IRF IRFR24N15DPBF

PD - 95370A
SMPS MOSFET
Applications
l High frequency DC-DC converters
l Lead-Free
IRFR24N15DPbF
IRFU24N15DPbF
HEXFET® Power MOSFET
VDSS
150V
RDS(on) max
ID
95mΩ
24A
Benefits
l
l
l
Low Gate-to-Drain Charge to Reduce
Switching Losses
Fully Characterized Capacitance Including
Effective COSS to Simplify Design, (See
App. Note AN1001)
Fully Characterized Avalanche Voltage
and Current
D-Pak
IRFR24N15D
I-Pak
IRFU24N15D
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Max.
Units
24
17
96
140
0.92
± 30
4.9
-55 to + 175
A
W
W/°C
V
V/ns
°C
300 (1.6mm from case )
Thermal Resistance
Parameter
RθJC
RθJA
RθJA
Junction-to-Case
Junction-to-Ambient (PCB mount)*
Junction-to-Ambient
Typ.
Max.
Units
–––
–––
–––
1.1
50
110
°C/W
Notes  through … are on page 10
www.irf.com
1
1/17/05
IRFR/U24N15DPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
V(BR)DSS
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min.
150
–––
–––
3.0
–––
–––
–––
–––
Typ.
–––
0.18
82
–––
–––
–––
–––
–––
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA †
95
mΩ VGS = 10V, ID = 14A „
5.0
V
VDS = VGS, ID = 250µA
25
VDS = 150V, VGS = 0V
µA
250
VDS = 120V, VGS = 0V, TJ = 150°C
100
VGS = 30V
nA
-100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
8.2
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
30
7.4
17
11
53
19
15
890
220
46
1460
95
200
Max. Units
Conditions
–––
S
VDS = 25V, ID = 14A
45
ID = 14A
11
nC
VDS = 120V
26
VGS = 10V, „
–––
VDD = 75V
–––
I
D = 14A
ns
–––
RG = 6.8Ω
–––
VGS = 10V „
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 120V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 120V …
Avalanche Characteristics
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Typ.
Max.
Units
–––
–––
–––
170
14
14
mJ
A
mJ
Diode Characteristics
IS
ISM
VSD
trr
Qrr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
24
––– –––
showing the
A
G
integral reverse
––– –––
96
S
p-n junction diode.
––– ––– 1.5
V
TJ = 25°C, IS = 14A, VGS = 0V „
––– 110 –––
ns
TJ = 25°C, IF = 14A
––– 450 –––
nC
di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFR/U24N15DPbF
1000
100
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
100
10
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
1
5.0V
0.1
0.01
10
5.0V
1
20µs PULSE WIDTH
Tj = 25°C
20µs PULSE WIDTH
Tj = 175°C
0.1
0.001
0.1
1
10
0.1
100
1
VDS, Drain-to-Source Voltage (V)
10
100
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
3.0
100
I D = 24A
TJ = 175 ° C
10
1
TJ = 25 ° C
V DS= 50V
20µs PULSE WIDTH
0.1
4
6
8
10
12
14
V GS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
16
2.0
(Normalized)
RDS(on) , Drain-to-Source On Resistance
I D, Drain-to-Source Current (A)
2.5
1.5
1.0
0.5
V GS = 10V
0.0
-60
-40
-20
0
20
40
60
80
TJ , Junction Temperature
100 120 140 160 180
( ° C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRFR/U24N15DPbF
10000
12
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
I D = 14A
VDS = 120V
VDS = 75V
VDS = 30V
10
1000
VGS , Gate-to-Source Voltage (V)
C, Capacitance(pF)
Coss = Cds + Cgd
Ciss
Coss
100
Crss
8
6
4
2
10
1
10
100
0
1000
0
5
VDS, Drain-to-Source Voltage (V)
20
25
30
35
1000
ID, Drain-to-Source Current (A)
100
I SD , Reverse Drain Current (A)
15
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
T J= 25 ° C
1
V GS = 0 V
0.0
0.5
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
TJ = 175 ° C
10
1.0
1.5
2.0
V SD,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
10
100µsec
1msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
10msec
0.1
0.1
4
10
QG, Total Gate Charge (nC)
2.5
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFR/U24N15DPbF
25
RD
V DS
VGS
ID , Drain Current (A)
20
D.U.T.
RG
+
-VDD
VGS
15
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
10
Fig 10a. Switching Time Test Circuit
VDS
5
90%
0
25
50
75
100
125
150
175
TC , Case Temperature ( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
(Z thJC )
10
1
Thermal Response
D = 0.50
0.20
P DM
0.10
0.1
0.05
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D =
2. Peak T
0.01
0.00001
0.0001
0.001
0.01
t1 / t 2
J = P DM x Z thJC
+T C
0.1
1
t1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFR/U24N15DPbF
320
15V
ID
5.9A
10A
14A
TOP
+
V
- DD
IAS
20V
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
D.U.T
RG
BOTTOM
DRIVER
L
VDS
240
160
80
0
25
50
75
100
125
150
175
( ° C)
Starting Tj, Junction Temperature
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
I AS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
50KΩ
12V
.2µF
.3µF
QGS
QGD
D.U.T.
VG
+
V
- DS
VGS
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
6
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
www.irf.com
IRFR/U24N15DPbF
Peak Diode Recovery dv/dt Test Circuit
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D.U.T
ƒ
+
‚
-
-
„
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
Period
D=
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFET® Power MOSFETs
www.irf.com
7
IRFR/U24N15DPbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
EXAMPLE: T HIS IS AN IRFR120
WITH AS SEMBLY
LOT CODE 1234
ASSEMBLED ON WW 16, 1999
IN THE AS SEMBLY LINE "A"
PART NUMBER
INT ERNATIONAL
RECT IFIER
LOGO
Note: "P" in ass embly line position
indicates "Lead-Free"
IRFU120
12
916A
34
ASSEMBLY
LOT CODE
DAT E CODE
YEAR 9 = 1999
WEEK 16
LINE A
OR
PART NUMBER
INTERNAT IONAL
RECTIFIER
LOGO
IRFU120
12
ASS EMBLY
LOT CODE
8
34
DATE CODE
P = DESIGNATES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR 9 = 1999
WEEK 16
A = ASS EMBLY SITE CODE
www.irf.com
IRFR/U24N15DPbF
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
EXAMPLE: T HIS IS AN IRFU120
WIT H ASSEMBLY
LOT CODE 5678
ASSE MBLE D ON WW 19, 1999
IN T HE ASSEMBLY LINE "A"
PART NUMBER
INTE RNAT IONAL
RECT IF IER
LOGO
IRFU120
919A
56
78
ASSEMBLY
LOT CODE
Note: "P" in ass embly line
pos ition indicates "Lead-Free"
DAT E CODE
YEAR 9 = 1999
WEEK 19
LINE A
OR
PART NUMBE R
INT ERNAT IONAL
RECTIF IER
LOGO
IRFU120
56
AS SEMBLY
LOT CODE
www.irf.com
78
DATE CODE
P = DES IGNAT ES LEAD-F REE
PRODUCT (OPTIONAL)
YEAR 9 = 1999
WE EK 19
A = ASS EMBLY SIT E CODE
9
IRFR/U24N15DPbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
TRL
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature.
‚ Starting TJ = 25°C, L = 1.7mH
RG = 25Ω, IAS = 14A.
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
ƒ ISD ≤ 14A, di/dt ≤ 380A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C.
* When mounted on 1" square PCB (FR-4 or G-10 Material).
For recommended footprint and soldering techniques refer to application note #AN-994.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Automotive [Q101] market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.01/05
10
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/