SPP12N50C3 SPI12N50C3, SPA12N50C3 Cool MOS™ Power Transistor VDS @ Tjmax 560 V RDS(on) 0.38 Ω ID 11.6 A Feature • New revolutionary high voltage technology • Ultra low gate charge • Periodic avalanche rated FP PG-TO220-3-31 PG-TO262- PG-TO220 • Extreme dv/dt rated 2 • Ultra low effective capacitances 1 • Improved transconductance 2 3 1 23 P-TO220-3-31 P-TO220-3-1 • PG-TO-220-3-31;-3-111: Fully isolated package (2500 VAC; 1 minute) Type Package Ordering Code SPP12N50C3 PG-TO220 Q67040-S4579 Marking 12N50C3 SPI12N50C3 PG-TO262 Q67040-S4578 12N50C3 SPA12N50C3 PG-TO220FP SP000216322 12N50C3 Maximum Ratings SPP_I Continuous drain current Unit Value Symbol Parameter SPA A ID TC = 25 °C 11.6 11.6 1) TC = 100 °C 7 71) ID puls 34.8 34.8 A EAS 340 340 mJ EAR 0.6 0.6 Avalanche current, repetitive tAR limited by Tjmax IAR 11.6 11.6 A Gate source voltage VGS ±20 ±20 V Gate source voltage AC (f >1Hz) VGS ±30 ±30 Power dissipation, TC = 25°C Ptot 125 33 Operating and storage temperature Reverse diode dv/dt 7) T j , Tstg dv/dt Pulsed drain current, tp limited by Tjmax Avalanche energy, single pulse ID=5.5A, VDD =50V Avalanche energy, repetitive tAR limited by Tjmax2) ID=11.6A, VDD=50V Rev. 3.0 Page 1 -55...+150 15 W °C V/ns 2007-08-30 SPP12N50C3 SPI12N50C3, SPA12N50C3 Maximum Ratings Parameter Symbol Drain Source voltage slope dv/dt Value Unit 50 V/ns Values Unit V DS = 400 V, ID = 11.6 A, Tj = 125 °C Thermal Characteristics Symbol Parameter min. typ. max. Thermal resistance, junction - case RthJC - - 1 Thermal resistance, junction - case, FullPAK RthJC_FP - - 3.8 Thermal resistance, junction - ambient, leaded RthJA - - 62 Thermal resistance, junction - ambient, FullPAK RthJA_FP - - 80 SMD version, device on PCB: RthJA @ min. footprint - - 62 @ 6 cm 2 cooling area 3) - 35 - - - 260 Soldering temperature, wavesoldering Tsold K/W °C 1.6 mm (0.063 in.) from case for 10s 4) Electrical Characteristics, at T j=25°C unless otherwise specified Parameter Symbol Conditions Drain-source breakdown voltage V(BR)DSS VGS=0V, ID=0.25mA Drain-Source avalanche V(BR)DS VGS=0V, ID=11.6A Values Unit min. typ. max. 500 - - - 600 - 2.1 3 3.9 V breakdown voltage Gate threshold voltage VGS(th) ID=500µA, VGS=VDS Zero gate voltage drain current I DSS VDS=500V, VGS=0V, Gate-source leakage current I GSS Drain-source on-state resistance RDS(on) Gate input resistance Rev. 3.0 RG µA Tj=25°C - 0.1 1 Tj=150°C - - 100 VGS=20V, VDS=0V - - 100 Ω VGS=10V, ID=7A Tj=25°C - 0.34 0.38 Tj=150°C - 0.92 - f=1MHz, open drain - 1.4 - Page 2 nA 2007-08-30 SPP12N50C3 SPI12N50C3, SPA12N50C3 Electrical Characteristics, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Values Unit min. typ. max. - 8 - S pF Characteristics Transconductance g fs V DS≥2*I D*RDS(on)max, ID=7A Input capacitance Ciss V GS=0V, V DS=25V, - 1200 - Output capacitance Coss f=1MHz - 400 - Reverse transfer capacitance Crss - 30 - - 45 - - 92 - Effective output capacitance,5) Co(er) V GS=0V, energy related V DS=0V to 400V Effective output capacitance,6) Co(tr) time related Turn-on delay time td(on) V DD=380V, V GS=0/10V, - 10 - Rise time tr ID=11.6A, R G=6.8Ω - 8 - Turn-off delay time td(off) - 45 - Fall time tf - 8 - - 5 - - 26 - - 49 - - 5 - ns Gate Charge Characteristics Gate to source charge Qgs Gate to drain charge Qgd Gate charge total Qg VDD=400V, ID=11.6A VDD=400V, ID=11.6A, nC VGS=0 to 10V Gate plateau voltage V(plateau) VDD=400V, ID=11.6A V 1Limited only by maximum temperature 2Repetitve avalanche causes additional power losses that can be calculated as PAV=EAR*f. 3Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical without blown air. 4Soldering temperature for TO-263: 220°C, reflow 5C o(er) is a fixed capacitance that gives the same stored energy as Coss while VDS is rising from 0 to 80% V DSS. 6C is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% V . o(tr) DSS 7I <=I , di/dt<=400A/us, V SD D DClink=400V, Vpeak<VBR, DSS, Tj<Tj,max. Identical low-side and high-side switch. Rev. 3.0 Page 3 2007-08-30 SPP12N50C3 SPI12N50C3, SPA12N50C3 Electrical Characteristics Parameter Symbol Inverse diode continuous IS Conditions Values Unit min. typ. max. - - 11.6 - - 34.8 TC=25°C A forward current Inverse diode direct current, ISM pulsed Inverse diode forward voltage VSD VGS=0V, IF=IS - 1 1.2 V Reverse recovery time trr VR=400V, IF=IS , - 380 - ns Reverse recovery charge Qrr diF/dt=100A/µs - 5.5 - µC Peak reverse recovery current Irrm - 38 - A Peak rate of fall of reverse dirr /dt - 1100 - A/µs Tj=25°C recovery current Typical Transient Thermal Characteristics Value Symbol SPP_I Unit Symbol SPA Rth1 0.015 0.15 Rth2 0.03 Rth3 Value SPP_I SPA Cth1 0.0001878 0.0001878 0.03 Cth2 0.0007106 0.0007106 0.056 0.056 Cth3 0.000988 0.000988 Rth4 0.197 0.194 Cth4 0.002791 0.002791 Rth5 0.216 0.413 Cth5 0.007285 0.007401 Rth6 0.083 2.522 Cth6 0.063 0.412 Tj K/W Unit R th1 R th,n T case Ws/K E xternal H eatsink P tot (t) C th1 C th2 C th,n T am b Rev. 3.0 Page 4 2007-08-30 SPP12N50C3 SPI12N50C3, SPA12N50C3 1 Power dissipation 2 Power dissipation FullPAK Ptot = f (TC) Ptot = f (TC) 140 SPP12N50C3 36 W W 120 110 28 Ptot Ptot 100 90 80 24 20 70 16 60 50 12 40 8 30 20 4 10 0 0 20 40 60 80 100 120 °C 0 0 160 20 40 60 80 100 120 TC 160 TC 3 Safe operating area 4 Safe operating area FullPAK ID = f ( V DS ) ID = f (VDS) parameter : D = 0 , TC =25°C parameter: D = 0, TC = 25°C 10 °C 2 10 2 10 1 10 1 ID A ID A 10 0 10 -1 10 -2 0 10 Rev. 3.0 10 0 tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms DC 10 1 10 -1 10 2 V VDS 10 3 Page 5 10 -2 0 10 tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms tp = 10 ms DC 10 1 10 2 10 V VDS 2007-08-30 3 SPP12N50C3 SPI12N50C3, SPA12N50C3 5 Transient thermal impedance 6 Transient thermal impedance FullPAK ZthJC = f (t p) ZthJC = f (t p) parameter: D = tp/T parameter: D = tp/t 1 10 10 1 K/W K/W 10 0 ZthJC ZthJC 10 0 10 -1 D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse 10 -2 10 -3 10 -4 -7 10 10 -6 10 -5 10 -4 10 -3 s tp 10 -1 D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse 10 -2 10 -3 10 10 -4 -7 -6 -5 -4 -3 -2 -1 10 10 10 10 10 10 10 -1 tp 7 Typ. output characteristic 8 Typ. output characteristic ID = f (VDS); Tj=25°C ID = f (VDS); Tj=150°C parameter: tp = 10 µs, VGS parameter: tp = 10 µs, VGS 40 22 20V 10V 8V A 20V 8V 7.5V 7V A 18 7V 32 6V 16 ID 28 ID 1 s 10 6.5V 24 14 5.5V 12 20 6V 10 16 5V 8 5.5V 12 6 8 5V 4 0 0 4V 2 4.5V 5 10 15 25 V 0 0 5 10 15 V 25 VDS VDS Rev. 3.0 4.5V 4 Page 6 2007-08-30 SPP12N50C3 SPI12N50C3, SPA12N50C3 9 Typ. drain-source on resistance 10 Drain-source on-state resistance RDS(on)=f(ID) RDS(on) = f (Tj) parameter: Tj=150°C, VGS parameter : ID = 7 A, VGS = 10 V 2.1 2 Ω 1.8 4V 4.5V 5V 6V 5.5V RDS(on) RDS(on) Ω 1.6 SPP12N50C3 1.4 1.6 1.4 1.2 1.2 1 0.8 1 0.6 0.8 98% 6.5V 8V 20V 0.6 0.4 0 0.4 2 4 6 8 10 12 14 typ 0.2 16 A ID 0 -60 20 -20 20 60 100 °C 180 Tj 11 Typ. transfer characteristics 12 Typ. gate charge ID= f ( VGS ); VDS≥ 2 x ID x RDS(on)max VGS = f (Q Gate) parameter: ID = 11.6 A pulsed parameter: tp = 10 µs 40 16 A SPP12N50C3 V 25°C 32 12 24 VGS ID 28 150°C 20 0,2 VDS max 10 0,8 VDS max 8 16 6 12 4 8 2 4 0 0 Rev. 3.0 1 2 3 4 5 6 7 8 V 10 VGS Page 7 0 0 10 20 30 40 50 nC 70 Q Gate 2007-08-30 SPP12N50C3 SPI12N50C3, SPA12N50C3 13 Forward characteristics of body diode 14 Avalanche SOA IF = f (VSD) IAR = f (tAR) parameter: Tj , tp = 10 µs par.: Tj ≤ 150 °C 2 SPP12N50C3 10 11 A A 9 8 IF IAR 10 1 7 6 5 T j(START) =25°C 4 10 0 Tj = 25 °C typ 3 T j(START) =125°C Tj = 150 °C typ 10 -1 0 0.4 0.8 Tj = 25 °C (98%) 2 Tj = 150 °C (98%) 1 1.2 1.6 2 2.4 V 0 -3 10 3 10 -2 10 -1 10 0 10 1 10 2 4 µs 10 tAR VSD 15 Avalanche energy 16 Drain-source breakdown voltage EAS = f (Tj) V(BR)DSS = f (Tj) par.: ID = 5.5 A, V DD = 50 V 350 600 SPP12N50C3 V V(BR)DSS mJ EAS 250 200 570 560 550 540 530 520 150 510 500 100 490 480 50 470 460 0 20 40 60 80 100 120 °C 160 Tj Rev. 3.0 450 -60 -20 20 60 100 °C 180 Tj Page 8 2007-08-30 SPP12N50C3 SPI12N50C3, SPA12N50C3 17 Avalanche power losses 18 Typ. capacitances PAR = f (f ) C = f (VDS) parameter: E AR=0.6mJ parameter: V GS=0V, f=1 MHz 10 4 300 pF Ciss W 200 C PAR 10 3 10 2 Coss 150 10 1 100 Crss 10 0 50 0 4 10 10 5 Hz 10 6 10 -1 0 100 200 300 V 500 VDS f 19 Typ. Coss stored energy Eoss=f(VDS) 6 Eoss µJ 4 3 2 1 0 0 100 200 300 V 500 VDS Rev. 3.0 Page 9 2007-08-30 SPP12N50C3 SPI12N50C3, SPA12N50C3 Definition of diodes switching characteristics Rev. 3.0 Page 10 2007-08-30 SPP12N50C3 SPI12N50C3, SPA12N50C3 PG-TO-220-3-1, PG-TO220-3-21 Rev. 3.0 Page 11 2007-08-30 SPP12N50C3 SPI12N50C3, SPA12N50C3 PG-TO220-3-31/3-111 Fully isolated package (2500VAC; 1 minute) Rev. 3.0 Page 12 2007-08-30 SPP12N50C3 SPI12N50C3, SPA12N50C3 PG-TO262-3-1, PG-TO262-3-21 (I²-PAK) Rev. 3.0 Page 13 2007-08-30 SPP12N50C3 SPI12N50C3, SPA12N50C3 Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Rev. 3.0 Page 14 2007-08-30