PD - 95873 IRFP2907Z AUTOMOTIVE MOSFET HEXFET® Power MOSFET Features l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax D VDSS = 75V RDS(on) = 4.5mΩ G Description ID = 90A S Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. TO-247AC Absolute Maximum Ratings ID @ TC = 25°C ID @ TC = 100°C Parameter Max. Units Continuous Drain Current, VGS @ 10V (Silicon Limited) 170 A Continuous Drain Current, VGS @ 10V (See Fig. 9) 120 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited) 90 IDM Pulsed Drain Current 680 PD @TC = 25°C Maximum Power Dissipation 310 W Linear Derating Factor 2.0 ± 20 W/°C V 520 mJ c VGS EAS Gate-to-Source Voltage EAS (tested) Single Pulse Avalanche Energy Tested Value Single Pulse Avalanche Energy (Thermally Limited) c IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range i d h Parameter RθCS Case-to-Sink, Flat, Greased Surface RθJA Junction-to-Ambient j 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Thermal Resistance j A °C -55 to + 175 Mounting torque, 6-32 or M3 screw Junction-to-Case See Fig.12a,12b,15,16 mJ Soldering Temperature, for 10 seconds RθJC 690 j Typ. Max. Units ––– 0.49 °C/W 0.24 ––– ––– 40 HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 06/17/04 IRFP2907Z Static @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆ΒVDSS/∆TJ RDS(on) VGS(th) Min. Typ. Max. Units Qg Qgs Qgd td(on) tr td(off) tf LD Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance 75 ––– ––– 2.0 180 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.069 3.5 ––– ––– ––– ––– ––– ––– 180 46 65 19 140 97 100 5.0 ––– ––– 4.5 4.0 ––– 20 250 200 -200 270 ––– ––– ––– ––– ––– ––– ––– LS Internal Source Inductance ––– 13 ––– Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 7500 970 510 3640 650 1020 ––– ––– ––– ––– ––– ––– gfs IDSS IGSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current f f f 6mm (0.25in.) from package pF Diode Characteristics Parameter Continuous Source Current ––– ––– 90 ISM (Body Diode) Pulsed Source Current ––– ––– 680 VSD trr Qrr ton (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time ––– ––– ––– ––– 41 59 1.3 61 89 Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L=0.13mH, RG = 25Ω, IAS = 90A, VGS =10V. Part not recommended for use above this value. ISD ≤ 90A, di/dt ≤ 340A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 1.0ms; duty cycle ≤ 2%. 2 G S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 60V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 60V Min. Typ. Max. Units IS c Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 90A V VDS = VGS, ID = 250µA S VDS = 25V, ID = 90A µA VDS = 75V, VGS = 0V VDS = 75V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V ID = 90A nC VDS = 60V VGS = 10V ns VDD = 38V ID = 90A RG = 2.5Ω VGS = 10V D nH Between lead, Conditions MOSFET symbol A V ns nC D showing the integral reverse G p-n junction diode. TJ = 25°C, IS = 90A, VGS = 0V TJ = 25°C, IF = 90A, VDD = 38V di/dt = 100A/µs f f S Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production. Rθ is measured at TJ of approximately 90°C. www.irf.com IRFP2907Z 1000 10000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 1000 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 100 4.5V 10 4.5V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 175°C Tj = 25°C 1 0.1 1 10 10 0.1 100 Fig 1. Typical Output Characteristics 10 100 Fig 2. Typical Output Characteristics 1000 200 Gfs, Forward Transconductance (S) ID, Drain-to-Source Current (Α) 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) T J = 175°C 100 10 T J = 25°C 1 VDS = 25V ≤60µs PULSE WIDTH 0.1 T J = 25°C 150 T J = 175°C 100 50 V DS = 10V 380µs PULSE WIDTH 0 2 4 6 8 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 0 25 50 75 100 125 150 ID,Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance vs. Drain Current 3 IRFP2907Z 100000 12.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd ID= 90A 10000 Ciss Coss Crss 1000 VDS= 60V VDS= 38V 10.0 VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) C oss = C ds + C gd VDS= 15V 8.0 6.0 4.0 2.0 100 0.0 1 10 100 0 VDS, Drain-to-Source Voltage (V) 150 200 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 1000 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 100 QG Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 1000 T J = 175°C 100 TJ = 25°C 10 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100µsec 10 1msec 1 1 10msec Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.0 0.5 1.0 1.5 2.0 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 50 2.5 1 10 100 1000 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFP2907Z 175 ID, Drain Current (A) 150 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.5 Limited By Package 125 100 75 50 25 0 ID = 90A VGS = 10V 2.0 1.5 1.0 0.5 25 50 75 100 125 150 -60 -40 -20 0 175 T C , Case Temperature (°C) 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 0.001 τJ SINGLE PULSE ( THERMAL RESPONSE ) R1 R1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τ3 τ2 Ci= τi/Ri Ci i/Ri τC τ τ3 Ri (°C/W) 0.1224 τi (sec) 0.000360 0.1238 0.001463 0.2433 0.021388 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFP2907Z DRIVER L VDS D.U.T RG VGS 20V + V - DD IAS tp A 0.01Ω Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS EAS , Single Pulse Avalanche Energy (mJ) 2500 15V ID 16A 25A BOTTOM 90A TOP 2000 1500 1000 500 tp 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGS QGD 4.0 Charge Fig 13a. Basic Gate Charge Waveform L DUT 0 1K Fig 13b. Gate Charge Test Circuit 6 VCC VGS(th) Gate threshold Voltage (V) VG 3.5 3.0 2.5 ID = 250µA 2.0 1.5 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) Fig 14. Threshold Voltage vs. Temperature www.irf.com IRFP2907Z Avalanche Current (A) 1000 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 100 0.01 0.05 0.10 10 1 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 600 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 90A 500 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy vs. Temperature www.irf.com 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asT jmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFP2907Z D.U.T Driver Gate Drive + - P.W. + D.U.T. ISD Waveform Reverse Recovery Current + V DD • dv/dt controlled by RG • Driver same type as D.U.T. • I SD controlled by Duty Factor "D" • D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS V GS RG RD D.U.T. + -V DD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRFP2907Z TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information 1RWHV7KLVSDUWPDUNLQJLQIRUPDWLRQDSSOLHVWRGHYLFHVSURGXFHGEHIRUHRUIRU SDUWVPDQXIDFWXUHGLQ*% (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'($4 ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( $4 '$7(&2'( <<:: << <($5 :: :((. $66(0%/< /27&2'( 1RWHV7KLVSDUWPDUNLQJLQIRUPDWLRQDSSOLHVWRGHYLFHVSURGXFHGDIWHU (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ Note: "P" in assembly line position indicates "Lead-Free" ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/04 www.irf.com 9