PD -94424A IRF3007 AUTOMOTIVE MOSFET Typical Applications ● HEXFET® Power MOSFET 42 Volts Automotive Electrical Systems D Features ● ● ● ● ● Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Automotive [Q101] Qualified VDSS = 75V RDS(on) = 0.0126Ω G ID = 75A S Description Specifically designed for Automotive applications, this design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. TO-220AB Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS EAS (6 sigma) IAR EAR TJ TSTG Max. Continuous Drain Current, VGS @ 10V (Silicon limited) Continuous Drain Current, VGS @ 10V (See Fig.9) Continuous Drain Current, VGS @ 10V (Package limited) Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Units 80 56 75 320 200 1.3 ± 20 280 946 See Fig.12a, 12b, 15, 16 A W W/°C V mJ A mJ -55 to + 175 °C 300 (1.6mm from case ) 1.1 (10) N•m (lbf•in) Thermal Resistance Parameter RθJC RθCS RθJA www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. Max. Units ––– 0.50 ––– 0.74 ––– 62 °C/W 1 9/16/02 IRF3007 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 75 ––– ––– 2.0 180 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.084 10.5 ––– ––– ––– ––– ––– ––– 89 21 30 12 80 55 49 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– 4.5 LS Internal Source Inductance ––– 7.5 Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 3270 520 78 3500 340 640 V(BR)DSS ∆V(BR)DSS/∆TJ IGSS Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 12.6 mΩ VGS = 10V, ID = 48A 4.0 V VDS = 10V, ID = 250µA ––– S VDS = 25V, ID = 48A 20 VDS = 75V, VGS = 0V µA 250 VDS = 60V, VGS = 0V, TJ = 150°C 200 VGS = 20V nA -200 VGS = -20V 130 ID = 48A 32 nC VDS = 60V 45 VGS = 10V ––– VDD = 38V ––– ID = 48A ns ––– RG = 4.6Ω ––– VGS = 10V D Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact S ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 60V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 60V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 80 showing the A G integral reverse ––– ––– 320 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 48A, VGS = 0V ––– 85 130 ns TJ = 25°C, IF = 48A, VDD = 38V ––– 280 420 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by Coss eff. is a fixed capacitance that gives the same charging time max. junction temperature. (See fig. 11). as Coss while VDS is rising from 0 to 80% VDSS . Starting TJ = 25°C, L = 0.24mH Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive R G = 25Ω, IAS = 48A, VGS=10V (See Figure 12). avalanche performance. ISD ≤ 48A, di/dt ≤ 330A/µs, VDD ≤ V(BR)DSS, This value determined from sample failure population. 100% TJ ≤ 175°C tested to this value in production. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF3007 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 100 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 4.5V 10 10 1 1 1 4.5V 20µs PULSE WIDTH Tj = 175°C 20µs PULSE WIDTH Tj = 25°C 0.1 100 0.1 100 1 VDS, Drain-to-Source Voltage (V) 100 Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 100 100 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current ( A) 10 VDS, Drain-to-Source Voltage (V) T J = 175°C 10 T J = 25°C VDS = 25V 20µs PULSE WIDTH 1 T J = 175°C 80 60 T J = 25°C 40 20 VDS = 25V 20µs PULSE WIDTH 0 4.0 5.0 6.0 7.0 8.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 9.0 0 40 80 120 160 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRF3007 6000 Crss Coss 4000 = Cgd = Cds + Cgd Ciss 3000 2000 1000 16 12 8 4 Coss Crss 0 1 VDS= 60V VDS= 38V VDS= 15V ID= 48A VGS , Gate-to-Source Voltage (V) 5000 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ C iss = C gs + C gd , C ds SHORTED 0 10 0 100 40 80 120 160 Q G Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 10000 1000.0 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) 100.0 TJ = 175°C 10.0 1.0 1000 100 100µsec 10 1msec 1 T J = 25°C VGS = 0V 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 0.1 1.8 10msec Tc = 25°C Tj = 175°C Single Pulse 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF3007 80 3.0 I D = 80A LIMITED BY PACKAGE 2.5 40 20 0 25 50 75 100 125 TC , Case Temperature 150 175 2.0 (Normalized) RDS(on) , Drain-to-Source On Resistance ID , Drain Current (A) 60 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 ( °C) -20 0 20 40 60 80 100 120 140 160 180 ( °C) TJ, Junction Temperature Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature 1 (Z thJC) D = 0.50 Thermal Response 0.20 0.1 0.10 P DM 0.05 0.02 t1 SINGLE PULSE (THERMAL RESPONSE) t2 0.01 Notes: 1. Duty factor D = 2. Peak T 0.01 0.00001 0.0001 0.001 t1/ t 2 J = P DM x Z thJC +T C 0.01 0.1 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF3007 600 ID 15V TOP 20A 34A 48A 500 + V - DD IAS 20V VGS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) D.U.T RG BOTTOM DRIVER L VDS 400 300 200 100 0 25 50 75 100 125 150 175 ( °C) Starting T , JJunction Temperature I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS -VGS(th) Gate threshold Voltage (V) QGS ID = 250µA 3.0 2.0 1.0 -75 VGS -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF3007 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 100 0.01 0.05 10 0.10 1 0.1 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 300 T OP Single Pulse BOTT OM 50% Duty Cycle ID = 48A 200 100 0 25 50 75 100 125 150 Starting TJ , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRF3007 D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF3007 TO-220AB Package Outline Dimensions are shown in millimeters (inches) 10.54 (.415) 10.29 (.405) 2.87 (.113) 2.62 (.103) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) 1.15 (.045) MIN 1 2 LEAD ASSIGNMENTS 1 - GATE 2 - DRAIN 3 - SOURCE 4 - DRAIN 3 14.09 (.555) 13.47 (.530) 4.06 (.160) 3.55 (.140) 3X 1.40 (.055) 3X 1.15 (.045) 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN T HE AS S EMBLY LINE "C" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C TO-220AB package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 9/02 www.irf.com 9