INFINEON BFP410

BFP410
NPN Silicon RF Transistor
• Low current device suitable e.g. for handhelds
3
• For high frequency oscillators e.g. DRO for LNB
2
4
• For ISM band applications like
1
Automatic Meter Reading, Sensors etc.
• Transit frequency f T = 25 GHz
• Pb-free (RoHS compliant) package
• Qualified according AEC Q101
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type
BFP410
Marking
AKs
1=B
Pin Configuration
2=E
3=C
4=E
-
Package
-
SOT343
Maximum Ratings at TA = 25 °C, unless otherwise specified
Parameter
Symbol
Collector-emitter voltage
VCEO
Value
Unit
V
TA = 25 °C
4.5
TA = -55 °C
4.1
Collector-emitter voltage
VCES
13
Collector-base voltage
VCBO
13
Emitter-base voltage
VEBO
1.5
Collector current
IC
40
Base current
IB
6
Total power dissipation1)
Ptot
150
mW
Junction temperature
TJ
150
°C
Ambient temperature
TA
-55 ... 150
Storage temperature
T Stg
-55 ... 150
mA
TS ≤ 100 °C
1T
S is measured on the emitter lead at the soldering point to the pcb
Thermal Resistance
Parameter
Symbol
Junction - soldering point1)
RthJS
Value
Unit
335
K/W
2010-04-09
1
BFP410
Electrical Characteristics at TA = 25°C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
4.5
5
-
DC Characteristics
Collector-emitter breakdown voltage
V(BR)CEO
V
IC = 1 mA, IB = 0
Collector-emitter cutoff current
nA
ICES
VCE = 2 V, VBE = 0
-
1
30
VCE = 5 V, VBE = 0 , TA = 85 °C
(verified by random sampling)
-
2
50
ICBO
-
1
30
IEBO
-
0.001
0.6
µA
hFE
60
95
130
-
Collector-base cutoff current
VCB = 2 V, I E = 0
Emitter-base cutoff current
VEB = 0.5 V, IC = 0
DC current gain
IC = 13 mA, VCE = 2 V, pulse measured
1For
calculation of RthJA please refer to Application Note Thermal Resistance
2010-04-09
2
BFP410
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Unit
Parameter
min.
typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
fT
18
25
-
GHz
Ccb
-
0.09
0.17
Cce
-
0.35
-
Ceb
-
0.45
-
Noise figure
F
-
1.2
-
dB
IC = 2 mA, VCE = 2 V, f = 2 GHz, ZS = ZSopt
Power gain, maximum stable1)
G ms
-
21.5
-
dB
|S21| 2
-
18.5
-
IP 3
-
23.5
-
P-1dB
-
10.5
-
IC = 20 mA, VCE = 2 V, f = 2 GHz
Collector-base capacitance
pF
VCB = 2 V, f = 1 MHz, V BE = 0 ,
emitter grounded
Collector emitter capacitance
VCE = 2 V, f = 1 MHz, V BE = 0 ,
base grounded
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
IC = 20 mA, VCE = 2 V, ZS = ZSopt,
ZL = ZLopt , f = 2 GHz
Insertion power gain
VCE = 2 V, I C = 20 mA, f = 2 GHz,
ZS = ZL = 50 Ω
Third order intercept point at output 2)
dBm
VCE = 2 V, I C = 20 mA, f = 2 GHz,
ZS = ZL = 50 Ω
1dB Compression point at output
IC = 20 mA, VCE = 2 V, ZS = ZL = 50 Ω,
f = 2 GHz
1G
ms = |S21 / S12|
value depends on termination of all intermodulation frequency components.
Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz
2IP3
2010-04-09
3
BFP410
Total power dissipation Ptot = ƒ(TS)
Collector-base capacitance Ccb= ƒ(VCB)
f = 1MHz
0.3
180
mW
pF
120
CCB
Ptot
140
0.2
100
0.15
80
0.1
60
40
0.05
20
0
0
20
40
60
80
100
120
°C
TS
0
0
160
0.5
1
1.5
2
2.5
3
V
4
VCB
Transition frequency fT = ƒ(IC)
Power gain Gma, Gms , |S 21|2 = ƒ (f)
f = 2 GHz
VCE = 2 V, I C = 13 mA
VCE = parameter in V
26
45
3 to 4V
GHz
dB
2V
1V
22
35
20
30
G
fT
18
16
25
Gms
14
0.5V
12
20
15
10
|S21|²
8
Gma
10
6
5
4
2
0
4
8
12
16
20
24
mA
0
0
32
IC
2
4
6
GHz
10
f
2010-04-09
4
BFP410
Power gain Gma, Gms = ƒ (I C)
Power gain Gma, Gms = ƒ (VCE)
VCE = 2V
IC = 13 mA
f = parameter in GHz
f = parameter in GHz
40
40
0.15GHz
dB
0.45GHz
32
0.9GHz
28
1.5GHz
24
G
G
dB
0.15GHz
32
0.45GHz
28
0.9GHz
24
1.5GHz
1.9GHz
1.9GHz
20
2.4GHz
20
2.4GHz
16
3.5GHz
16
3.5GHz
12
5.5GHz
12
5.5GHz
8
10GHz
8
10GHz
4
0
0
4
4
8
12
16
20
24
28 mA
0
0
36
1
2
3
V
4
IC
VCE
Noise figure F = ƒ(IC )
VCE = 2 V, Z S = ZSopt
Noise figure F = ƒ(I C)
VCE = 2 V, f = 2 GHz
4.5
4
dB
dB
3.5
3
3
F
Fmin
6
2.5
2.5
2
2
1.5
1.5
f= 10.0 GHz
f= 5.5 GHz
f= 2.4 GHz
f= 1.8 GHz
f= 0.9 GHz
f= 0.45 GHz
1
0.5
0
0
4
8
12
16
20
24 mA
ZS=50Ohm
ZS=ZSopt
1
0.5
0
0
30
IC
4
8
12
16
mA
24
IC
2010-04-09
5
BFP410
Collector current I C = ƒ(VBE)
Collector current I C = ƒ(VCE)
VCE =2 V
Parameter IB
10 2
mA
25
10 1
mA
160µA
IC
IC
10 0
15
10 -1
90µA
10
10 -2
5
10 -3
20µA
10 -4
0.2
0.4
0.6
V
0.8
0
0
1.2
1
2
V
3
VBE
5
VCE
DC current gain hFE = ƒ(IC)
VCE =2 V
Base current reverse IB = ƒ(VEB)
10 0
10 3
µA
10 2
IB
hFE
10 -1
10 -2
10 -3
10 1
10 -4
10 0 -1
10
10
0
10
1
mA
10
10 -5
0
2
IC
0.5
1
V
2
VEB
2010-04-09
6
Package SOT343
BFP410
Package Outline
0.9 ±0.1
2 ±0.2
0.1 MAX.
1.3
0.1
A
1
2
0.1 MIN.
0.15
1.25 ±0.1
3
2.1 ±0.1
4
0.3 +0.1
-0.05
+0.1
0.15 -0.05
+0.1
0.6 -0.05
4x
0.1
0.2
M
M
A
Foot Print
1.6
0.8
0.6
1.15
0.9
Marking Layout (Example)
Manufacturer
2005, June
Date code (YM)
BGA420
Type code
Pin 1
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
0.2
2.3
8
4
Pin 1
2.15
1.1
2010-04-09
7
BFP410
Edition 2009-11-16
Published by
Infineon Technologies AG
81726 Munich, Germany
 2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee
of conditions or characteristics. With respect to any examples or hints given herein,
any typical values stated herein and/or any information regarding the application of
the device, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation, warranties of non-infringement of
intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices,
please contact the nearest Infineon Technologies Office ( <www.infineon.com>).
Warnings
Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact the nearest Infineon
Technologies Office.
Infineon Technologies components may be used in life-support devices or systems
only with the express written approval of Infineon Technologies, if a failure of such
components can reasonably be expected to cause the failure of that life-support
device or system or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body or
to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be
endangered.
2010-04-09
8