IRF IRF2805S

PD - 94428
IRF2805S
IRF2805L
AUTOMOTIVE MOSFET
Typical Applications
●
●
●
●
HEXFET® Power MOSFET
Climate Control
ABS
Electronic Braking
Windshield Wipers
D
VDSS = 55V
Features
●
●
●
●
●
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
RDS(on) = 4.7mΩ
G
S
ID = 135AV
Description
Specifically designed for Automotive applications, this
HEXFET® Power MOSFET utilizes the latest processing
techniques to achieve extremely low on-resistance per
silicon area. Additional features of this product are a 175°C
junction operating temperature, fast switching speed and
improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable
device for use in Automotive applications and a wide variety
of other applications.
D2Pak
IRF2805S
TO-262
IRF2805L
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
EAS (6 sigma)
IAR
EAR
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current Q
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche EnergyR
Single Pulse Avalanche Energy Tested ValueX
Avalanche CurrentQ
Repetitive Avalanche EnergyW
Peak Diode Recovery dv/dt S
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
Units
135V
96V
700
200
1.3
± 20
380
1220
See Fig.12a, 12b, 15, 16
2.0
-55 to + 175
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
Thermal Resistance
Parameter
RθJC
RθJA
Junction-to-Case
Junction-to-Ambient(PCB Mounted, steady state)**
Typ.
Max.
Units
–––
–––
0.75
40
°C/W
HEXFET(R) is a registered trademark of International Rectifier.
www.irf.com
1
06/10/02
IRF2805S/IRF2805L
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
gfs
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
55
–––
–––
2.0
91
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.06
3.9
–––
–––
–––
–––
–––
–––
150
38
52
14
120
68
110
LD
Internal Drain Inductance
–––
4.5
LS
Internal Source Inductance
–––
7.5
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance U
–––
–––
–––
–––
–––
–––
5110
1190
210
6470
860
1600
V(BR)DSS
IDSS
IGSS
Drain-to-Source Leakage Current
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
4.7
mΩ VGS = 10V, ID = 104A T
4.0
V
VDS = 10V, ID = 250µA
–––
S
VDS = 25V, ID = 104A
20
VDS = 55V, VGS = 0V
µA
250
VDS = 44V, VGS = 0V, TJ = 150°C
200
VGS = 20V
nA
-200
VGS = -20V
230
ID = 104A
57
nC VDS = 44V
78
VGS = 10VT
–––
VDD = 28V
–––
ID = 104A
ns
–––
RG = 2.5Ω
–––
VGS = 10V T
D
Between lead,
–––
6mm (0.25in.)
nH
G
from package
–––
and center of die contact
S
–––
VGS = 0V
–––
pF
VDS = 25V
–––
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 44V
Source-Drain Ratings and Characteristics
IS
I SM
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) Q
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
VSD
t rr
Q rr
ton
Notes:
Q Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
R Starting TJ = 25°C, L = 0.08mH
RG = 25Ω, IAS = 104A. (See Figure 12).
S ISD ≤ 104A, di/dt ≤ 240A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
T Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 175V
showing the
A
G
integral reverse
––– ––– 700
S
p-n junction diode.
––– ––– 1.3
V
TJ = 25°C, IS = 104A, VGS = 0VT
––– 80 120
ns
TJ = 25°C, IF = 104A
––– 290 430
nC di/dt = 100A/µs T
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
U Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
V Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
W Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
X This value determined from sample failure population. 100%
tested to this value in production.
www.irf.com
IRF2805S/IRF2805L
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
100
TOP
ID , Drain-to-Source Current (A)
ID , Drain-to-Source Current (A)
TOP
4.5V
10
100
4.5V
20µs PULSE WIDTH
Tj = 25°C
20µs PULSE WIDTH
Tj = 175°C
1
10
0.1
1
10
100
0.1
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
Fig 2. Typical Output Characteristics
1000
3.0
A)
T J = 25°C
I D = 175A
2.5
T J = 175°C
VDS = 25V
20µs PULSE WIDTH
10
4.0
5.0
6.0
7.0
8.0
9.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10.0
2.0
(Normalized)
100
RDS(on) , Drain-to-Source On Resistance
ID , Drain-to-Source Current
10
VDS , Drain-to-Source Voltage (V)
1.5
1.0
0.5
V GS = 10V
0.0
-60
-40
-20
0
20
40
60
80
TJ , Junction Temperature
100 120 140 160
( ° C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
180
IRF2805S/IRF2805L
10000
Crss
Coss
= Cgd
= Cds + Cgd
6000
Ciss
4000
2000
Coss
Crss
0
1
VDS = 44V
VDS= 28V
ID = 104A
VGS , Gate-to-Source Voltage (V)
8000
C, Capacitance (pF)
20
VGS = 0V,
f = 1 MHZ
C iss
= C gs + C gd , C ds
SHORTED
16
12
8
4
0
10
0
100
40
80
120
160
200
240
Q G Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000.0
10000
ID , Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY RDS (on)
T J = 175°C
100.0
10.0
T J = 25°C
1.0
VGS = 0V
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
1000
100
1msec
10
1
1.8
100µsec
Tc = 25°C
Tj = 175°C
Single Pulse
1
10msec
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF2805S/IRF2805L
140
120
I D , Drain Current (A)
RD
VDS
LIMITED BY PACKAGE
VGS
D.U.T.
RG
100
+
-VDD
80
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
60
Fig 10a. Switching Time Test Circuit
40
VDS
20
90%
0
25
50
75
100
125
150
175
TC , Case Temperature ( °C)
Fig 9. Maximum Drain Current Vs.
Case Temperature
10%
VGS
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
PDM
0.05
t1
0.02
0.01
0.01
0.00001
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF2805S/IRF2805L
D .U .T
RG
+
- VD D
IA S
2V0GS
V
A
0 .0 1 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V (B R )D SS
tp
EAS , Single Pulse Avalanche Energy (mJ)
D R IV E R
L
VDS
800
1 5V
ID
42.5A
73.5A
BOTTOM 104A
TOP
600
400
200
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( °C)
IAS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGD
4.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
-VGS(th) Gate threshold Voltage (V)
QGS
ID = 250µA
3.0
2.0
1.0
-75
VGS
-50
-25
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
IRF2805S/IRF2805L
10000
Duty Cycle = Single Pulse
Avalanche Current (A)
1000
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
0.05
10
0.10
1
0.1
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
400
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 104A
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
T jmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = ∆T/ ZthJC
∆T/ [1.3·BV·Zth]
Iav = 2∆
EAS (AR) = PD (ave)·t av
7
IRF2805S/IRF2805L
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T *
S
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
R
-
-
T
+
Q
• dv/dt controlled by RG
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
RG
VGS
*
+
-
VDD
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive
P.W.
Period
D=
P.W.
Period
[VGS=10V ] ***
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
[VDD]
Forward Drop
Inductor Curent
Ripple ≤ 5%
[ ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
Fig 17. For N-channel HEXFET® power MOSFETs
8
www.irf.com
IRF2805S/IRF2805L
D2Pak Package Outline
D2Pak Part Marking Information
T HIS IS AN IRF530S WITH
LOT CODE 8024
AS S EMBLED ON WW 02, 2000
IN THE AS S EMBLY LINE "L"
INTERNATIONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
www.irf.com
PART NUMBER
F530S
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
9
IRF2805S/IRF2805L
TO-262 Package Outline
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
AS S EMBLED ON WW 19, 1997
IN T HE AS S E MBLY LINE "C"
INT ERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
10
PART NUMBER
DAT E CODE
YEAR 7 = 1997
WEE K 19
LINE C
www.irf.com
IRF2805S/IRF2805L
D2Pak Tape & Reel Information
TR R
1 .6 0 (.0 6 3 )
1 .5 0 (.0 5 9 )
4 .1 0 (.1 6 1 )
3 .9 0 (.1 5 3 )
F E E D D IR E C TIO N
1 .8 5 (.0 7 3 )
1 .6 5 (.0 6 5 )
1 .6 0 (.0 6 3 )
1 .5 0 (.0 5 9 )
1 1 .6 0 (.4 5 7 )
1 1 .4 0 (.4 4 9 )
0.3 6 8 (.0 1 4 5)
0.3 4 2 (.0 1 3 5)
15 .4 2 (.6 0 9 )
15 .2 2 (.6 0 1 )
24 .3 0 (.9 5 7)
23 .9 0 (.9 4 1)
TR L
1 0 .9 0 (.4 2 9 )
1 0 .7 0 (.4 2 1 )
1 .7 5 (.0 6 9 )
1 .2 5 (.0 4 9 )
4 .7 2 (.1 3 6 )
4 .5 2 (.1 7 8 )
1 6 .1 0 (.6 3 4 )
1 5 .9 0 (.6 2 6 )
F EE D D IR E C T IO N
1 3.50 (.53 2 )
1 2.80 (.50 4 )
2 7.4 0 (1.0 79 )
2 3.9 0 (.94 1)
4
33 0 .0 0
(14 .1 7 3)
M A X.
NO TES :
1. C O M F O RM S T O E IA -4 1 8.
2. C O NT R O L LING DIM E NS IO N : M IL LIM E T E R.
3. D IM E N S IO N M E A S U R E D @ H U B .
4. IN CL UD E S F L A NG E DIS T O RT IO N @ O UT E R E D G E.
60 .0 0 (2 .3 6 2)
MIN .
3 0.40 (1 .1 97 )
M AX.
26 .40 (1 .0 3 9 )
24 .40 (.96 1 )
3
4
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 06/02
www.irf.com
11