805L 140 120 I D , Drain Current (A) RD VDS LIMITED BY PACKAGE VGS D.U.T. RG 100 + -VDD 80 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 60 Fig 10a. Switching Time Test Circuit 40 VDS 20 90% 0 25 50 75 100 125 150 175 TC , Case Temperature ( °C) Fig 9. Maximum Drain Current Vs. Case Temperature 10% VGS td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 1 D = 0.50 0.20 0.1 0.10 PDM 0.05 t1 0.02 0.01 0.01 0.00001 t2 SINGLE PULSE (THERMAL RESPONSE) 0.0001 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF2805S/IRF2805L D .U .T RG + - VD D IA S 2V0GS V A 0 .0 1 Ω tp Fig 12a. Unclamped Inductive Test Circuit V (B R )D SS tp EAS , Single Pulse Avalanche Energy (mJ) D R IV E R L VDS 800 1 5V ID 42.5A 73.5A BOTTOM 104A TOP 600 400 200 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( °C) IAS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS -VGS(th) Gate threshold Voltage (V) QGS ID = 250µA 3.0 2.0 1.0 -75 VGS -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF2805S/IRF2805L 10000 Duty Cycle = Single Pulse Avalanche Current (A) 1000 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 0.05 10 0.10 1 0.1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 400 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 104A 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC ∆T/ [1.3·BV·Zth] Iav = 2∆ EAS (AR) = PD (ave)·t av 7 IRF2805S/IRF2805L Peak Diode Recovery dv/dt Test Circuit + D.U.T * S Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + R - - T + Q • dv/dt controlled by RG • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test RG VGS * + - VDD Reverse Polarity of D.U.T for P-Channel Driver Gate Drive P.W. Period D= P.W. Period [VGS=10V ] *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode [VDD] Forward Drop Inductor Curent Ripple ≤ 5% [ ISD ] *** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 17. For N-channel HEXFET® power MOSFETs 8 www.irf.com IRF2805S/IRF2805L D2Pak Package Outline D2Pak Part Marking Information T HIS IS AN IRF530S WITH LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN THE AS S EMBLY LINE "L" INTERNATIONAL RECT IFIER LOGO AS S EMBLY LOT CODE www.irf.com PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L 9 IRF2805S/IRF2805L TO-262 Package Outline TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S E MBLY LINE "C" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE 10 PART NUMBER DAT E CODE YEAR 7 = 1997 WEE K 19 LINE C www.irf.com IRF2805S/IRF2805L D2Pak Tape & Reel Information TR R 1 .6 0 (.0 6 3 ) 1 .5 0 (.0 5 9 ) 4 .1 0 (.1 6 1 ) 3 .9 0 (.1 5 3 ) F E E D D IR E C TIO N 1 .8 5 (.0 7 3 ) 1 .6 5 (.0 6 5 ) 1 .6 0 (.0 6 3 ) 1 .5 0 (.0 5 9 ) 1 1 .6 0 (.4 5 7 ) 1 1 .4 0 (.4 4 9 ) 0.3 6 8 (.0 1 4 5) 0.3 4 2 (.0 1 3 5) 15 .4 2 (.6 0 9 ) 15 .2 2 (.6 0 1 ) 24 .3 0 (.9 5 7) 23 .9 0 (.9 4 1) TR L 1 0 .9 0 (.4 2 9 ) 1 0 .7 0 (.4 2 1 ) 1 .7 5 (.0 6 9 ) 1 .2 5 (.0 4 9 ) 4 .7 2 (.1 3 6 ) 4 .5 2 (.1 7 8 ) 1 6 .1 0 (.6 3 4 ) 1 5 .9 0 (.6 2 6 ) F EE D D IR E C T IO N 1 3.50 (.53 2 ) 1 2.80 (.50 4 ) 2 7.4 0 (1.0 79 ) 2 3.9 0 (.94 1) 4 33 0 .0 0 (14 .1 7 3) M A X. NO TES : 1. C O M F O RM S T O E IA -4 1 8. 2. C O NT R O L LING DIM E NS IO N : M IL LIM E T E R. 3. D IM E N S IO N M E A S U R E D @ H U B . 4. IN CL UD E S F L A NG E DIS T O RT IO N @ O UT E R E D G E. 60 .0 0 (2 .3 6 2) MIN . 3 0.40 (1 .1 97 ) M AX. 26 .40 (1 .0 3 9 ) 24 .40 (.96 1 ) 3 4 Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/02 www.irf.com 11