INFINEON BCR158T

BCR158.../SEMB10
PNP Silicon Digital Transistor
• Switching circuit, inverter, interface circuit,
driver circuit
• Built in bias resistor (R1=2.2kΩ, R2=47kΩ)
• For 6-PIN packages: two (galvanic) internal
isolated transistors with good matching
in one package
BCR158/F/L3
BCR158T/W
SEMB10
C
C1
B2
3
6
5
E2
4
R2
R1
R1
TR2
TR1
R2
R1
R2
2
1
2
3
E
E1
B1
C2
1
B
EHA07183
EHA07173
Type
Marking
Pin Configuration
BCR158
WIs
1=B
2=E
3=C
-
-
-
SOT23
BCR158L3
WI
1=B
2=E
3=C
-
-
-
TSFP-3
BCR158F
WIs
1=B
2=E
3=C
-
-
-
TSFP-3
BCR158T
WIs
1=B
2=E
3=C
-
-
-
SC75
BCR158W
WIs
1=B
2=E
3=C
-
-
-
SOT323
SEMB10
W5
1=E1 2=B1 3=C2 4=E2 5=B2 6=C1 SOT666
1
Package
May-18-2004
BCR158.../SEMB10
Maximum Ratings
Parameter
Symbol
Collector-emitter voltage
VCEO
50
Collector-base voltage
VCBO
50
Emitter-base voltage
VEBO
5
Input on voltage
Vi(on)
10
Collector current
IC
100
Total power dissipation-
Ptot
Value
200
BCR158F, TS ≤ 128°C
250
BCR158L3, TS ≤ 135°C
250
BCR158T, TS ≤ 109°C
250
BCR158W, TS ≤ 124°C
250
SEMB10, T S ≤ 75°C
250
Tj
Storage temperature
Tstg
Thermal Resistance
Parameter
Junction - soldering point 1)
Symbol
RthJS
V
mA
mW
BCR158, TS ≤ 102°C
Junction temperature
Unit
150
°C
-65 ... 150
Value
BCR158
≤ 240
BCR158F
≤ 90
BCR158L3
≤ 60
BCR158T
≤ 165
BCR158W
≤ 105
SEMB10
≤ 300
Unit
K/W
1For calculation of R
thJA please refer to Application Note Thermal Resistance
2
May-18-2004
BCR158.../SEMB10
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ. max.
DC Characteristics
Collector-emitter breakdown voltage
V(BR)CEO 50
V
IC = 100 µA, IB = 0
Collector-base breakdown voltage
V(BR)CBO
50
-
-
I CBO
-
-
100
nA
I EBO
-
-
164
µA
h FE
70
-
-
-
-
-
0.3
V
Vi(off)
0.4
-
0.8
Vi(on)
0.5
-
1.1
Input resistor
R1
1.5
2.2
2.9
Resistor ratio
R1/R 2
0.042
0.047
fT
-
200
-
MHz
Ccb
-
3
-
pF
IC = 10 µA, IE = 0
Collector-base cutoff current
VCB = 40 V, IE = 0
Emitter-base cutoff current
VEB = 5 V, IC = 0
DC current gain1)
IC = 5 mA, VCE = 5 V
Collector-emitter saturation voltage1)
VCEsat
IC = 10 mA, IB = 0.5 mA
Input off voltage
IC = 100 µA, VCE = 5 V
Input on voltage
IC = 2 mA, VCE = 0.3 V
kΩ
0.052 -
AC Characteristics
Transition frequency
IC = 10 mA, VCE = 5 V, f = 100 MHz
Collector-base capacitance
VCB = 10 V, f = 1 MHz
1Pulse test: t < 300µs; D < 2%
3
May-18-2004
BCR158.../SEMB10
DC current gain hFE = ƒ(IC)
VCE = 5V (common emitter configuration)
Collector-emitter saturation voltage
VCEsat = ƒ(IC), hFE = 20
10 2
10 3
-
10 2
IC
h FE
mA
10 1
10 1
10 0 -1
10
10
0
10
1
mA
10
10 0
0
2
0.1
0.2
V
0.3
IC
0.5
VCEsat
Input on Voltage Vi(on) = ƒ(I C)
VCE = 0.3V (common emitter configuration)
Input off voltage V i(off) = ƒ(IC)
VCE = 5V (common emitter configuration)
10 1
10 2
mA
mA
10 0
IC
IC
10 1
10 -1
10 0
10 -2
10 -1 -1
10
10
0
10
1
V
10
10 -3
0.1
2
Vi(on)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
V
1
Vi(off)
4
May-18-2004
BCR158.../SEMB10
Total power dissipation Ptot = ƒ(TS)
BCR158
Total power dissipation Ptot = ƒ(TS)
BCR158F
300
300
mW
200
P tot
P tot
mW
200
150
150
100
100
50
50
0
0
20
40
60
80
100
120 °C
0
0
150
20
40
60
80
100
TS
150
TS
Total power dissipation Ptot = ƒ(TS)
BCR158L3
Total power dissipation Ptot = ƒ(TS)
BCR158T
300
300
mW
mW
200
Ptot
Ptot
120 °C
200
150
150
100
100
50
50
0
0
20
40
60
80
100
120 °C
0
0
150
TS
20
40
60
80
100
120 °C
150
TS
5
May-18-2004
BCR158.../SEMB10
Total power dissipation Ptot = ƒ(TS)
BCR158W
Total power dissipation Ptot = ƒ(TS)
SEMB10
300
300
mW
200
P tot
P tot
mW
200
150
150
100
100
50
50
0
0
20
40
60
80
120 °C
100
0
0
150
20
40
60
80
120 °C
100
TS
150
TS
Permissible Pulse Load RthJS = ƒ(tp )
BCR158
Permissible Pulse Load
Ptotmax/P totDC = ƒ(tp)
BCR158
10 3
10 3
Ptotmax / PtotDC
K/W
RthJS
10 2
-
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
10 2
10 1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10 0
10 -1 -6
10
10
-5
10
-4
10
-3
10
10 1
-2
s
10
10 0 -6
10
0
tp
10
-5
10
-4
10
-3
10
-2
s
10
0
tp
6
May-18-2004
BCR158.../SEMB10
Permissible Puls Load RthJS = ƒ (tp)
Permissible Pulse Load
BCR158F
Ptotmax/P totDC = ƒ(tp)
BCR158F
10 2
10 3
D=0.5
0.2
0.1
0.05
0.02
0.01
0.005
0
10 1
10 0
10 -1 -6
10
P totmax/P totDC
RthJS
K/W
10
-5
10
-4
10
-3
10 2
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
10 1
10
-2
s
10
10 0 -6
10
0
10
-5
10
-4
10
-3
10
-2
s
tp
Permissible Pulse Load
BCR158L3
Ptotmax/P totDC = ƒ(tp)
BCR158L3
10
0
10 3
Ptotmax/ PtotDC
RthJS
10 2
1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10 0
10 -1 -7
10
0
tp
Permissible Puls Load RthJS = ƒ (tp)
10
10
10
-6
10
-5
10
-4
10
-3
10
-2
10
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
2
10 1
s
10
10 0 -7
10
0
tp
10
-6
10
-5
10
-4
10
-3
10
-2
s
tp
7
May-18-2004
BCR158.../SEMB10
Permissible Puls Load RthJS = ƒ (tp)
Permissible Pulse Load
BCR158T
Ptotmax/P totDC = ƒ(tp)
BCR158T
10 3
10 3
P totmax / P totDC
K/W
RthJS
10 2
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
10 2
10 1
D=0.5
0.2
0.1
0.05
0.02
0.01
0.005
0
10 0
10 -1 -6
10
10
-5
10
-4
10
-3
10 1
10
-2
s
10
10 0 -6
10
0
10
-5
10
-4
10
-3
10
-2
tp
s
10
0
10
0
tp
Permissible Puls Load RthJS = ƒ (tp)
Permissible Pulse Load
BCR158W
Ptotmax/P totDC = ƒ(tp)
BCR158W
10 3
10 3
Ptotmax / PtotDC
K/W
RthJS
10 2
-
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
10 2
10 1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10 0
10 -1 -6
10
10
-5
10
-4
10
-3
10
10 1
-2
s
10
10 0 -6
10
0
tp
10
-5
10
-4
10
-3
10
-2
s
tp
8
May-18-2004
BCR158.../SEMB10
Permissible Puls Load RthJS = ƒ (tp)
Permissible Pulse Load
SEMB10
Ptotmax/P totDC = ƒ(tp)
SEMB10
10 3
10 3
P totmax/ P totDC
K/W
RthJS
10 2
0.5
0.2
0.1
0.05
0.02
0.01
0.005
D=0
10 1
10 0
10 -1 -7
10
10
-6
10
-5
10
-4
10
-3
10
-2
10 2
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
10 1
s
10
10 0 -7
10
0
tp
10
-6
10
-5
10
-4
10
-3
10
-2
s
10
0
tp
9
May-18-2004