PD-95438 IRF1503PbF AUTOMOTIVE MOSFET Typical Applications O O O HEXFET® Power MOSFET 14V Automotive Electrical Systems 14V Electronic Power Steering Lead-Free D VDSS = 30V Features O O O O O Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax RDS(on) = 3.3mΩ G ID = 75A S Description Specifically designed for Automotive applications, this design of HEXFET® Power MOSFETs utilizes the lastest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this HEXFET power MOSFET are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. TO-220AB Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS EAS (tested) IAR EAR TJ TSTG Max. Continuous Drain Current, VGS @ 10V (Silicon limited) Continuous Drain Current, VGS @ 10V (See Fig.9) Continuous Drain Current, VGS @ 10V (Package limited) Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Units 240 170 75 960 330 2.2 ± 20 510 980 See Fig.12a, 12b, 15, 16 A W W/°C V mJ A mJ -55 to + 175 °C 300 (1.6mm from case ) Thermal Resistance Parameter RθJC RθCS RθJA www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. Max. Units ––– 0.50 ––– 0.45 ––– 62 °C/W 1 06/22/04 IRF1503PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 30 ––– ––– 2.0 75 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.028 2.6 ––– ––– ––– ––– ––– ––– 130 36 41 17 130 59 48 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– 5.0 LS Internal Source Inductance ––– 13 Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 5730 2250 290 7580 2290 3420 V(BR)DSS ∆V(BR)DSS/∆TJ IGSS Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 3.3 mΩ VGS = 10V, ID = 140A 4.0 V VDS = 10V, ID = 250µA ––– S VDS = 25V, ID = 140A 20 VDS = 30V, VGS = 0V µA 250 VDS = 30V, VGS = 0V, TJ = 125°C 200 VGS = 20V nA -200 VGS = -20V 200 ID = 140A 54 nC VDS = 24V 62 VGS = 10V ––– VDD = 15V ––– ID = 140A ns ––– RG = 2.5Ω ––– VGS = 10V D Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact S ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 24V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 24V Source-Drain Ratings and Characteristics IS ISM Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time VSD trr Qrr ton Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Starting TJ = 25°C, L = 0.049mH R G = 25Ω, IAS = 140A. (See Figure 12). Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 240 showing the A G integral reverse ––– ––– 960 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 140A, VGS = 0V ––– 71 110 ns TJ = 25°C, IF = 140A, VDD = 15V ––– 110 170 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production. www.irf.com IRF1503PbF 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 100 TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 4.5V 10 100 4.5V 20µs PULSE WIDTH Tj = 25°C 1 20µs PULSE WIDTH Tj = 175°C 10 0.1 1 10 100 0.1 1 VDS, Drain-to-Source Voltage (V) 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 200 1000 Gfs, Forward Transconductance (S) T J = 25°C ID, Drain-to-Source Current (Α) 10 T J = 175°C 100 VDS = 25V 20µs PULSE WIDTH 10 T J = 175°C 160 120 TJ = 25°C 80 40 VDS = 25V 20µs PULSE WIDTH 0 4.0 5.0 6.0 7.0 8.0 9.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10.0 0 40 80 120 160 200 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRF1503PbF 10000 Crss Coss ID= 140A VGS , Gate-to-Source Voltage (V) 8000 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ C iss = C gs + C gd , C ds SHORTED = Cgd = Cds + Cgd Ciss 6000 4000 Coss 2000 Crss 16 12 8 4 0 0 1 VDS= 24V 10 0 100 40 80 120 160 200 Q G Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000.0 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) 100.0 T J = 175°C 10.0 1.0 T J = 25°C VGS = 0V 0.1 0.0 0.4 0.8 1.2 1.6 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 1000 100µsec 100 1msec 10 10msec Tc = 25°C Tj = 175°C Single Pulse 1 2.0 1 10 100 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF1503PbF 2.0 240 I D = 240A LIMITED BY PACKAGE 160 120 80 40 0 25 50 75 100 125 TC , Case Temperature 150 1.5 (Normalized) RDS(on) , Drain-to-Source On Resistance ID , Drain Current (A) 200 1.0 0.5 V GS = 10V 0.0 -60 175 -40 -20 0 20 40 60 80 100 120 140 160 180 ( °C) TJ, Junction Temperature ( °C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature (Z thJC) 1 D = 0.50 0.1 0.20 Thermal Response 0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) P DM 0.01 t1 t2 Notes: 1. Duty factor D = 2. Peak T 0.001 0.00001 0.0001 0.001 t1/ t 2 J = P DM x Z thJC +T C 0.01 0.1 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF1503PbF 1000 ID 15V TOP + V - DD IAS 20V VGS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) D.U.T RG 800 DRIVER L VDS 59A 100A 140A BOTTOM 600 400 200 0 25 50 75 100 125 Starting T , JJunction Temperature 150 175 ( °C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) QGS 3.0 ID = 250µA 2.0 1.0 VGS -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF1503PbF 10000 Avalanche Current (A) Duty Cycle = Single Pulse 1000 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 100 0.05 0.10 10 1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 600 TOP Single Pulse BOTTOM 50% Duty Cycle ID = 140A 500 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed T jmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·t av 7 IRF1503PbF D.U.T Driver Gate Drive + - • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs VDS VGS RG RD D.U.T. + -V DD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRF1503PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 3 1234- 14.09 (.555) 13.47 (.530) 1.40 (.055) 1.15 (.045) 2 - DRAIN GATE 3 - SOURCE DRAIN SOURCE 4 - DRAIN DRAIN IGBTs, CoPACK 1234- GATE COLLECTOR EMITTER COLLECTOR 4.06 (.160) 3.55 (.140) 3X 3X LEAD ASSIGNMENTS HEXFET 1 - GATE 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMP L E : T H IS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE P AR T NU MB E R DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C TO-220AB package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/04 www.irf.com 9