BCR108... NPN Silicon Digital Transistor • Switching circuit, inverter, interface circuit, driver circuit • Built in bias resistor (R1 =2.2kΩ, R2=47kΩ) • For 6-PIN packages: two (galvanic) internal isolated transistors with good matching in one package BCR108/F/L3 BCR108T/W BCR108S C C1 B2 3 6 5 E2 4 R2 R1 R1 TR2 TR1 R2 R1 R2 1 B 2 1 2 3 E E1 B1 C2 EHA07174 EHA07184 Type Marking Pin Configuration BCR108 WHs 1=B 2=E 3=C - - - SOT23 BCR108F WHs 1=B 2=E 3=C - - - TSFP-3 BCR108L3 WH 1=B 2=E 3=C - - - TSLP-3-4 BCR108S WHs 1=E1 2=B1 3=C2 4=E2 5=B2 6=C1 SOT363 BCR108T WHs 1=B 2=E 3=C - - - SC75 BCR108W WHs 1=B 2=E 3=C - - - SOT323 1 Package Aug-29-2003 BCR108... Maximum Ratings Parameter Symbol Collector-emitter voltage VCEO 50 Collector-base voltage VCBO 50 Emitter-base voltage VEBO 5 Input on voltage Vi(on) 10 Collector current IC 100 Total power dissipation- Ptot Value 200 BCR108F, TS ≤ 128°C 250 BCR108L3, TS ≤ 135°C 250 BCR108S, T S ≤ 115°C 250 BCR108T, TS ≤ 109°C 250 BCR108W, TS ≤ 124°C 250 Tj Storage temperature Tstg Thermal Resistance Parameter Junction - soldering point 1) Symbol RthJS V mA mW BCR108, TS ≤ 102°C Junction temperature Unit 150 °C -65 ... 150 Value BCR108 ≤ 240 BCR108F ≤ 90 BCR108L3 ≤ 60 BCR108S ≤ 140 BCR108T ≤ 165 BCR108W ≤ 105 Unit K/W 1For calculation of R thJA please refer to Application Note Thermal Resistance 2 Aug-29-2003 BCR108... Electrical Characteristics at TA = 25°C, unless otherwise specified Parameter Symbol Values Unit min. typ. max. DC Characteristics Collector-emitter breakdown voltage V(BR)CEO 50 V IC = 100 µA, IB = 0 Collector-base breakdown voltage 50 - - I CBO - - 100 nA I EBO - - 164 µA h FE 70 - - - - - 0.3 V Vi(off) 0.4 - 0.8 Vi(on) 0.5 - 1.1 Input resistor R1 1.5 2.2 2.9 Resistor ratio R1/R 2 0.042 0.047 fT - 170 - MHz Ccb - 2 - pF V(BR)CBO IC = 10 µA, IE = 0 Collector-base cutoff current VCB = 40 V, IE = 0 Emitter-base cutoff current VEB = 5 V, IC = 0 DC current gain1) IC = 5 mA, VCE = 5 V Collector-emitter saturation voltage1) VCEsat IC = 10 mA, IB = 0.5 mA Input off voltage IC = 100 µA, VCE = 5 V Input on voltage IC = 2 mA, VCE = 0.3 V kΩ 0.052 - AC Characteristics Transition frequency IC = 10 mA, VCE = 5 V, f = 1 MHz Collector-base capacitance VCB = 10 V, f = 1 MHz 1Pulse test: t < 300µs; D < 2% 3 Aug-29-2003 BCR108... DC current gain hFE = ƒ(IC) VCE = 5V (common emitter configuration) Collector-emitter saturation voltage VCEsat = ƒ(IC), hFE = 20 10 2 10 3 - 10 2 IC h FE mA 10 1 10 1 10 0 -1 10 10 0 10 1 mA 10 10 0 0 2 0.1 0.2 0.3 V IC 0.5 VCEsat Input on Voltage Vi(on) = ƒ(I C) VCE = 0.3V (common emitter configuration) Input off voltage V i(off) = ƒ(IC) VCE = 5V (common emitter configuration) 10 1 10 2 mA mA 10 0 IC IC 10 1 10 -1 10 0 10 -2 10 -1 -1 10 10 0 10 1 V 10 10 -3 0 2 Vi(on) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 V 1 Vi(off) 4 Aug-29-2003 BCR108... Total power dissipation Ptot = ƒ(TS) BCR108 Total power dissipation Ptot = ƒ(TS) BCR108F 300 300 mW 200 P tot P tot mW 200 150 150 100 100 50 50 0 0 20 40 60 80 100 120 °C 0 0 150 20 40 60 80 100 TS 150 TS Total power dissipation Ptot = ƒ(TS) BCR108L3 Total power dissipation Ptot = ƒ(TS) BCR108S 300 300 mW mW 200 Ptot Ptot 120 °C 200 150 150 100 100 50 50 0 0 20 40 60 80 100 120 °C 0 0 150 TS 20 40 60 80 100 120 °C 150 TS 5 Aug-29-2003 BCR108... Total power dissipation Ptot = ƒ(TS) BCR108T Total power dissipation Ptot = ƒ(TS) BCR108W 300 300 mW 200 P tot P tot mW 200 150 150 100 100 50 50 0 0 20 40 60 80 120 °C 100 0 0 150 20 40 60 80 120 °C 100 TS 150 TS Permissible Pulse Load RthJS = ƒ(tp ) BCR108 Permissible Pulse Load Ptotmax/P totDC = ƒ(tp) BCR108 10 3 10 3 Ptotmax / PtotDC K/W RthJS 10 2 - D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 10 1 -2 s 10 10 0 -6 10 0 tp 10 -5 10 -4 10 -3 10 -2 s 10 0 tp 6 Aug-29-2003 BCR108... Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR108F Ptotmax/P totDC = ƒ(tp) BCR108F 10 2 10 3 D=0.5 0.2 0.1 0.05 0.02 0.01 0.005 0 10 1 10 0 10 -1 -6 10 P totmax/P totDC RthJS K/W 10 -5 10 -4 10 -3 10 2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 1 10 -2 s 10 10 0 -6 10 0 10 -5 10 -4 10 -3 10 -2 s tp Permissible Pulse Load BCR108L3 Ptotmax/P totDC = ƒ(tp) BCR108L3 10 0 10 3 Ptotmax/ PtotDC RthJS 10 2 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -7 10 0 tp Permissible Puls Load RthJS = ƒ (tp) 10 10 10 -6 10 -5 10 -4 10 -3 10 -2 10 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 2 10 1 s 10 10 0 -7 10 0 tp 10 -6 10 -5 10 -4 10 -3 10 -2 s tp 7 Aug-29-2003 BCR108... Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR108S Ptotmax/P totDC = ƒ(tp) BCR108S 10 3 10 3 P totmax / P totDC K/W RthJS 10 2 - D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 10 1 -2 s 10 10 0 -6 10 0 10 -5 10 -4 10 -3 10 -2 tp s 10 0 10 0 tp Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR108T Ptotmax/P totDC = ƒ(tp) BCR108T 10 3 10 3 Ptotmax / PtotDC K/W RthJS 10 2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 D=0.5 0.2 0.1 0.05 0.02 0.01 0.005 0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 1 10 -2 s 10 10 0 -6 10 0 tp 10 -5 10 -4 10 -3 10 -2 s tp 8 Aug-29-2003 BCR108... Permissible Puls Load RthJS = ƒ (tp) Permissible Pulse Load BCR108W Ptotmax/P totDC = ƒ(tp) BCR108W 10 3 10 3 P totmax / P totDC K/W R thJS 10 2 - D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 2 10 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 D=0 10 0 10 -1 -6 10 10 -5 10 -4 10 -3 10 10 1 -2 s 10 10 0 -6 10 0 tp 10 -5 10 -4 10 -3 10 -2 s 10 0 tp 9 Aug-29-2003