INFINEON BF770A_07

BF770A
NPN Silicon RF Transistor
• For IF amplifiers in TV-sat tuners
and for VCR modulators
2
3
• Pb-free (RoHS compliant) package 1)
1
• Qualified according AEC Q101
ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Type
BF770A
Marking
LSs
Pin Configuration
1=B
2=E
3=C
Package
SOT23
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCEO
12
Collector-emitter voltage
VCES
20
Collector-base voltage
VCBO
20
Emitter-base voltage
VEBO
2
Collector current
IC
90
Base current
IB
9
Total power dissipation2)
Ptot
300
mW
Junction temperature
Tj
150
°C
Ambient temperature
TA
-65 ... 150
Storage temperature
T stg
-65 ... 150
V
mA
TS ≤ 63°C
Thermal Resistance
Parameter
Symbol
Value
Unit
Junction - soldering point 3)
RthJS
≤ 290
K/W
1Pb-containing
2T
package may be available upon special request
S is measured on the collector lead at the soldering point to the pcb
3For
calculation of RthJA please refer to Application Note Thermal Resistance
1
2007-04-20
BF770A
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Parameter
Values
Unit
min.
typ.
max.
12
-
-
V
ICES
-
-
100
µA
ICBO
-
-
100
nA
IEBO
-
-
10
µA
hFE
70
100
140
-
DC Characteristics
Collector-emitter breakdown voltage
V(BR)CEO
IC = 1 mA, I B = 0
Collector-emitter cutoff current
VCE = 20 V, VBE = 0
Collector-base cutoff current
VCB = 10 V, I E = 0
Emitter-base cutoff current
VEB = 2 V, IC = 0
DC current gainIC = 30 mA, VCE = 8 V, pulse measured
2
2007-04-20
BF770A
Electrical Characteristics at TA = 25°C, unless otherwise specified
Symbol
Values
Unit
Parameter
min.
typ. max.
AC Characteristics (verified by random sampling)
Transition frequency
fT
4.5
6
-
Ccb
-
0.54
0.75
Cce
-
0.25
-
Ceb
-
1.9
-
GHz
IC = 30 mA, VCE = 8 V, f = 500 MHz
Collector-base capacitance
pF
VCB = 10 V, f = 1 MHz, VBE = 0 ,
emitter grounded
Collector emitter capacitance
VCE = 10 V, f = 1 MHz, VBE = 0 ,
base grounded
Emitter-base capacitance
VEB = 0.5 V, f = 1 MHz, VCB = 0 ,
collector grounded
Noise figure
dB
F
IC = 5 mA, VCE = 8 V, ZS = ZSopt,
f = 900 MHz
-
1.5
-
f = 1.8 GHz
-
2.6
-
f = 900 MHz
-
14.5
-
f = 1.8 GHz
-
9.5
-
Power gain, maximum available1)
G ma
IC = 30 mA, VCE = 8 V, Z S = ZSopt, ZL = ZLopt,
|S 21e|2
Transducer gain
dB
IC = 30 mA, VCE = 8 V, Z S = Z L = 50Ω,
f = 900 MHz
-
12.5
-
f = 1.8 GHz
-
7
-
2 1/2
ma = |S21/S 12| (k-(k -1) )
1G
3
2007-04-20
Package SOT23
BF770A
0.4 +0.1
-0.05
1)
2
0.08...0.1
C
0.95
1.3 ±0.1
1
2.4 ±0.15
3
0.1 MAX.
10˚ MAX.
B
1 ±0.1
10˚ MAX.
2.9 ±0.1
0.15 MIN.
Package Outline
A
5
0...8˚
1.9
0.2
0.25 M B C
M
A
1) Lead width can be 0.6 max. in dambar area
Foot Print
0.8
0.9
1.3
0.9
0.8
1.2
Marking Layout (Example)
Manufacturer
EH s
2005, June
Date code (YM)
Pin 1
BCW66
Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
4
0.2
8
2.13
2.65
0.9
Pin 1
1.15
3.15
4
2007-04-20
BF770A
Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.
Attention please!
The information given in this dokument shall in no event be regarded as a guarantee
of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any
examples or hints given herein, any typical values stated herein and/or any information
regarding the application of the device, Infineon Technologies hereby disclaims any
and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices
please contact your nearest Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances.
For information on the types in question please contact your nearest
Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or
systems with the express written approval of Infineon Technologies, if a failure of
such components can reasonably be expected to cause the failure of that
life-support device or system, or to affect the safety or effectiveness of that
device or system.
Life support devices or systems are intended to be implanted in the human body,
or to support and/or maintain and sustain and/or protect human life. If they fail,
it is reasonable to assume that the health of the user or other persons
may be endangered.
5
2007-04-20