IRF IRFP1405

PD - 95810
AUTOMOTIVE MOSFET
IRFP1405
HEXFET® Power MOSFET
Features
●
●
●
●
●
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
D
VDSS = 55V
RDS(on) = 5.3mΩ
G
ID = 95A
S
Description
Specifically designed for Automotive applications, this HEXFET®
Power MOSFET utilizes the latest processing techniques to
achieve extremely low on-resistance per silicon area. Additional
features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche
rating . These features combine to make this design an extremely
efficient and reliable device for use in Automotive applications and
a wide variety of other applications.
S
D
G
TO-247AC
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
ID @ TC = 25°C
IDM
PD @TC = 25°C
Parameter
Max.
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V (Package Limited)
Pulsed Drain Current
160
110
95
640
310
c
Power Dissipation
VGS
EAS (Thermally limited)
EAS (Tested )
IAR
EAR
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
TJ
TSTG
Operating Junction and
Storage Temperature Range
d
c
h
g
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
Parameter
Junction-to-Case *
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient *
A
W
2.0
± 20
530
1060
See Fig.12a, 12b, 15, 16
W/°C
V
mJ
A
mJ
-55 to + 175
°C
300 (1.6mm from case )
10 lbf in (1.1N m)
y
Thermal Resistance
RθJC
Rθcs
RθJA
Units
y
Typ.
Max.
Units
–––
0.24
–––
0.49
–––
40
°C/W
HEXFET® is a registered trademark of International Rectifier.
* Rθ is measured at TJ approximately 90°C
www.irf.com
1
12/22/03
IRFP1405
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)DSS
Drain-to-Source Breakdown Voltage
Min. Typ. Max. Units
55
–––
–––
∆V(BR)DSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.058
–––
RDS(on)
Static Drain-to-Source On-Resistance
–––
4.2
5.3
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
gfs
IDSS
Forward Transconductance
V
Conditions
VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 95A
e
V
VDS = VGS, ID = 250µA
VDS = 25V, ID = 95A
77
–––
–––
S
–––
–––
20
µA
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
200
Gate-to-Source Reverse Leakage
–––
–––
-200
Qg
Total Gate Charge
–––
120
180
Qgs
Gate-to-Source Charge
–––
30
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
53
–––
VGS = 10V
td(on)
Turn-On Delay Time
–––
12
–––
VDD = 28V
tr
Rise Time
–––
160
–––
td(off)
Turn-Off Delay Time
–––
140
–––
tf
Fall Time
–––
150
–––
VGS = 10V
LD
Internal Drain Inductance
–––
5.0
–––
Between lead,
LS
Internal Source Inductance
–––
13
–––
6mm (0.25in.)
from package
and center of die contact
VGS = 0V
IGSS
Drain-to-Source Leakage Current
VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
ID = 95A
nC
VDS = 44V
e
ID = 95A
ns
nH
RG = 2.6 Ω
e
D
G
S
Ciss
Input Capacitance
–––
5600
–––
Coss
Output Capacitance
–––
1310
–––
Crss
Reverse Transfer Capacitance
–––
350
–––
Coss
Output Capacitance
–––
6550
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Coss
Output Capacitance
–––
920
–––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
1750
–––
VGS = 0V, VDS = 0V to 44V
VDS = 25V
pF
ƒ = 1.0MHz
f
Source-Drain Ratings and Characteristics
Parameter
Min. Typ. Max. Units
IS
Continuous Source Current
–––
–––
95
ISM
(Body Diode)
Pulsed Source Current
–––
–––
640
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
V
trr
Reverse Recovery Time
–––
70
110
ns
Qrr
Reverse Recovery Charge
–––
170
260
nC
ton
Forward Turn-On Time
c
Conditions
MOSFET symbol
A
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 95A, VGS = 0V
e
TJ = 25°C, IF = 95A, VDD = 28V
di/dt = 100A/µs
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
„ Coss eff. is a fixed capacitance that gives the same charging time
max. junction temperature. (See fig. 11).
as Coss while VDS is rising from 0 to 80% VDSS .
‚ Limited by TJmax, starting TJ = 25°C, L = 0.12mH … Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
R G = 25Ω, IAS = 95A, VGS =10V. Part not
avalanche performance.
recommended for use above this value.
† This value determined from sample failure population. 100%
ƒ Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
tested to this value in production.
 Repetitive rating; pulse width limited by
2
www.irf.com
IRFP1405
1000
1000
100
BOTTOM
TOP
4.5V
10
≤ 60µs PULSE WIDTH
Tj = 25°C
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
BOTTOM
100
4.5V
1
≤ 60µs PULSE WIDTH
Tj = 175°C
10
0.1
1
10
100
0.1
0
VDS, Drain-to-Source Voltage (V)
11
10
10
100
100
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
140
1000
T J = 25°C
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current (Α)
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
T J = 175°C
100
VDS = 25V
≤ 60µs PULSE WIDTH
T J = 25°C
120
100
80
T J = 175°C
60
40
20
VDS = 10V
380µs PULSE WIDTH
10
4.0
5.0
6.0
7.0
8.0
9.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10.0
0
0
20
40
60
80
100
ID, Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
Vs. Drain Current
3
IRFP1405
10000
ID= 95A
VGS, Gate-to-Source Voltage (V)
8000
C, Capacitance (pF)
20
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
C oss = C ds + C gd
Ciss
6000
4000
Coss
2000
VDS= 44V
VDS= 28V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
Crss
0
0
1
10
0
100
40
80
120
160
200
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
10000
1000.0
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
T J = 175°C
100.0
10.0
T J = 25°C
1.0
1000
100
100µsec
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
10msec
DC
0.1
0.1
0.2
0.6
1.0
1.4
1.8
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
1msec
2.2
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFP1405
200
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.5
ID , Drain Current (A)
LIMITED BY PACKAGE
150
100
50
0
25
50
75
100
125
150
ID = 95A
VGS = 10V
2.0
1.5
1.0
0.5
175
-60 -40 -20
T C , Case Temperature (°C)
0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.02
0.01
0.01
τJ
R1
R1
τJ
τ1
R2
R2
τC
τ2
τ1
τ2
τ
Ri (°C/W) τi (sec)
0.2529 0.00080
0.2368 0.014283
Ci= τi/Ri
Ci i/Ri
0.001
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFP1405
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
VGS
tp
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS, Single Pulse Avalanche Energy (mJ)
2000
15V
ID
16A
20A
BOTTOM 95A
TOP
1500
1000
500
0
25
50
75
100
125
150
175
Starting T J, Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGD
4.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
L
VCC
VGS(th) Gate threshold Voltage (V)
QGS
3.5
3.0
ID = 250µA
2.5
2.0
DUT
0
1.5
1K
-75 -50 -25
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
IRFP1405
Avalanche Current (A)
10000
Duty Cycle = Single Pulse
1000
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
100
0.05
0.10
10
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
600
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 95A
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. I av = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRFP1405
D.U.T
Driver Gate Drive
+
ƒ
+
‚
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
-
Period
P.W.
VDD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
VGS
RG
RD
D.U.T.
+
-VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRFP1405
TO-247AC Package Outline
Dimensions are shown in millimeters
'5* 1†
TO-247AC Part Marking Information
Notes: T his part marking information applies to devices produced before 02/26/2001 or for
parts manufactured in GB.
EXAMPLE: THIS IS AN IRFPE30
WITH ASS EMBLY
LOT CODE 3A1Q
INTERNAT IONAL
RECTIFIER
LOGO
PART NUMBER
IRF PE30
3A1Q
9302
DATE CODE
(YYWW)
YY = YEAR
WW = WEEK
AS S EMBLY
LOT CODE
Notes : T his part marking information applies to devices produced after 02/26/2001
EXAMPLE: THIS IS AN IRFPE30
WITH ASS EMBLY
LOT CODE 5657
AS SEMBLED ON WW 35, 2000
IN T HE AS S EMBLY LINE "H"
INTERNATIONAL
RECTIFIER
LOGO
AS SEMB LY
LOT CODE
PART NUMBER
IRFPE 30
56
035H
57
DATE CODE
YEAR 0 = 2000
WEEK 35
LINE H
TO-247AC packages are not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.12/03
www.irf.com
9