INFINEON TC1920

Da ta S he et , V 1. 3, O ct . 20 03
T C 1 92 0
3 2 - B i t S i n g le - C h i p M ic r o c o n t r o l l e r
M i c ro c o n t ro l l e rs
N e v e r
s t o p
t h i n k i n g .
Edition 2003-10
Published by Infineon Technologies AG,
St.-Martin-Strasse 53,
D-81541 München, Germany
© Infineon Technologies AG 2003.
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted
characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding
circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address
list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in
question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
Da ta S he et , V 1. 3, O ct . 20 03
T C 1 92 0
3 2 - B i t S i n g le - C h i p M ic r o c o n t r o l l e r
M i c ro c o n t ro l l e rs
N e v e r
s t o p
t h i n k i n g .
TC1920
Preliminary
Revision History:
2003-10
Previous Version:
1.2
Page
V 1.3
Subjects (major changes since last revision)
ASC and SSC baudrates calculated for 50 MHz
DC parameters updated with characterization values
AC parameters updated with characterization values
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
TC1920
Preliminary
TC1920 Features
The TC1920 offers a 32 bit TriCore based microcontroller/DSP, which is mainly designed
for automotive telematics applications. Due to its high integration, this microcontroller/
DSP offers high system performance at minimized cost. Typical telematics functions
processed by RISC-, DSP- and speech- (CODEC) modules are now combined in one
component. The combination of dedicated automotive peripherals (CAN, J1850) and
standard peripherals (ADC, SSC/SPI, ASC and IIC), makes this microcontroller/DSP the
engine tailored for a wide variety of telematics applications such as navigation,
emergency call, speech interface or communication interface.
• TriCore CPU/DSP with 4-Stage Pipeline:
– 100 MHz max. CPU clock frequency, 50 MHz max. FPI Bus clock frequency.
– 32-bit super-scalar TriCore main CPU
– 4-GByte unified memory space support
– Fast context-switching
– Dual 16 x 16 Multiply-Accumulate (MAC) Unit
– 64-bit Local Memory Bus (LMB)
– 32-bit Flexible Peripheral Interface (FPI)
– 32-bit wide external bus unit (EBU)
• 32-bit Peripheral Control Processor (PCP2) with DMA-support
• On-chip memories:
– 24 KByte Code Scratch-Pad RAM (CSRAM)
– 8 KByte Instruction Cache (ICACHE)
– 24 KByte Data Scratch-Pad RAM (DSRAM)
– 8 KByte Data Cache (DCACHE)
– 64 KByte fast LMB SRAM
– 16 KByte FPI SRAM (of which 8 KByte Stand-By SRAM)
– 20 KByte PCP RAM: 16 KByte Code and 4 KByte Data SRAM
– 32 KByte Boot ROM
• Product Specific Peripherals:
– 14-bit double CODEC with flexible sample rates and FIFO support
• Automotive Peripherals:
– Two independent CAN-nodes (TwinCAN) with gateway support
– J1850 (SDLM)
• Standard Peripherals:
– 6-channel, 8-/10-/12-bit ADC
– 3 x asynchronous serial interface (ASC) with IrDa-support
– 1 SPI-compatible synchronous serial interface
– 2-channel IIC
– 6 x 32 bit timer
– ≥ 16 I/O- and interrupt pins (GPIO)
• General Peripherals:
– Real time clock (RTC)
Data Sheet
1
V 1.3, 2003-10
TC1920
Preliminary
– Watchdog timer (WDT)
• Clock Generation Unit with PLL
• Debug Support:
– Debug Interface (OCDS level 2) with Trace Port
• Power saving features
• Dual voltage supply (1.8V core, 3.3V I/O)
• -40°C to +85°C temperature range
• LBGA-260 package
Data Sheet
2
V 1.3, 2003-10
TC1920
Preliminary
Block Diagram
The figure below shows the block diagram of the TC1920 device.
LFI
Bridge
ADC
SRAM
64 kB
EBU
3 2 b it E xte rn a l M em ory B u s
ASC0
6 4 -b it Lo ca l M em o ry B us (L M B )
MMU
CO DEC
PM U
24 K B
CSRAM
8KB
IC A C H E
G PTU0
TriCore
(T C 1 .3 )
C PS
ASC1
DM U
24 K B
DSRAM
8K B
DCACHE
ASC2
G PTU1
SSC
Port
Control
IIC
PCO DE
1 6kB
OCD S
Debug
Interface
/JTAG
PCP2
PRAM
4kB
Tw in
CAN
F P I-B u s Inte rface
J1850
32 -bit F le xible P e rip h e ra l In te rface (F P I)B u s
Boot
RO M
32kB
SRAM
16 kB
R TC
STM
SCU
TC1920
Figure 1
Data Sheet
TC1920 Device Block Diagram
3
V 1.3, 2003-10
TC1920
Preliminary
Target applications
•
•
•
•
•
•
•
•
•
On-board and off-board navigation
Emergency call systems
Car speech interface
Car communication interface
Gateways: automotive - infotainment
Occupant Sensing
Drowsiness detection
Rear- & side-mirror replacement
Pre-crash sensing
Logical Symbol
A lte rn a te F u n ctio ns
P LL _C T R L
TEST
CLKOUT
G e ne ral
C on trol
HDRST
PORST
NMI
BYPASS
P o rt 2
16 -bit
CAN0/1 / J1850 / SSC
A S C 0 / IIC
P ort 3
1 6-b it
A S C 1 /2 / A D C M U X
A D C E X T IN / G P T U 0
C O D E C 0/1
XTAL4
VD D O SC 1
83
TC 1920
E x tern al B us In terface
VD D O SC 2
VSS O SC 2
VD D P LL
16
P o rt 5
VSS PL L
8
VD D
G P IO / T rac e
O C D S /JT A G
C on trol
VD D P
D igita l C irc uitry
P o w e r S u p p ly
V D DS B
V D D_ C O D 0
VSS
A D C A nalog
Pow er S upply
Data Sheet
G P IO /
G PTU1
10
XTAL3
Figure 2
P o rt 1
8-bit
ADC
XTAL2
VSS O SC 1
G P IO /E X Ix ,
Codec Bypass
6
XTAL1
O scillators
PLL
P o rt 0
8-b it
V SS _C O D 0
VD D A
V D D_ C O D 1
VS SA
V SS _C O D 1
V AR E F
V R EF_ CO D
VAG N D
V G N D _C O D
CO DEC
A na lo g P o w er
S u pp ly
Logical Symbol of the TC1920 Device
4
V 1.3, 2003-10
TC1920
Preliminary
Pin Configuration
A
B
C
D
1
2
V SS
V DDR
AD 31
V SS
AD 27 AD 30
3
4
5
6
7
TM_
V SS P
VDD_
C T R L 1 X T A L 3 _ O S C X TA L 1 O S C 1
VDD
V SS
AD 26 AD 28 A D 29
TM_
V S S_
C T R L 0 X TA L4 O S C X T A L 2
V DD
VSS
VDD R
VDD
9
10
11
12
13
14
15
16
17
18
V SS_
P 4 .5
P 4 .3
P 4 .1
V SS A_
A I0 -
A I1 -
AO+
VDD
CEXT
NMI
A O1 -
AO-
VDD
BY PORS
B
T
PASS
GUARD
P LL C T R L
V SS _
_A0
P LL
P 4 .2
V A G N D _ V S S P _ V R E F_
A DC
V DDP_
V SS_
VDD_
OS C2
OSC
GUARD
GUARD
V SS
P 4 .4
P 4 .0
ADC
P LL
ADC
A DC
A DC
COD
V DD P_ V GND_
V D D P _ V S S P _ V D D _ V S S P _ V A R E F_ V S S P _
OSC
A
ADC
VDD_
OSC
E
8
AO1+
V SSP_ C O D E C LK
C O D 0 C _ D IS O U T
P 2 .1 1
C
A I1 +
V SSA_ H R S T
P 2 .13 P 2 .1 0
D
COD
A I0 +
ADC
COD0
V DDP_
AD 23 AD 24 A D 25 AD 18
P 2 .1 4
P 2 .8
P 2 .4
E
P 2 .1 5 P 2 .1 2
P 2 .5
P 2 .3
F
COD0
F
AD 19 AD 20 A D 22 AD 21
G
AD 13 AD 14 A D 15 AD 17
V DDP
VDDP
V SS
V SS
V DDP
VDDP
P 2 .9
P 2 .7
P 2 .1
P 2 .0
G
H
AD 10 AD 11 A D 12 AD 16
V DDP
VSS
V SS
V SS
V SS
VDDP
P 2 .6
P 2 .2
P 3 .14 P 3 .1 3
H
J
AD8
AD9
AD7
V DD
V SS
VSS
V SS
V SS
V SS
VSS
P 3 .1 2 P 3 .1 5 P 3 .11
P 3 .9
J
K
AD6
AD5
AD2
AD3
V SS
VSS
V SS
V SS
V SS
VSS
SCAN
M O D E P 3 .1 0
P 3 .7
P 3 .8
K
L
AD4
AD1
AD0
V DD
V DDP
VSS
V SS
V SS
V SS
VDDP
P 3 .0
P 3 .5
P 3 .4
P 3 .6
L
M
EBU BFC LK
A 20
C LK
0
A 22
V DDP
VDDP
V SS
V SS
V DDP
VDDP
P 0 .7
P 3 .1
P 3 .2
P 3 .3
M
N
A23
A18
A 15
A 21
P 0 .6
P 0 .1
P 0 .2
P 0 .5
N
P
A17
A14
A 11
A 19
P 0 .3
P 1 .2
P 1 .7
P 0 .4
P
R
A16
A13
A8
V DD
VDD_
P 1 .1
P 1 .5
P 0 .0
R
A12
BC1
CS2
CS1
CS0
ADV
P 5 .9
P 5 .8
P 5 .5
P 5 .3
SB
T
A10
A9
A6
A4
A1
CAS
BC0
W A IT
CS
OVL
A LE
P 5 .1 2
P 5 .7
P 5 .2
BRK
OU T
TCK
P 1 .3
P 1 .6
T
U
A7
A5
A3
RD
RAS
BC3
CS6
BAA
CS
GLB
CKE
P 5 .1 4 P 5 .1 1
P 5 .6
P 5 .1 B R K IN T D O
TR S T
P 1 .4
U
V
A2
A0
RD/
WR
BC2
CS5
CS4
CS3
CS
CM
M R /W P 5 .1 5 P 5 .1 3 P 5 .1 0
EMU D ELAY
V
1
2
3
4
5
6
7
8
9
10
T O P V IE W
Figure 3
Data Sheet
11
12
13
TMS
P 5 .4
P 5 .0
OC D
SE
TDI
P 1 .0
14
15
16
17
18
LB G A 260
TC1920 Pinning
5
V 1.3, 2003-10
TC1920
Preliminary
Pin List
Table 1
Pin Definitions and Functions
Symbol
Pad1)
BGA In/
Functions
2)
BALL Out
External Bus Unit interface
external address/data bus (multiplexed bus
mode) or data bus (demultiplexed bus mode) for
the EBU:
AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
AD10
AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19
AD20
AD21
AD22
AD23
AD24
AD25
AD26
AD27
AD28
AD29
AD30
AD31
Data Sheet
274
273
272
271
270
269
268
264
263
262
261
260
259
258
253
252
251
250
249
248
247
243
242
241
240
239
238
237
232
231
230
229
L3
L2
K3
K4
L1
K2
K1
J3
J1
J2
H1
H2
H3
G1
G2
G3
H4
G4
E4
F1
F2
F4
F3
E1
E2
E3
D1
C1
D2
D3
C2
B1
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
Address/data bus / Data bus line 0
Address/data bus / Data bus line 1
Address/data bus / Data bus line 2
Address/data bus / Data bus line 3
Address/data bus / Data bus line 4
Address/data bus / Data bus line 5
Address/data bus / Data bus line 6
Address/data bus / Data bus line 7
Address/data bus / Data bus line 8
Address/data bus / Data bus line 9
Address/data bus / Data bus line 10
Address/data bus / Data bus line 11
Address/data bus / Data bus line 12
Address/data bus / Data bus line 13
Address/data bus / Data bus line 14
Address/data bus / Data bus line 15
Address/data bus / Data bus line 16
Address/data bus / Data bus line 17
Address/data bus / Data bus line 18
Address/data bus / Data bus line 19
Address/data bus / Data bus line 20
Address/data bus / Data bus line 21
Address/data bus / Data bus line 22
Address/data bus / Data bus line 23
Address/data bus / Data bus line 24
Address/data bus / Data bus line 25
Address/data bus / Data bus line 26
Address/data bus / Data bus line 27
Address/data bus / Data bus line 28
Address/data bus / Data bus line 29
Address/data bus / Data bus line 30
Address/data bus / Data bus line 31
6
V 1.3, 2003-10
TC1920
Preliminary
Table 1
Pin Definitions and Functions
Symbol
Pad1)
BGA In/
Functions
2)
BALL Out
External Bus Unit interface (continued)
external address bus for the EBU or chip select
output lines.
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
A13
A14
A15
A16
A17
A18
A19
A20
A21
A22
A23
CS0
CS1
CS2
CS3
CS4
CS5
CS6
CSEMU
CSOVL
Data Sheet
9
6
5
4
3
2
307
306
303
302
301
300
299
295
294
293
292
291
290
289
285
284
283
282
28
27
26
25
24
23
22
36
37
V2
T5
V1
U3
T4
U2
T3
U1
R3
T2
T1
P3
R5
R2
P2
N3
R1
P1
N2
P4
M3
N4
M4
N1
R9
R8
R7
V7
V6
V5
U7
V8
T9
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
I/O,s
O,u
O,u
O,u
O,u
O,u
O,u
O,u
O,u
O,u
Address bus line 0
Address bus line 1
Address bus line 2
Address bus line 3
Address bus line 4
Address bus line 5
Address bus line 6
Address bus line 7
Address bus line 8
Address bus line 9
Address bus line 10
Address bus line 11
Address bus line 12
Address bus line 13
Address bus line 14
Address bus line 15
Address bus line 16
Address bus line 17
Address bus line 18
Address bus line 19
Address bus line 20
Address bus line 21
Address bus line 22
Address bus line 23
Chip select output 0
Chip select output 1
Chip select output 2
Chip select output 3
Chip select output 4
Chip select output 5
Chip select output 6
Chip select for emulator region
Chip select for emulator overlay memory
7
V 1.3, 2003-10
TC1920
Preliminary
Table 1
Pin Definitions and Functions
Symbol
Pad1)
BGA In/
Functions
2)
BALL Out
External Bus Unit interface (continued)
control bus for the EBU control lines.
RD
RD/WR
ALE
ADV
BC0
BC1
BC2
BC3
WAIT
BAA
EBUCLK
BFCLK0
CSGLB
CMDELAY
MR/W
CKE
RAS
CAS
11
12
45
46
218
17
16
15
32
33
278
279
38
39
40
44
13
14
U4
V3
T10
R10
T7
R6
V4
U6
T8
U8
M1
M2
U9
V9
V10
U10
U5
T6
I/O,u
I/O,u
O,d
O,u
I/O,u
I/O,u
I/O,u
I/O,u
I/O,u
O,u
O,d
O,d
O,u
I,u
O,u
O,d
O,u
O,u
P0
P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7
Data Sheet
Read control line
Write control line
Address latch enable
Address valid output
Byte control line 0
Byte control line 1
Byte control line 2
Byte control line 3
Wait input
Burst address advance output
External Bus Clock
Additional clock
Chip Select Global
Command Delay
Motorola-style Read/Write
Clock Enable
Row Address Strobe
Column Address Strobe
Port 0
Port 0 serves as 8-bit general purpose I/O port,
that can also be used for the codec digital signals.
P0.[3:0] also serve as external interrupt inputs.
94
95
98
102
103
104
105
106
R18
N16
N17
P15
P18
N18
N15
M15
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
EXI0IN
EXI1IN
EXI2IN
EXI3IN
SCLK
LRCK
MUTE0
MUTE1
8
External interrupt input 0
Ext. interrupt input 1 / DATA_IN
Ext. interrupt input 2 / DATA_OUT
Ext. interrupt input 3 / MCLK
V 1.3, 2003-10
TC1920
Preliminary
Table 1
Pin Definitions and Functions
Symbol
Pad1)
BGA In/
Functions
2)
BALL Out
P1
P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7
Port 1
Port 1 is an 8-bit bidirectional general purpose I/O
port which is also used as input/output for the
GPTU1
83
84
85
86
87
91
92
93
V18
R16
P16
T17
U18
R17
T18
P17
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
Data Sheet
GPTU1 I/O line 0
GPTU1 I/O line 1
GPTU1 I/O line 2
GPTU1 I/O line 3
GPTU1 I/O line 4
GPTU1 I/O line 5
GPTU1 I/O line 6
GPTU1 I/O line 7
Port 2
Port 2 is a 16-bit bidirectional general purpose I/O
port which is also used as input/output for serial
interfaces (CAN, J1850, IIC, ASC0, SSC)
P2
P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7
P2.8
P2.9
P2.10
P2.11
P2.12
P2.13
P2.14
P2.15
GPTU1.0
GPTU1.1
GPTU1.2
GPTU1.3
GPTU1.4
GPTU1.5
GPTU1.6
GPTU1.7
131
132
133
137
138
139
140
141
142
143
147
148
149
150
151
152
G18
G17
H16
F18
E18
F17
H15
G16
E17
G15
D18
C18
F16
D17
E16
F15
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
RXDCAN0
CAN 0 receiver input
TXDCAN0
CAN 0 transmitter output
RXDCAN1
CAN 1 receiver input
TXDCAN1
CAN 1 transmitter output
RXJ1850
SDLM receiver input
TXJ1850
SDLM transmitter output
SCL0
IIC Serial Port Clock line 0
SDA0
IIC Serial Port Data line 0
SCL1
IIC Serial Port Clock line 1
SDA1
IIC Serial Port Data line 1
RXD0
ASC0 receiver input/output
TXD0
ASC0 transmitter output
SCLK
SSC clock line
MRST
SSC master receive/slave transmit
MTSR
SSC master transmit/slave receive
PLL_CLC.LOCK Monitoring of PLL_CLC.LOCK
9
V 1.3, 2003-10
TC1920
Preliminary
Table 1
Pin Definitions and Functions
Symbol
Pad1)
BGA In/
Functions
2)
BALL Out
Port 3
Port 3 is a 16-bit bidirectional general purpose I/O
port which is also used as input/output for serial
interfaces (ASC0 and ASC1), for timer (GPTU0)
and ADC control lines
P3
P3.0
P3.1
P3.2
P3.3
P3.4
P3.5
P3.6
P3.7
P3.8
P3.9
P3.10
P3.11
107
108
109
110
115
116
117
118
119
120
124
125
L15
M16
M17
M18
L17
L16
L18
K17
K18
J18
K16
J17
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
P3.12
126
J15
I/O
P3.13
127
H18
I/O
P3.14
128
H17
I/O
P3.15
129
J16
I/O
Data Sheet
GPTU0.0
GPTU0.1
GPTU0.2
GPTU0.3
GPTU0.4
GPTU0.5
GPTU0.6
GPTU0.7
RXD1
TXD1
RXD2
TXD2
GPTU0 I/O line 0
GPTU0 I/O line 1
GPTU0 I/O line 2
GPTU0 I/O line 3
GPTU0 I/O line 4
GPTU0 I/O line 5
GPTU0 I/O line 6
GPTU0 I/O line 7
ASC1 receiver input/output
ASC1 transmitter output
ASC2 receiver input/output
ASC2 transmitter output
OSCBYP latch-in input
ADCMUX0/EXI5IN/HWCFG0
ADC external mux control 0 /
external interrupt input 5 /
hardware configuration input 0 /
ADCMUX1/EXI6IN/HWCFG1
ADC external mux control 1 /
external interrupt input 6 /
hardware configuration input 1
ADCMUX2/EXI7IN/HWCFG2
ADC external mux control 2 /
external interrupt input 7/
hardware configuration input 2
ADEXTIN
ADC external trigger input
10
V 1.3, 2003-10
TC1920
Preliminary
Table 1
Pin Definitions and Functions
Symbol
Pad1)
BGA In/
Functions
2)
BALL Out
P4
P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
Port 4
Port 4 provides the 6 analog input lines for the AD
Converter (ADC).
190
191
192
193
194
195
C11
A11
B10
A10
C10
A9
I
I
I
I
I
I
180
181
169
165
176
177
170
172
162
CODEC_DIS 163
AI0+
AI0AO0+
AO0AI1+
AI1AO1+
AO1CEXT
D13
A13
A15
B15
D14
A14
C14
B14
A17
C16
I
I
O
O
I
I
O
O
I
I
DEBUG
82
81
80
76
75
73
72
71
114
202
TM_CTRL0 215
TM_CTRL1 216
Data Sheet
CODEC 0 Non-Inverting Input
CODEC 0 Inverting Input
CODEC 0 Non-Inverting Output
CODEC 0 Inverting Output
CODEC 1 Non-Inverting Input
CODEC 1 Inverting Input
CODEC 1 Non-Inverting Output
CODEC 1 Inverting Output
Codec External Clock Input
Codec Disable (power saving)
DEBUG (OCDS/JTAG Control)
U17
T16
V17
U16
T15
V16
U15
T14
I,d
I,u
I,u
O
I,u
I,u
I,u
O
Test
SCAN_MODE
PLLCTRL_AO
Analog input 0
Analog input 1
Analog input 2
Analog input 3
Analog input 4
Analog input 5
CODEC
CODEC
TRST
TCK
TDI
TDO3)
TMS
OCDSE
BRKIN
BRKOUT3)
AIN0
AIN1
AIN2
AIN3
AIN4
AIN5
Reset/module enable
JTAG clock input
Serial data input
Serial data output
State machine control signal
OCDS enable input
OCDS break input
OCDS break output
Test pins
K15
B8
B4
A3
I
I
I
I
Scan Mode
Control current of different analog stages
Test Mode Control 0
Test Mode Control 1
11
V 1.3, 2003-10
TC1920
Preliminary
Table 1
Pin Definitions and Functions
Symbol
Pad1)
BGA In/
Functions
2)
BALL Out
Port 5
Trace Lines to output CPU or PCP2 OCDS level 2
trace signals
P5
TRACE
[15:0]
P5.0
P5.1
P5.2
P5.3
P5.4
P5.5
P5.6
P5.7
P5.8
P5.9
P5.10
P5.11
P5.12
P5.13
P5.14
P5.15
70
69
68
67
63
62
61
60
59
58
54
53
52
51
48
47
V15
U14
T13
R14
V14
R13
U13
T12
R12
R11
V13
U12
T11
V12
U11
V11
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
CPU or PCP2 trace output 0 / GPIO
CPU or PCP2 trace output 1 / GPIO
CPU or PCP2 trace output 2 / GPIO
CPU or PCP2 trace output 3 / GPIO
CPU or PCP2 trace output 4 / GPIO
CPU or PCP2 trace output 5 / GPIO
CPU or PCP2 trace output 6 / GPIO
CPU or PCP2 trace output 7 / GPIO
CPU or PCP2 trace output 8 / GPIO
CPU or PCP2 trace output 9 / GPIO
CPU or PCP2 trace output 10 / GPIO
CPU or PCP2 trace output 11 / GPIO
CPU or PCP2 trace output 12 / GPIO
CPU or PCP2 trace output 13 / GPIO
CPU or PCP2 trace output 14 / GPIO
CPU or PCP2 trace output 15 / GPIO
BYPASS
161
B17
I,d
PLL Bypass Control Input.
NMI
160
A18
I,u
Non-Maskable Interrupt Input
HRST
159
D16
I/O,u Bidirectional Hardware Reset
PORST
158
B18
I,u
Power-on Reset Input
PORST must be active during power-up of the
device
CLKOUT
156
C17
O
CPU Clock Output
XTAL1
XTAL2
208
207
A6
B7
I
O
PLL/Oscillator Input/Output
XTAL3
XTAL4
214
213
A4
B5
I
O
Real Time Clock Oscillator input/output (32 KHz)
VDD_OSC1
206
A7
-
Main Oscillator Power Supply (1.8V)
VDD_OSC2
212
C6
-
RTC Oscillator Power Supply (1.8V)
VSS_OSC
211
B6
-
RTC & Main Oscillator Ground (1.8V)
VDDP_OSC
205
D7
-
RTC & Main Oscillator Power Supply (3.3V)
Data Sheet
12
V 1.3, 2003-10
TC1920
Preliminary
Table 1
Pin Definitions and Functions
Symbol
Pad1)
BGA In/
Functions
2)
BALL Out
VDDP_OSC
210
C7
-
RTC & Main Oscillator Power Supply (3.3V)
VSSP_OSC
203
D8
-
RTC & Main Oscillator Ground (3.3V)
VSSP_OSC
209
A5
-
RTC & Main Oscillator Ground (3.3V)
VDD_PLL
198
D9
-
PLL Supply (1.8V)
VSS_PLL
199
B9
-
PLL Ground (1.8V)
VDDP_ADC
185
C12
-
ADC Port and Analog Part Power Supply (3.3V)
VSSP_ADC
184
B12
-
ADC Port and Analog Part Ground (3.3V)
VSSP_ADC
186
D12
-
ADC Port and Analog Part Ground (3.3V)
VSSP_ADC
196
D10
-
ADC Port and Analog Part Ground (3.3V)
VSSA_ADC
187
A12
-
ADC Analog Ground (3.3V)
VAREF_ADC
189
D11
-
ADC Reference Voltage
VAGND_ADC 188
B11
-
ADC Reference Ground
VDDP_COD0
166
E15
-
Codec 0 Port and Analog Part Power Supply
(3.3V)
VSSA_COD0
167
D15
-
Codec 0 Analog Ground
VDDP_COD1
175
E15
-
Codec 1 Port and Analog Part Power Supply
(3.3V)
VSSA_COD1
174
D15
-
Codec 1 Analog Ground
VSSP_COD0
168
C15
-
Codec 0 Pad Ground (3.3V)
VSSP_COD1
173
C15
VREF_COD
178
B13
-
Codec 0,1 Reference Voltage
VGND_COD
179
C13
-
Codec 0,1 Reference Ground
VDDR
217
A2
-
Stand-By SRAM Power Supply (1.8V)
VDDR
224
C5
-
Stand-By SRAM Power Supply (1.8V)
VDD_GUARD 200
C9
-
Guard Ring Supply (1.8V)
VSS_GUARD
201
A8
-
Guard Ring Ground (1.8V)
VSS_GUARD
204
C8
-
Guard Ring Ground (1.8V)
VDD_SB
97
R15
-
Stand-By SRAM Battery Backed Stand-By Power
Supply (1.8V)
VDDP
4)
-
Port Pins Power Supply (3.3V)
Data Sheet
Codec 1 Pad Ground (3.3V)
13
V 1.3, 2003-10
TC1920
Preliminary
Table 1
Pin Definitions and Functions
Symbol
Pad1)
VDD
5)
-
Core Power Supply (1.8V)
VSS
6)
-
Ground for Core and Ports
BGA In/
Functions
2)
BALL Out
1)
The pin number describes the position of a signal on the silicon. The mapping of the pin number to the
corresponding BGA ball is done according to the used package.
2)
The notification ’,u’ after the input/output type defines an internal pull-up resistor. An internal pull-down resistor
is indicated by ’,d’. For the lines AD[31:0] and A[23:0], the type of the pull device can be selected ’s’.
3)
Output driver comparable to GPIO Medium Driver/Sharp Edge.
4)
The BGA balls for the 3.3V port power supply are: G11, G12, G7, G8, H12, H7, L12, L7, M11, M12, M7, M8.
5)
The BGA balls for the 1.8V core power supply are:
A16, B16, B3, C4, D5, J4, L4, R4.
6)
The BGA balls for the digital ground are:
A1, B2, C3, D4, D6, G10, G9, H10, H11, H8, H9, J10, J11, J12, J7, J8, J9, K10, K11, K12, K7, K8, K9, L10,
L11, L8, L9, M10, M9.
Data Sheet
14
V 1.3, 2003-10
TC1920
Preliminary
System Architecture and Control
32-Bit TriCore CPU
•
•
•
•
•
•
•
•
•
•
32-bit architecture with 4-GByte unified data, program and input/output address space
Fast automatic context-switch
Dual 16 x 16 Multiply-accumulate (MAC) unit
Saturating integer arithmetic
Register based design with multiple variable register banks
Bit handling
Packed data operations
Zero overhead loop
Precise exceptions
Flexible power management
Instruction Set with High Efficiency:
• 16/32-bit instructions for reduced code size
• Little endian byte ordering with support for big and little endian byte ordering at bus
interface
• Boolean, array of bits, character, signed and unsigned integer, integer with saturation,
signed fraction, double word integers and IEEE-754 single precision floating-point
data types
• Bit, 8-bit byte, 16-bit half word, 32-bit word and 64-bit double word data formats
• Powerful instruction set
• Flexible and efficient addressing mode for high code density
On-chip Code Memories
PMU Scratch-Pad SRAM (CSRAM):
The PMU memory consists of 24-KByte Code Scratchpad RAM (CSRAM) and 8-KByte
Instruction Cache (ICACHE).
Address range of the CSRAM:
• D400 0000H - D400 5FFFH
Boot ROM (BROM):
The TC1920 contains 32 KByte of Boot ROM memory, which can be used for device
operating mode initialization routines, bootstrap loader support or test functions.
The address range of the Boot ROM is:
• DFFF 8000H – DFFF FFFFH
Data Sheet
15
V 1.3, 2003-10
TC1920
Preliminary
On-chip Data Memories
DMU Scratch-Pad SRAM (DSRAM):
The DMU memory consists of 24-KByte Data Scratchpad RAM (DSRAM) and 8-KByte
Data Cache (DCACHE).
Address range of the DSRAM:
• D000 0000H - D000 5FFFH
Local Memory Bus Memory (LMBRAM):
Address range of the 64 KByte Local Memory Bus Memory:
• C000 0000H - C000 FFFFH (in segment 12 for cached operation)
• E800 0000H - E800 FFFFH (in segment 14 for non-cached operation)
FPI-Bus Data Memory (FPIDRAM):
The FPI-Bus Data Memory (FPIDRAM) is a 16-KByte static RAM located on the FPIBus. It contains two parts: FPIDRAM0 and FPIDRAM1. One half of it (FPIDRAM1) can
be used for standby power operation.
Address range of the FPI Data Memory:
• 9FFF 8000H - 9FFF BFFFH (in segment 9 for cached operation)
• BFFF 8000H - BFFF BFFFH (in segment 11 for non-cached operation)
On-chip PCP Memories
PCP Code Memory (PCODE):
The address range of the 16 KByte PCP Code Memory (PCODE) is:
• F002 0000H - F002 3FFFH
PCP Data Memory (PRAM):
The address range of the 4 KByte PCP Data Memory (PRAM) is:
• F001 0000H - F001 0FFFH
Data Sheet
16
V 1.3, 2003-10
TC1920
Preliminary
System Control Unit (SCU)
The System Control Unit of the TC1920 basically handles all system control tasks. All
these system functions are tightly coupled and therefore they are handled physically by
one unit, the SCU. The system tasks of the SCU are:
•
•
•
•
•
•
•
•
Clock Generation and Control
Reset control
Power Management control and wake-up
Watchdog timer
Trace port control
Device identification
Standby SRAM control
External interrupt capability (8 sources)
System timer (STM)
The System Timer is designed for global system timing applications requiring both high
precision and long range. It is used by the CPU for software operating system issues.
Features:
•
•
•
•
•
•
Free-running 56-bit counter
All 56 bits can be read synchronously
Different 32-bit portions of the 56-bit counter can be read synchronously
Driven by clock, f STM (normally identical with the system clock).
Counting begins at power-on reset
Continuous operation is not affected by any reset condition except power-on reset
Data Sheet
17
V 1.3, 2003-10
TC1920
Preliminary
External Bus Interface (EBU_LMB)
EBU_LMB is connected to the Local Memory Bus (LMB) of the TC1920 and also to the
FPI Bus. EBU_LMB is always a slave on the LMB and a master/slave on the FPI bus.
Any LMB masters thus can access external memories or devices through EBU_LMB.
Currently the maximum length of the bursts are according to the size of program and
data cache lines, i.e. 8 x 32-bit words. Single transfers (non-burst) are supported for 8bit, 16-bit and 32-bit wide access.
E B U _L M B
XBC
External Bus 32-bit
L M B B us 64 -bit
DME
F P I B us 32 -bit
XM I
SDRAM
B uffer
S lo w e r
D evices
50 M H z
E xterna l
M aster
E xte rn al B us U nit
E B U L 30 4 5 _L
Figure 4
EBU_LMB block diagram
Features supported in EBU_LMB:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Local Memory Bus (LMB 64-bit) support.
External bus frequency: LMB frequency = 1:1 or 1:2 or 1:4.
Highly programmable access parameters.
Intel-style and Motorola-style peripheral/device support.
SDRAM support (burst access, multibanking, precharge, refresh).
16- and 32-bit SDRAM data bus and support of 64, 128 and 256MBit devices.
Burst flash support.
Multiplexed access (address & data on the same bus) when SDRAM is not present on
the External Bus.
Data Buffering: Code Prefetch Buffer, Read/Write Buffer.
External master arbitration (compatible to C166 and other TriCore devices).
8 programmable address regions (1 dedicated for emulator).
Little-endian and Big-endian support.
CSGLB signal, dedicated pin, bit programmable to combine one or more CS lines, for
buffer control.
RMW signal reflecting a read-modify-write action.
Signal for controlling data flow of slow-memory buffer.
Slave unit for external (off-chip) master to access devices on the FPI bus.
Master unit for FPI master to access external (off-chip) devices.
Data Mover Engine.
Data Sheet
18
V 1.3, 2003-10
TC1920
Preliminary
Interrupt System
• Flexible interrupt prioritizing scheme with 256 interrupt priority levels
• Fast interrupt response
• Service requests are serviced by the CPU or by the PCP (two independent interrupt
buses, that can be selected by each interrupt source)
P C P In te rru p t
A rb itra tio n B u s
C P U In te rru p t
A rb itra tio n B u s
P C P In te rru p t C o n tro l
M o d u le A
M o d u le
K e rn e l
n S e rvice
R e q u e st
Nodes
PC P
In te rru p t
C o n tro l
U n it
(P IC U )
1 2 S e rvice
R e q u e st
Nodes
M o d u le B
M o d u le
K e rn e l
n S e rvice
R e q u e st
Nodes
Figure 5
Data Sheet
12
M a in In te rru p t C o n tro l
CPU
In te rru p t
C o n tro l
U n it
(IC U )
M o d u le C
M o d u le
K e rn e l
PCP
K e rn e l
n S e rvice
R e q u e st
Nodes
4 S e rvice
R e q u e st
Nodes
CPU
C o re
4
Block Diagram Interrupt System
19
V 1.3, 2003-10
TC1920
Preliminary
Peripheral Control Processor (PCP)
C od e
M e m ory
PCODE
P a ra m e te r
M e m o ry
PRAM
PCP
P roc e s so r
C o re
P C P S e rvice
R eq . N o d e s
PSRNs
F P I-In te rfa c e
F P I B us
P C P In te rru p t
A rbitra tio n B u s
C P U In te rrup t
A rbitratio n B u s
Figure 6
P C P In te rrup t
C o ntro l U n it
P IC U
M C B 0 4 78 4 _ m o d
PCP block diagram
The PCP is designed to work in partnership with a host CPU and performs many of the
tasks that would conventionally be performed by CPU interrupt service routines or a
DMA controller. The PCP off-loads the host CPU from most of the time critical interrupts,
easing the implementation of systems based on operating systems.
In principle the PCP may be considered to be a conventional processor which only
executes code in response to interrupt service requests (i.e. has no processing which is
not at interrupt level). It has an architecture which efficiently supports DMA type of bus
transactions to / from arbitrary devices and memory addresses and also some
reasonable computational capabilities. Whenever the PCP responds to a PCP interrupt
request (which has a specific interrupt priority level) it will use a register set ("context")
specific to that individual interrupt level and will also generally execute code which is also
specific to that interrupt level. For this reason the term "Channel" will be used throughout
the remainder of this document to refer to all PCP resources associated with a particular
PCP interrupt level.
The architecture is flexible enough to allow the implementation of a subset of the
commands/instructions as a simple DMA controller.
The PCP has a Harvard architecture (i.e. separate code and data memory spaces). Any
FPI bus master (including the PCP itself) can access both PCP code (PCODE) and data
(PRAM) memory via the FPI bus.
Data Sheet
20
V 1.3, 2003-10
TC1920
Preliminary
FPI Bus
The Flexible Peripheral Interconnect Bus is designed with the requirements of highperformance Systems-on-Chip in mind.
Key Features:
•
•
•
•
•
•
•
•
•
•
Core independent
Multi-master capability
Demultiplexed operation
Clock synchronous
Peak transfer rate of up to 200 MBytes/s (@ 50 MHz bus clock)
Address and data bus scalable (32 bit address bus, 32 bit data bus )
8-/16- and 32 bit data transfers
Broad range of transfer types from single to multiple data transfers
Burst transfer capability
EMI and power consumption minimized
LMB-Bus
The Local Memory Bus is a synchronous, pipelined, split bus with variable block size
transfer support. All signals relate to the positive clock edge.
The protocol supports 8,16,32 & 64 bits single beat transactions and variable length 64
bits block transfers.
Key Features:
The LMB provides the following features:
•
•
•
•
•
•
•
Optimized for high speed and high performance
32 bit address, 64 bit data busses
Central simple per cycle arbitration
Slave controlled wait state insertion
Address pipelining (max. depth - 2)
Split transactions
Variable block length - 2, 4 or 8 beats of 64 bit data
Data Sheet
21
V 1.3, 2003-10
TC1920
Preliminary
On-Chip Debug System (OCDS)
The TC1920 architecture is supporting OCDS level 1 and 2.
Level
Run Time
Control
System access via
Basic PC trace
JTAG
Trace bus
1
Yes
Yes
No
No
2
Yes
Yes
Yes
Yes
Table 2
Core-related and System Control Modules
Module
Address Range
I/O Lines
Interrupt
Nodes
TriCore CPU
Slave Registers (CPS)
F7E0 FF00H F7E0 FFFFH
-
CPU_SRC0..3
CPU_SRCSB
Memory Management1) F7E1 8000H Unit (MMU)
F7E1 80FFH
-
-
Segment Protection
Registers1)
F7E1 C000H F7E1 C0FFH
-
-
Core Debug1)
(Core OCDS)
F7E1 FD00H F7E1 FDFFH
-
-
TriCore CPU1)
SFR, GPR
F7E1 FE00H F7E1 FFFFH
-
-
Program Memory Unit2) F87F FD00H (PMU)
F87F FDFFH
-
-
Data Memory Unit2)
(DMU)
F87F FC00H F87F FCFFH
-
-
Peripheral Control
Processor (PCP)
F000 3F00H F000 3FFFH
-
PCP_SRC0..11
External Bus Unit
(EBU)
F800 0000H F800 03FFH
AD[31:0], A[23:0],
27 control lines
-
System Control Unit
(SCU)
F000 0000H F000 00FFH
4 XTAL, PORST,
EXI_SRC0..4
HRST, 8 EXIN, NMI, NMI3)
4 test, CLKOUT,
BYPASS
FPI Bus Control Unit
(BCU)
F000 0200H F000 02FFH
-
Data Sheet
22
BCU_SRC
V 1.3, 2003-10
TC1920
Preliminary
Table 2
Core-related and System Control Modules (cont’d)
Module
Address Range
I/O Lines
Interrupt
Nodes
LMB Bus Control Unit
(LCU)
F87F FE00H F87F FEFFH
-
LCU_SRC
LMB to FPI Bus Bridge
(LFI)
F87F FF00H F87F FFFFH
-
-
Port Control
(Ports 0, 1, 2, 3, 5)
F000 2800H F000 2CFFH
P0 (7), P1(7),
P2(15), P3(15),
P5(15)
-
Debug Support
(JTAG, OCDS)
F000 0400H F000 04FFH
TRST, TCK, TDI,
TDO, TMS, OCDSE,
BRKIN, BRKOUT,
16 trace outputs
1)
This address range is also accessed via the CPS by the FPI bus.
2)
This address range is accessed via the LMB.
3)
The NMI is directly connected to the core (no SRC) and always acts on the highest priority. It is used as highest
priority interrupt for the NMI input, the watchdog, the PLL and for wake-up via the RTC or via the EXIx inputs.
On-Chip Peripheral Units
The TC1920 offers several on-chip peripheral units such as serial controllers, timer units,
AD converter and Codec interface. Within the TC1920 all these peripheral units are
connected to the TriCore CPU/system via the FPI (Flexible Peripheral Interconnect) Bus.
Several IO lines on the TC1920 ports are reserved for these peripheral units to
communicate with the external world.
Peripheral Units of the TC1920:
• Three Asynchronous/Synchronous Serial Channels with baudrate generator, parity,
framing and overrun error detection, IrDA mode, FIFO buffers.
• One High Speed Synchronous Serial Channels with programmable data length and
shift direction
• TwinCAN Module with two interconnected CAN nodes for high efficiency data
handling via FIFO buffering and gateway data transfer
• Serial Data Link Module compliant to SAE Class B J1850 specification
• IIC module with connection to 2 external busses
• 2 multi-functional General Purpose Timer Units with three 32-bit timer/counter
• One Analog-to-Digital Converter Units with 8-bit, 10-bit, or 12-bit resolution and 6
analog inputs
• Dual channel Codec interface
• GPIO blocks
Data Sheet
23
V 1.3, 2003-10
TC1920
Preliminary
Table 3
Peripheral Modules
Module
Address Range
I/O Lines
Interrupt Nodes
Asynchronous
Serial Channel 0
(ASC0)
F000 0A00H F000 0AFFH
RDX0, TDX0
ASC0_TSRC
ASC0_RSRC
ASC0_ESRC
ASC0_TBSRC
Asynchronous
Serial Channel 1
(ASC1)
F000 0B00H F000 0BFFH
RDX1, TDX1
ASC1_TSRC
ASC1_RSRC
ASC1_ESRC
ASC1_TBSRC
Asynchronous
Serial Channel 2
(ASC2)
F000 0C00H F000 0CFFH
RDX2, TDX2
ASC2_TSRC
ASC2_RSRC
ASC2_ESRC
ASC2_TBSRC
Synchronous Serial F000 0800H Channel (SSC)
F000 08FFH
SCLK, MRST,
MTSR
SSC_TSRC
SSC_RSRC
SSC_ESRC
Inter-IC Bus (IIC)
F000 0500H F000 05FFH
SCL[1:0],
SDA[1:0]
IIC_XP0SRC
IIC_XP1SRC
IIC_XP2SRC
Real Time Clock
(RTC)
F000 0100H F000 01FFH
-
RTC_SRC
System Timer Unit
(STM)
F000 0300H F000 03FFH
-
-
General Purpose
Timer 0 (GPTU0)
F000 0700H F000 07FFH
GPTU0[7:0]
GPTU0_SRC0..7
General Purpose
Timer 1 (GPTU1)
F000 0600H F000 06FFH
GPTU1[7:0]
GPTU1_SRC0..7
CAN (TwinCAN)
F010 0000H F010 0BFFH
RXDCAN[1:0],
TXDCAN[1:0]
CAN_SRC0..7
SDLM (J1850)
F000 2600H F000 26FFH
RXJ1850,
TXJ1850
SDLM_SRC0..1
Data Sheet
24
V 1.3, 2003-10
TC1920
Preliminary
Table 3
Peripheral Modules (cont’d)
Module
Address Range
I/O Lines
Interrupt Nodes
Speech Interface
(Codec)
F000 2400H F000 24FFH
2*2 analog IN,
2*2 analog OUT,
CEXT,
CODEC_DIS
CODEC_SRC0..5
Analog to Digital
Converter (ADC)
F000 2200H F000 23FFH
AIN[5:0] = P4,
ADEMUX[2:0],
ADEXTIN
ADC_SRC0..3
Asynchronous/Synchronous Serial Interfaces (ASC 0/1/2)
The Asynchronous/Synchronous Serial Interface ASC provides serial communication
between the TriCore and other microcontrollers, microprocessors or external
peripherals. The implementation is held parametrizable in order to allow the usage of
parallel busses of different width and with different protocols.
Features:
• Full duplex asynchronous operating modes
– 8- or 9-bit data frames, LSB first
– Parity bit generation/checking
– One or two stop bits
– Baudrate from 3.125 MBaud to 0.74 Baud (@ 50 MHz module clock)
– Multiprocessor mode for automatic address/data byte detection
– Loop-back capability
• Half-duplex 8-bit synchronous operating mode
– Baudrate from 6.25 MBaud to 637 Baud (@ 50 MHz module clock)
• Double buffered transmitter/receiver
• Interrupt generation
– on a transmitter buffer empty condition
– on a transmit last bit of a frame condition
– on a receiver buffer full condition
– on an error condition (frame, parity, overrun error)
• Support for IrDA
• Automatic Baudrate Detection
• 8 Byte FIFO
Data Sheet
25
V 1.3, 2003-10
TC1920
Preliminary
C lo c k
C on tro l
f h w _c lk
A d d re s s
D e c o de r
Interru p t
C on tro l
RXD
T IR
T B IR
R IR
E IR
A B S T IR
A B D E T IR
ASC
M o du le
(K e rn e l)
TXD
RXD
P ort
C o ntro l
TX D
M C A 0 5 2 53
Figure 7
Data Sheet
ASC Interface Diagram
26
V 1.3, 2003-10
TC1920
Preliminary
High-Speed Synchronous Serial Interface (SSC)
The High Speed Synchronous Serial Interface SSC provides serial communication
between microcontrollers, microprocessors or external peripherals. The SSC supports
full-duplex and half-duplex synchronous communication up to 25 MBaud (@ 50 MHz
module clock). The serial clock signal can be generated by the SSC itself (master mode)
or be received from an external master (slave mode). Data width, shift direction, clock
polarity and phase are programmable. This allows communication with SPI-compatible
devices. Transmission and reception of data are double-buffered. A 16-bit baud rate
generator provides the SSC with a separate serial clock signal.
Features:
• Master and slave mode operation
– Full-duplex or half-duplex operation
• Flexible data format
– Programmable number of data bits : 2 to 16 bit
– Programmable shift direction : LSB or MSB shift first
– Programmable clock polarity : idle low or high state for the shift clock
– Programmable clock/data phase : data shift with leading or trailing edge of SCLK
• Maximum baudrates: 25 MBaud in Master, 12.5 in Slave mode (@ 50 MHz module
clock)
Interrupt generation
– on a transmitter empty condition
– on a receiver full condition
– on an error condition (receive, phase, baudrate, transmit error)
• Three pin interface
f h w _c lk
A d d re s s
D e c o de r
Slave Master
C lo c k
C on tro l
SSC
M o d ule
(K erne l)
Interru p t
C on tro l
SCLK
E IR
R IR
RXD
M TSR
TXD
RXD
TXD
P o rt
C o n tro l
M RST
S la v e
M a s te r
SCLK
T IR
M C B 04 5 0 5_ m o d
Figure 8
Data Sheet
SSC Interface Diagram
27
V 1.3, 2003-10
TC1920
Preliminary
Inter-IC Interface (IIC)
IIC supports a certain protocol to allow devices to communicate directly with each other
via two wires. One line is responsible for clock transfer and synchronization (SCL), the
other is responsible for the data transfer (SDA).
The on-chip IIC Bus module connects the platform buses to other external controllers
and/or peripherals via the two-line serial IIC interface. The IIC Bus module provides
communication at data rates of up to 400 kBit/s and features 7-bit addressing as well as
10-bit addressing. This module is fully compatible to the IIC bus protocol.
G e ne ric
da ta line
SDA0
SDA1
IIC K e rn el
G e ne ric
clock lin e
SCL0
SCL1
IIC M o du le
Figure 9
IIC Bus Line Connections
The module can operate in three different modes:
Master mode, where the IIC controls the bus transactions and provides the clock signal.
Slave mode, where an external master controls the bus and provides the clock signal.
Multimaster mode, where several masters can be connected to the bus, i.e. the IIC can
be master or slave.
The module unloads the CPU of low level tasks like:
•
•
•
•
•
(De)Serialization of bus data.
Generation of start and stop conditions.
Monitoring the bus lines in slave mode.
Evaluation of the device address in slave mode.
Bus access arbitration in multimaster mode.
IIC Features:
•
•
•
•
•
•
Extended buffer allows up to 4 send/receive data bytes to be stored.
Selectable baud rate generation.
Support of standard 100 kBaud and extended 400 kBaud data rates.
Operation in 7-bit addressing mode or 10-bit addressing mode.
Flexible control via interrupt service routines or by polling.
Dynamic access to up to 2 physical IIC busses.
Data Sheet
28
V 1.3, 2003-10
TC1920
Preliminary
CAN Interface (TwinCAN)
Figure 10 shows a global view of the functional blocks of the TwinCAN module.
T w in C A N M o d ule K e rn e l
C lo c k
C on tro l
fC A N
CAN
Node A
CAN
N od e B
TXDCA
RXDCA
A d d re s s
D e c o de r
M es s a ge
O bje ct
B uffe r
Interru p t
C on tro l
P o rt
C o n trol
TXDCB
RXDCB
T w inC A N C on tro l
M C B 0 4 51 5
Figure 10
General Block Diagram of the TwinCAN Interfaces
TwinCAN Features:
•
•
•
•
CAN functionality according to CAN specification V2.0 B active.
Dedicated control registers are provided for each CAN node.
A data transfer rate up to 1MBaud is supported.
Flexible and powerful message transfer control and error handling capabilities are
implemented.
• Full-CAN functionality: 32 message objects can be individually
– assigned to one of the two CAN nodes,
– configured as transmit or receive object,
– participate in a 2,4,8,16 or 32 message buffer with FIFO algorithm,
– setup to handle frames with 11 bit or 29 bit identifiers,
– provided with programmable acceptance mask register for filtering,
– monitored via a frame counter,
– configured to Remote Monitoring Mode.
• Up to eight individually programmable interrupt nodes can be used.
• CAN Analyzer Mode for bus monitoring is implemented.
The TwinCAN module has four IO lines. The TwinCAN module is further supplied by a
clock control, interrupt control, address decoding, and port control logic.
Data Sheet
29
V 1.3, 2003-10
TC1920
Preliminary
The CAN module contains two Full-CAN nodes operating independently or exchanging
data and remote frames via a gateway function. Transmission and reception of CAN
frames is handled in accordance to CAN specification V2.0 part B (active). Each of the
two Full-CAN nodes can receive and transmit standard frames with 11-bit identifiers as
well as extended frames with 29-bit identifiers.
Both CAN nodes share the TwinCAN module’s resources in order to optimize the CAN
bus traffic handling and to minimize the CPU load. The flexible combination of Fullfunctionality and FIFO architecture reduces the efforts to fulfill the real-time requirements
of complex embedded control applications. Improved CAN bus monitoring functionality
as well as the increased number of message objects permit precise and comfortable
CAN bus traffic handling.
Depending on the application, each of the 32 message objects can be individually
assigned to one of the two CAN nodes. Gateway functionality allows automatic data
exchange between two separate CAN bus systems, which reduces CPU load and
improves the real time behavior of the entire system.
The bit timings for both CAN nodes are derived from the peripheral clock (fCAN) and are
programmable up to a data rate of 1 MBaud. A pair of receive and transmit pins connect
each CAN node to a bus transceiver.
Data Sheet
30
V 1.3, 2003-10
TC1920
Preliminary
Serial Data Link Module (J1850)
Figure 11 shows a global view of the functional blocks of the J1850 interface.
f S D LM
C lo c k
C on tro l
RXD
A d d re s s
D e c o de r
SDLM
M o d u le
(K e rn e l)
TXD
R X J 1 85 0
P ort
C on tro l
T X J 1 8 50
Interru p t
C on tro l
M C B 0 4 5 50
Figure 11
General Block Diagram of the SDLM Interface
The J1850 module communicates with the external world via two I/O lines, the J1850
bus. The RXD line is the receive data input signal and TXD is the transmit data output
signal. The Serial Data Link Module provides serial communication to a J1850 based
serial bus. J1850 bus transceivers have to be implemented externally in a system. The
J1850 module is conform to the SAE Class B J1850 specification and compatible to
class 2 protocol.
General SDLM Features:
•
•
•
•
•
•
•
•
•
Compliant to SAE Class B J1850 specification
Full support of GM class 2 protocol
Variable Pulse Width (VPW) format with 10.4 kBaud
High speed receive/transmit 4x mode with 41.6 kBaud
Digital noise filter
Power save mode and automatic wake up upon bus activity
Support of single byte headers or consolidated headers
CRC generation & check
Support of block mode for receive and transmit
Data Link Operation Features:
•
•
•
•
•
•
11 bytes transmit buffer
Double buffered 11 bytes receive buffer
Support of In-frame response (IFR) types 1,2,3
Advanced interrupt handling for RX, TX and error conditions
All interrupt sources can be enabled/disabled individually
Support of automatic IFR for types 1,2 for three byte consolidated headers
Data Sheet
31
V 1.3, 2003-10
TC1920
Preliminary
Timer Units (GPTU 0/1)
Figure 12 shows a global view of all functional blocks of one GPTU module.
fGPTU
C lo c k
C on tro l
A d d re s s
D e c o de r
Interru p t
C on tro l
SR0
SR1
SR2
SR3
SR4
SR5
SR6
SR7
G PTU
M o d ule
(K e rne l)
IN 0
IN 1
IN 2
IN 3
IN 4
IN 5
IN 6
IN 7
O UT0
O UT1
O UT2
O UT3
O UT4
O UT5
O UT6
O UT7
IO 0
IO 1
IO 2
IO 3
P ort
C o n tro l
IO 4
IO 5
IO 6
IO 7
P 0 .0 / G P T 0
P 0 .1 / G P T 1
P 0 .2 / G P T 2
P 0 .3 / G P T 3
P 0 .4 / G P T 4
P 0 .5 / G P T 5
P 0 .6 / G P T 6
P 0 .7 / G P T 7
M C B 0 5 0 52 _ m o d ifie d
Figure 12
General Block Diagram of the GPTU Interface
The GPTU consists of three 32-bit timers designed to solve such application tasks as
event timing, event counting, and event recording. The GPTU communicates with the
external world via eight inputs and eight outputs.
The three timers of the GPTU module T0, T1, and T2, can operate independently from
each other, or can be combined:
General Features:
•
•
•
•
All timers are 32-bit precision timers with a maximum input frequency of fGPTU/2.
Events generated in T0 or T1 can be used to trigger actions in T2
Timer overflow or underflow in T2 can be used to clock either T0 or T1
T0 and T1 can be concatenated to form one 64-bit timer
Features of T0 and T1:
• Each timer has a dedicated 32-bit reload register with automatic reload on overflow
• Timers can be split into individual 8-, 16-, or 24-bit timers with individual reload
registers
• Overflow signals can be selected to generate service requests, pin output signals, and
T2 trigger events
• Two input pins can determine a count option
Data Sheet
32
V 1.3, 2003-10
TC1920
Preliminary
Features of T2:
• Optionally count up or down
• Operating modes:
– Timer
– Counter
– Incremental Interface Mode
• Options:
– External start/stop, one-shot operation, timer clear on external event
– Count direction control through software or an external event
– Two 32-bit reload/capture registers
• Reload modes:
– Reload on overflow or underflow
– Reload on external event: positive transition, negative transition, or both transitions
• Capture modes:
– Capture on external event: positive transition, negative transition, or both
transitions
– Capture and clear timer on external event: positive transition, negative transition, or
both transitions
• Can be split into two 16-bit counter/timers
• Timer count, reload, capture, and trigger functions can be assigned to input pins. T0
and T1 overflow events can also be assigned to these functions.
• Overflow and underflow signals can be used to trigger T0 and/or T1 and to toggle
output pins
• T2 events are freely assignable to the service request nodes.
Data Sheet
33
V 1.3, 2003-10
TC1920
Preliminary
Analog to Digital Converter (ADC)
Figure 13 shows a global view of the ADC module kernel with the module specific
interface connections.
V AGND
C lo c k
C on tro l
V SSA
V DD M
V DD A V SSM V AR EF
EM UX0
fA D C
P o rt
C o n trol
EM UX1
EM UX2
A d d re s s
D e c o de r
A IN 0
A IN 1
Interru p t
C on tro l
SR0
SR1
SR2
SR3
ADC
M o du le
K e rn e l
A IN 5
ASGT
ETR, EG T
E X I0IN
In te rrup t
Q T R , Q G T In p uts
E X I7IN
A D E X T IN
TTR, TG T
T C 1 92 0 _ A D C _ blo ck dia g ram
SW 0TR=0
Figure 13
S W 0G T= 1
General Block Diagram of the ADC module
The on-chip ADC module of the TC1920 is an analog to digital converter with 8-bit, 10bit or 12-bit resolution including sample & hold functionality. The A/D converter operates
by the method of the successive approximation. A multiplexer selects between up to 6
analog input channels. Conversion requests are generated either under software control
or by hardware. An automatic self-calibration adjusts the ADC module to changing
temperatures or process variations.
Data Sheet
34
V 1.3, 2003-10
TC1920
Preliminary
Features:
The following functionality has been implemented in the on chip ADC module to fulfill the
enhanced requirements of embedded control applications:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
8-bit, 10-bit, 12-bit A/D Conversion
Successive approximation conversion method
Total Unadjusted Error (TUE) of ± 2 LSB @ 10-bit resolution
Integrated sample and hold functionality
6 analog input channels
Dedicated control and status registers for each analog channel
Flexible conversion request mechanisms
Selectable reference voltages for each channel
Programmable sample and conversion timing schemes
Limit checking
Flexible ADC module service request control unit
Automatic control of external analog multiplexer
Equidistant samples initiated by timer
External trigger inputs for conversion requests
Power reduction and clock control feature
Real Time Clock Unit RTC
The Real Time Clock (RTC) module is basically an independent timer chain and counts
clock ticks. The base frequency of the RTC can be programmed via a reload counter.
The RTC can work fully asynchronous to the system frequency and is optimized on low
power consumption.
Features:
The RTC serves different purposes:
•
•
•
•
Absolute system clock to determine the current time and date
Cyclic time based interrupt
Alarm interrupt for wake up on a defined time
48-bit timer for long term measurements
Data Sheet
35
V 1.3, 2003-10
TC1920
Preliminary
Codec Interface
The speech A/D and D/A converters (called codec) is designed for telephone and
speech recognition quality. They can be used for microphone / earpiece applications.
The TC1920 configuration implements a dual channel speech codec connected to the
FPI bus.
VDD
VSS
V DD V SS
C O D0
COD0
CO D 1 CO D 1
ch0 n on -inv. inpu t
C lock
C on trol
f pe r
ch0 in v. inp ut
ch0 n on -inv. outp ut
ch0 in v. ou tp ut
A d dre ss
D e co de r
ch1 n on -inv. inpu t
ch1 in v. inp ut
In terrup t
C on trol
SR0
SR1
SR2
SR3
SR4
SR5
CO DEC
M o dule
K e rn el
ch1 n on -inv. outp ut
ch1 in v. ou tp ut
A O 0+
A O 0A I1 +
A I1 A O 1+
A O 1C O D E C _ D IS
external clock inp ut
CEXT
m ute ch ann el 1
COD
A I0 -
clock disab le
m ute ch ann el 0
V RE F
A I0 +
M UTE0
M UTE1
VGND
COD
Figure 14
5
C od ec b ypass
IIS
sig na ls
General Codec Overview
General Purpose I/Os (GPIO)
•
•
•
•
Push/pull output drivers
3.3 Volt operation for GPIO
Programmable pull-up/-down devices at all pins
Optional Open Drain Output Mode
Data Sheet
36
V 1.3, 2003-10
TC1920
Preliminary
Power Supply
Figure 15 shows the TC1920 power supply concept, where certain logic modules are
individually supplied with power. In this way, the noise margin is improved in the
especially sensitive modules, like the A/D converter and the CODEC.
V D DA
V D DA
V DD A
V DD A
V D DA
V DD A
V SSA
V SS A
V SSA
V SSA
V SS A
V SSA
M A IN
OSC
RTC
OSC
PLL
(ana log)
ADC
(ana log)
CO DEC 0
(a na lo g)
CODEC 1
(ana log)
V D DP
V SS P
X
V D DP
B atte ry
B acked
S ta nd- B y
S RAM
A LL D IG IT A L C O R E
CO MPO NENTS
V SS P
Y
V D D_SB
V D DR
V SS
Figure 15
Data Sheet
V DD
VDD
V SS
V SS
TC1920 Power Supply Concept
37
V 1.3, 2003-10
TC1920
Preliminary
Power-Up Sequence
During Power-Up reset pin PORST has to be held active until both power supply
voltages have reached at least their minimum values.
During the Power-Up time (rising of the supply voltages from 0 to their regular operating
values) it has to be ensured, that the core VDD power supply reaches its operating value
first, and then the GPIO VDDP power supply. During the rising time of the core voltage it
must be ensured that 0< VDD-VDDP <0.5 V.
During power-down, the core and GPIO power supplies VDD and VDDP respectively,
have to be switched off until all capacitances are discharged to zero, before the next
power-up.
Note: The states of the pins are undefined when only the port voltage VDDP is on.
Data Sheet
38
V 1.3, 2003-10
TC1920
Preliminary
ID Register Table
Table 4
List of TC1920 ID registers
Short Name Description
Address
Value
SCU_ID
SCU Identification Register
F000 0008H
0019 C002H
MANID
Manufacturer Identification Register
F000 0070H
0000 1820H
CHIPID
Chip Identification Register
F000 0074H
0000 8902H
RTID
Redesign Tracing Identification Register F000 0078H
0000 0000H
RTC_ID
RTC Module Identification Register
F000 0108H
0000 5A04H
BCU_ID
BCU Identification Register
F000 0208H
0000 6A06H
STM_ID
System Timer Module Identification
Register
F000 0308H
0000 C002H
JDP_ID
JTAG/OCDS Module Identification
Register
F000 0408H
0000 6305H
IIC_ID
IIC Module Identification Register
F000 0508H
0000 4604H
GPTU0_ID
GPTU Module Identification Register
F000 0708H
0001 C002H
GPTU1_ID
GPTU Module Identification Register
F000 0608H
0001 C002H
SSC_ID
SSC Module Identification Register
F000 0808H
0000 4503H
ASC0_ID
ASC Module Identification Register
F000 0A08H
0000 44E1H
ASC1_ID
ASC Module Identification Register
F000 0B08H
0000 44E1H
ASC2_ID
ASC Module Identification Register
F000 0C08H
0000 44E1H
ADC_ID
ADC Module Identification Register
F000 2208H
0000 3104H
CODEC_ID
Codec Identification Register
F000 2408H
001C C002H
SDLM_ID
SDLM Module Identification Register
F000 2608H
0000 4204H
PCP_ID
PCP Module Identification Register
F000 3F08H
0020 C003H
CAN_ID
CAN Module Identification Register
F010 0008H
0000 4110H
CPS_ID
CPU Module Identification Register
F7E0 FE08H
0015 C004H
MMU_ID
MMU Identification Register
F7E1 8008H
0009 C002H
CPU_ID
CPU Identification Register
F7E1 FE18H
000A C003H
EBU_ID
EBU_LMB Identification Register
F800 0008H
0014 C003H
DMU_ID
DMU Identification Register
F87F FC08H
0008 C002H
PMU_ID
PMU Module Identification Register
F87F FD08H
000B C002H
LCU_ID
LCU Identification Register
F87F FE08H
000F C003H
LFI_ID
LFI Identification Register
F87F FF08H
000C C003H
Data Sheet
39
V 1.3, 2003-10
TC1920
Preliminary
Electrical characteristics
Parameter Interpretation
The parameters listed in the following partly represent the characteristics of the TC1920
and partly its demands on the system. To aid in interpreting the parameters right, when
evaluating them for a design, they are marked in column “Symbol”:
CC (Controller Characteristics):
The logic of the TC1920 will provide signals with the respective characteristics.
SR (System Requirement):
The external system must provide signals with the respective characteristics to the
TC1920.
Data Sheet
40
V 1.3, 2003-10
TC1920
Preliminary
Absolute Maximum Ratings
Parameter
Symbol
Limit Values
min.
Unit Notes
max.
TA
TST
Storage temperature
Junction temperature
TJ
Voltage on I/O Supply pins with VDDP
respect to ground (VSS)
Voltage on Core Supply pins
VDD
with respect to ground (VSS)
VDDPLL
Voltage on PLL Supply pins
with respect to ground (VSS)
Voltage between Oscillator
VDDOSC
Supply Pins and ground (VSS).
Voltage on any pin with respect VIN
to ground (VSS)
-40
85
°C
-65
150
°C
–
125
°C
-0.5
4.2
V
-0.3
2.1
V
-0.3
2.1
V
-0.3
2.1
V
-0.5
4.2
V
Input current on any pin during IOV
overload condition
-10
10
mA
Ambient temperature
Absolute sum of all input
currents at overload condition
ΣIOV
–
|100|
mA
Power dissipation
PDISS
–
1.4
W
under bias
under bias
PLL
Note: Stresses above those listed under “Absolute Maximum Ratings” may cause
permanent damage to the device. This is a stress rating only and functional
operation of the device at these or any other conditions above those indicated in
the operational sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
During absolute maximum rating overload conditions (VIN>VDD or VIN<VSS) the
voltage on VDD pins with respect to ground (VSS) must not exceed the values
defined by the absolute maximum ratings.
Data Sheet
41
V 1.3, 2003-10
TC1920
Preliminary
Package Parameters (P-LBGA-260)
Parameter
Symbol
Limit Values
PDISS
RTHA
Power dissipation
Thermal resistance
Unit Notes
min.
max.
–
1.4
W
–
27.8
K/W Chip to ambient
–
Operating Conditions
The following operating conditions must not be exceeded in order to ensure correct
operation of the TC1920. All parameters specified in the following sections refer to these
operating conditions, unless otherwise noticed.
Parameter
Symbol
Limit Values
min.
Supply voltage
Ground voltage
Input current on any pin
during overload
condition
Unit Notes
max.
VDDP
VDD
VDDPLL
VDDOSC
VSS
3.0
3.61)
V
I/O supply
1.71
1.892)
V
Core supply
1.71
1.89
V
PLL supply
1.71
1.89
V
Oscillator supply
IOV
-5
5
mA
–
|50|
mA
Absolute sum of all input Σ| IOV|
currents at overload
condition
0
V
Ambient temperature
under bias
TA
-40
85
°C
CPU clock
fCPU
CL
–
100
MHz
–
50
pF
External Load
Capacitance
VOV > VDDP + 0.3V
VOV < VSS - 0.3V
1)
Voltage overshoot to 4 V is permissible, provided the pulse duration is less than 100 µs and the cumulated
summary of the pulses does not exceed 1 h
2)
Voltage overshoot to 2 V is permissible, provided the pulse duration is less than 100 µs and the cumulated
summary of the pulses does not exceed 1 h
Data Sheet
42
V 1.3, 2003-10
TC1920
Preliminary
DC Characteristics
GPIO pins
Parameter
Symbol
Limit values
min.
max.
Unit
Test
Conditions
Output low voltage
(strong driver)
VOL
-
1
0.4
V
IOL = 10 mA
IOL = 2.5 mA
Output high voltage
(strong driver)
VOH
2.4
-
V
IOH = - 2.5 mA
Output low voltage
(medium driver)1)
VOL
-
0.4
V
IOL = 1 mA
Output high voltage
(medium driver)1)
VOH
2.4
-
V
IOH = - 1 mA
Output low voltage
(weak driver)1)
VOL
-
0.4
V
IOL = 100 µA
Output high voltage
(weak driver)1)
VOH
2.4
-
V
IOH = - 100 µA
Input low voltage
VIL
-0.3
0.8
V
LVTTL
Input high voltage
VIH
2.0
VDDP+0.3 V
or
3.7V
whatever is
lower
Input leakage current
IOZ1
-
±500
nA
0V< Vin <
VDDP
Pull-up current 2)
|IPUH |
-
1
µA
VOUT = 2.0V
Pull-up current 3)
|IPUL|
20
-
µA
VOUT = 0.8V
Pull-down current
|IPDL|
-
0.8
µA
VOUT = 0.8V
Pull-down current
|IPDH|
20
-
µA
VOUT = 2.0V
CIO
-
10
pF
f = 1MHz @
TA = 25oC
Pin capacitance
1)
1)
Not subject to production test, verified by design/characterization.
2)
The maximum current that may be drawn while the respective signal line remains inactive.
3)
The minimum current that must be drawn in order to drive the respective signal line active.
Data Sheet
43
V 1.3, 2003-10
TC1920
Preliminary
NMI Pin
NMI Pin is an input pin with different Pull-Up characteristics than other pins. The related
characteristics are given in the following table
Parameter
Symbol
Limit values
Unit
Test
Conditions
min.
max.
Max. current allowed
|IPUH |
through the Pull-Up
device while pin (input)
voltage remains still at the
high level
-
4
uA
VOUT=2.0V
Min. current needed
|IPUL |
through the Pull-Up
device so that pin voltage
is driven to the low level.
100
-
uA
VOUT=0.8V
Note: NMI Pin does not have a Pull-Down device.
Oscillator Pins
Parameter
Symbol
Limit values
min.
max.
Unit
Test
Conditions
Input leakage current
(analog input) at
XTAL11)
IOZ1
CC
-
±200
nA
0V< Vin < VDDP
Input low voltage
XTAL1
VILX
SR
-
0.3
V
-
Input high voltage
XTAL12)
VIHX
SR
0.8
VDD-0.3
VDD-0.35
VDD-0.4
VDD-0.43
V
fOSC=4MHz
fOSC=8MHz
fOSC=12MHz
fOSC=16MHz
XTAL1 input current
IIX1
CC
-
± 20
µA
0V < VIN < VDD
XTAL3 input current2)
IIX3
CC
-
± 0.5
µA
0V < VIN < VDD
1)
Only applicable in deep sleep mode
2)
Not subject to production test, verified by design/characterization.
Data Sheet
44
V 1.3, 2003-10
TC1920
Preliminary
IIC Pins
Each IIC Pin is an open drain output pin with different characteristics than other pins. The
related characteristics are given in the following table
Parameter
Symbol
Limit values
min.
max.
Unit
Test
Conditions
Output low voltage
VOL
CC
-
0.4
0.6
V
3 mA
6 mA
Input high voltage1)
VIH
SR
0.7VDDP
3.6
V
-
Input low voltage1)
VIL
SR
-0.3
0.3VDDP
V
-
Input leakage current
IOZ2
CC
-
+ - 500
nA
Pin capacitance1)
CIO
CC
-
10
pF
1)
f=1MHz@
TA=25oC
Not subject to production test, verified by design/characterization.
Note: No 5 V IIC interface is supported with these pads. Only voltages lower than 3.60
V must be applied to these pads.
Note: IIC pins have no Pull-Up and Pull-Down devices.
Data Sheet
45
V 1.3, 2003-10
TC1920
Preliminary
ADC Analog I/O DC Characteristics
Parameter
Symbol
Limit values
min.
typ.
max.
Unit Test
Conditions
Core supply voltage
VDD
SR
1.71
1.8
1.89
V
-
Analog supply voltage
VDDA
SR
3.0
3.3
3.6
V
-
Analog supply ground
VSSA
SR
-0.1
0.0
+0.1
V
-
Reference voltage3)
VAREF
1.5
-
VDDA+
0.05
V
-
Reference ground
VAGND
VSSA
- 0.05
VSSA VSSA
+ 0.05
V
-
Analog input voltage
VA
VAGND −
VAREF
V
-
Internal A/D Converter
clock
fANA
0.5
3.5
MHz -
Input leakage current
(analog input)
IOZ1
CC
-
±200
nA
0V< Vin <
VDDA
Input leakage current
( VAGnd , VARef)
IOZ2
CC
-
±500
nA
0V< Vin <
VDDA
Overload current
IAOV
SR
-2
+5
mA
1) 5)
-
1.0x10-4
1.5x10-3
-
IAOV>0 3)
IAOV<0
Overload coupling factor2) kA
−
Sample time
ts
CC 4*(CHCONn.STC+2)*tBC
for channel n
Conversion time3)
tBC=1/fBC,
tDIV=1/fDIV,
see Figure 17.
tc
CC tS + 40*tBC + 2*tDIV
for 8- bit
conversion
tS + 48*tBC + 2*tDIV
for 10- bit
conversion
tS + 56*tBC + 2*tDIV
for 12- bit
conversion
Data Sheet
46
V 1.3, 2003-10
TC1920
Preliminary
Parameter
Symbol
Limit values
min.
Total unadjusted error
4)
typ.
TUE
CC
max.
Unit Test
Conditions
± 1 LSB
for 8- bit
conversion
± 2 LSB
for 10- bit
conversion
± 6 LSB5)
for 12- bit
conversion
On resistance of the
transmission gates in the
analog voltage path7)
RAIN
CC
1900
Ohm
Resistance of the
reference voltage path7)
RREF
CC
2000
Ohm
10
pF
Switched capacitance at CAINSW
the analog voltage input.7) CC
Total capacitance at
analog voltage input 6)
CAINTOT
CC
Switched capacitance at
the positive reference
voltage input.7)
CAREFSW
CC
-
15
-
15
pF
pF
1)
Analog overload conditions during operation occur if the voltage on the respective ADC pin exceeds the
specified operating range (i.e. VAOV > VDDP+0.3V or VAOV < VSSP -0.3V ) or a short circuit condition occurs on
the respective ADC pin. The absolute sum of input leakage and IAOV currents on all port pins must not exceed
10 mA at any time. The supply voltage (VDD, VDDP and VSS, VSSP ) must remain within the specified limits.
Under short-circuit conditions the corresponding pin is not ready for use.
2)
The overload coupling factor (kA) defines the worst case relation of an overload condition (IOV) at one pin to
the resulting total leakage current (IleakTOT) into an adjacent pin: |IleakTOT| = kA × |IOV| + IOZ1V
Thus under overload conditions an additional error leakage voltage (VAEL) will be induced onto an adjacent
analog input pin due to the resistance of the analog input source (RAIN). That means VAEL = RAIN × |IleakTOT|.
Please see also the analog/digital converter specification, chapter “Error Through Overload Conditions”, for
further explanations.
3)
The nominal conversion time is valid for VAREF>3.0. For VAREF<3.0, it is approximately double.
4)
At VAREF=+3.3V and VAGND in the specified range. For VAREF<3.3V, TUE rise and is to be multiplied with a
factor of 3.3/Vref. For VAGND outside the specified range, TUE is not guaranteed.
5)
Tested in production on request. Standard production test is 10-bit TUE test.
6)
Not subject to production test, verified by design/characterization.
7)
Simulation values.
Data Sheet
47
V 1.3, 2003-10
TC1920
Preliminary
R A IN , S o urce
V A IN
=
A /D C on v e rte r
R A IN , O n
C A IN , B lo ck
C A IN T O T - C A IN S W
C A IN S W
M C S 0 4 87 9
Figure 16
Equivalent Circuitry of an Analog Input
A/D C onverter M odule
S am ple
fA D C
P e rip he ral
C loc k D iv id e r
(1:1 ) to (1 :8 )
f D IV
P ro g ra m m a b le
C lo ck D iv id e r
(1 :1 ) to (1 :2 5 6)
C O N .P C D
A rbite r
(1:20 )
C O N .C T C
f T IM E R
C o n trol U nit
(T im e r)
fBC
1 :4
f A N A P rog ra m m a b le T im e t S
C o un te r
C H C O N n.S T C
C o n tro l/S tatu s L og ic
In te rru pt L o g ic
E xte rn a l T rig ge r L og ic
E x te rn a l M ultip lex e r Lo g ic
R eq u e st G e n e ra tio n L o g ic
M C A 0 4 6 57 _ m o d
Figure 17
Data Sheet
ADC Clock Circuit
48
V 1.3, 2003-10
TC1920
Preliminary
Codec Electrical Characteristics
Parameter
Symbol
Limit values
Unit
min.
typ.
max.
Digital supply voltage
VDD
1.71
1.8
1.89
V
Analog supply voltage
VDDA
3.0
3.3
3.6
V
Analog supply ground
VSSA
-0.1
0.0
+0.1
V
External reference voltage VAREF1)
1.14
1.2
+1.262) V
Analog reference ground
VAGND
VSSA- VSSA
0.05
Analog input voltage
(RMS)
VSSA+
0.05
V
VAIN
0.775
Vrms
Analog output voltage
(RMS)
VAOUT
0.775
Vrms
Input Resistace of the
Analog Inputs4)
Ra
Internal Reference
Voltage Vref (Bandgap
Voltage)5)
VBGP
Test
Conditions
3)
-
30
-
kOhm differential
input, gain:
-12,-6, 0 dB
-
15
-
kOhm single-ended
input, gain:
-12,-6, 0 dB
-
60
-
kOhm differential
input, gain:
6 to 30 dB
-
30
-
kOhm single-ended
input, gain:
6 to 30 dB
1.1
1.2
1.3
V
AGCCR.
BGPSEL[1,0]
=00
1)
Reference voltage outside the nominal range causes reduced dynamic range, decreased distortion/clipping
margins, increased/decreased gain.
2)
VSSA=VAGND=0V
3)
Please take the gain settings of the analog preamplifier into account, therefore Vimaxreal=Vimax/gain
4)
Simulation value.
5)
For external usage only, Bandgap reference voltage is strongly dependent on the external load (<500 MOhm).
In this case, high impedance buffer must be used.
Data Sheet
49
V 1.3, 2003-10
TC1920
Preliminary
Codec ADC and DAC path characteristics
Parameters
Attenuation distortion
(ref. freq. 1014 Hz)
(ref. level 0dBm0)2)
min.
0
-0.25
-0.25
-0.25
0
(ref. level 0dBm0)2)
max.
Unit
dB
dB
dB
dB
dB
0.25
0.45
-55
Signal to total distortion
Gain tracking
(ref. freq. 1014 Hz)
typ.
-0.3
-0.6
-1.6
Test conditions1)
< 0.025
0.025-0.0375
0.0375-0.3
0.3-0.425
> 0.425
-45
dB
at 0dBm0
0.3
0.6
1.6
dB
dB
dB
+3 to -40 dBm0
-40 to -50 dBm0
-50 to -55 dBm0
receive &transmit
Idle channel noise
-80
-75
dBm
0
Cross talk
-80
-75
dB
Harmonic distortion
-60
-50
dB
at 0dBm0
-0.8
0
0.8
dB
receive &transmit
-
-60
-40
-35
-35
dB
dB
Receive (0.0375-0.425)3)
Transmit (0.0375-0.425)3)
Gain
(ref. freq. 1014 Hz)
(ref. level 0dBm0)2)
Power supply
rejection ratio (PSRR)
1)
Values given in this table are valid for all sampling frequencies.
2)
0dBm0 is equivalent to -12dBm is equal to 194.7 mVRMS.
3)
Supply ripple 70 mV.
Note: Numbers without units in the test conditions column are relative frequency values
to the chosen sampling frequency. e.g. 0.425 equals 3.4 kHz @ 8 kHz sampling
frequency.
Data Sheet
50
V 1.3, 2003-10
TC1920
Preliminary
Power Supply Current
Parameter
Active mode supply
current2) 3)
Symbol
Limit values
IDD
Idle mode supply current4) IID
Deep sleep mode supply
current
IDDS
Unit
Test Conditions
typ. 1)
max.
260
–
mA
Sum of all IDD.
170
–
mA
at 1.8V Core Supply
0.25
–
mA
at 1.8V Core Supply
1)
Typical values are measured at 25°C, CPU clock at 100MHz and nominal supply voltage, i.e. 3.3V for VDDP
and 1.8V for VDD, VDDPLL, VDDOSC
2)
PORST=VIH
3)
The typical power consumption values in active mode are measured while running a typical application pattern.
The power consumption of modules can increase or decrease using different application programs. The PLL
is bypassed and powered down during this measurement.
4)
CPU is in idle state, input clock to all peripherals are enabled.
AC Characteristics
Operating Conditions apply.
Output Rise/Fall Times
GPIO pins
Rise/fall time measurements are made between 10% and 90%.
The following table is valid for the GPIO pins pad drivers. Output pad characteristics are
controllable via DRVCTRx registers.
Pad Modus
rise / fall time
Strong driver
• sharp edge
• medium edge1)
• soft edge1)
1)
Symbol
SF
SM
SS
Limit values
min.
max.
Temp Unit
Comp
-
3
6
12
yes
yes
yes
ns
ns
ns
Test
Conditions
@50pF
@50pF
@50pF
Not subject to production test, verified by design/characterization.
Data Sheet
51
V 1.3, 2003-10
TC1920
Preliminary
Timing Characteristics
(Operating Conditions apply)
Note: Timing parameters are not subject to production test, they are verified by design/
characterization.
2 .4 V
2 .0 V
2 .0 V
T e st P oin ts
0 .8 V
0 .4 V
0 .8 V
M C T 0 4 88 0
AC inputs during
testing are driven at 2.4V for a logic “1” and 0.4V for a logic “0”. Timing
measurements are made at VIHmin for a logic “1” and VILmax for a logic “0”.
Figure 18
Input/Output Waveforms for AC Tests
- for GPIO, Dedicated and EBU pins
External Oscillator at XTAL1 Timing Requirements
(Operating Conditions apply)
Parameter
Symbol
Limits
min.
max.
Unit
Main Oscillator XTAL frequency1)
with/without
PLL
fOSC SR
4
16
MHz
Frequency of an external oscillator
driving at XTAL12)
with PLL3)
without PLL4)
fOSCDD
4
-
25
25
MHz
t1
t2
t3
t4
Input Clock high time
Input Clock low time
Input Clock rise time
Input Clock fall time
Data Sheet
SR
52
SR 16
−
ns
SR 16
−
ns
SR −
7
ns
SR −
7
ns
V 1.3, 2003-10
TC1920
Preliminary
1)
Oscillator Bypass Pin P3.11 latch-in value high. Internal oscillator provides the input clock signal.
2)
Oscillator Bypass Pin P3.11 latch-in value low. Internal oscillator disabled. External oscillator provides the input
clock signal.
3)
Internal PLL provides the system clock. BYPASS pin latch-in value low. PLL prescaler value P=1.
4)
Internal PLL bypassed. BYPASS pin latch-in value high. External oscillator provides the system clock directly.
When ADC and CODEC modules are active their frequency limitations must be taken into consideration,
together with LMB/FPI bus frequency ratio. Otherwise, minimum frequency in this mode can go as low as zero.
tO SC
In p u t C lo c k
at XTAL1
0 .5 V D D O S C
t1
t2
t4
t3
V IH X
V IL X
M C T 04 8 8 2
Figure 19
External Clock at XTAL1 Requirements
Note: VDDOSC, VIHX and VIHL are defined in the Oscillator Pins DC Characteristics
Chapter.
Note: It is strongly recommended to measure the oscillation allowance (negative
resistance) in the final target system (layout) to determine the optimal parameters
for the oscillator operation. Please refer to the limits specified by the crystal
supplier.
Data Sheet
53
V 1.3, 2003-10
TC1920
Preliminary
CPU Clock Timing
(Operating Conditions apply; CL = 50 pF)
Parameter
Symbol
Limits
min.
tCLKOUT 10
CLKOUT period
Unit
max.
−
ns
CC
t1
t2
t3
t4
CLKOUT high time
CLKOUT low time
CLKOUT rise time
CLKOUT fall time
CC
4
−
ns
CC
4
−
ns
CC
−
3
ns
CC
−
3
ns
t C P U C LK
C LK OU T
0 .5 V D D
t1
t2
t4
t3
0 .9 V D D
0 .1 V D D
M C T 0 4 88 3
Figure 20
Data Sheet
CLKOUT Timing
54
V 1.3, 2003-10
TC1920
Preliminary
PLL Parameters
Parameter
Limit Values1)
Symbol
min.
Accumulated jitter
VCO frequency range
PLL base frequency
PLL lock-in time
DN
fVCO
fPLLBASE
tL
Unit
max.
see Figure 21
–
100
1502)
MHz
150
2003)
MHz
200
2504)
MHz
250
3005)
MHz
2)
20
80
MHz
20
1303)
MHz
20
1804)
MHz
20
2305)
MHz
–
200
µs
1)
Not subject to production test, verified by design/characterization.
2)
@ vcosel = ’00’
3)
@ vcosel = ’01’
4)
@ vcosel = ’10’
5)
@ vcosel = ’11’
Note: When TC1920 starts-up with the PLL not bypassed, first user instructions are
executed with the frequency defined by the VCO free-running frequency
(fPLLBASE) and by the reset value of the PLL_CLC register (the K-divider and
VCOSEL bitfields). It is software responsibility to initialize its own appropriate
values in the bitfields in this register, before giving the command for the VCO to
lock to the input frequency. For more information, see the Users Manual, System
Units, System Control Unit chapter.
Data Sheet
55
V 1.3, 2003-10
TC1920
Preliminary
fSYS = 100 MHz (K = 3)
fSYS = 80 MHz (K = 3)
fSYS = 60 MHz (K = 5)
fSYS = 40 MHz (K = 7)
±5.0
ns
DN
TC1920_pll_jitter
±4.0
±3.0
±2.0
±1.0
±0.0
0
5
10
15
20
25
P
DN = Max. jitter
P = Number of consecutive fSYS periods
K = K-divider of PLL
Figure 21
35
30
Approximated Maximum Accumulated PLL Jitter
The following two formulas define the (absolute) approximate maximum value of jitter DN
in [ns] dependent on the K-factor, the system clock frequency fSYS in [MHz], and the
number P of consecutive fSYS periods.
735
for P < 0.25× fSYS
DN [ns] = ± [(
+ 0.9) ×
fSYS × K
for P > 0.25× fSYS
DN [ns] = ± [
735
+ 1.4 ]
fSYS × K
P
fSYS × 0.25
+ 0.5 ] [1]
[2]
With rising number P of clock cycles the maximum jitter increases linearly up to a specific
value of P. Beyond this value of P the maximum accumulated jitter remains at a constant
value.
Data Sheet
56
V 1.3, 2003-10
TC1920
Preliminary
Timing for EBU_LMB Clock Outputs
(Operating Conditions apply; CL = 50 pF)
Parameter
Symbol
Limits
min.
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
EBUCLK period
EBUCLK high time
EBUCLK low time
EBUCLK rise time
EBUCLK fall time
BFCLK0 period
BFCLK0 high time
BFCLK0 low time
BFCLK0 rise time
BFCLK0 fall time
Unit
max.
CC
10
−
ns
CC
4.5
−
ns
CC
3
−
ns
CC
−
2.5
ns
CC
−
2.5
ns
CC
20
−
ns
CC
9
−
ns
CC
9
−
ns
CC
−
3.5
ns
CC
−
2.5
ns
t 1 (t 6 )
EBU CLK/
BFC LK 0
0 .9 V D D
0 .1 V D D
0 .5 V D D
t 2 (t 7 )
Figure 22
Data Sheet
t 3 (t 8 )
t 5 (t 1 0 )
t 4 (t 9 )
M C T 0 4 88 4
EBU_LMB Clock Output Timing
57
V 1.3, 2003-10
TC1920
Preliminary
Timing for SDRAM Access Signals
(Operating Conditions apply; CL = 50 pF)
Parameter
Symbol
Limits
min.
Unit
max.
AD(31:0) input setup to EBUCLK
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14
t15
t16
t17
SR 2.0
-
ns
AD(31:0) input hold from EBUCLK
t18 SR 4.0
-
ns
CKE high from EBUCLK
CKE low from EBUCLK
A(23:0) output valid from EBUCLK
A(23:0) output hold from EBUCLK
CS(6:0) low from EBUCLK
CS(6:0) high from EBUCLK
RAS low from EBUCLK
RAS high from EBUCLK
CAS low from EBUCLK
CAS high from EBUCLK
RD/WR low from EBUCLK
RD/WR high from EBUCLK
BC(3:0) low from EBUCLK
BC(3:0) high from EBUCLK
AD(31:0) output valid from EBUCLK
AD(31:0) output hold from EBUCLK
Data Sheet
58
CC -
7.0
ns
CC 2.0
-
ns
CC -
7.0
ns
CC 2.0
-
ns
CC -
7.0
ns
CC 2.0
-
ns
CC -
7.0
ns
CC 2.0
-
ns
CC -
7.0
ns
CC 2.0
-
ns
CC -
7.0
ns
CC 2.0
-
ns
CC -
7.0
ns
CC 2.0
-
ns
CC -
7.7
ns
CC 2.0
-
ns
V 1.3, 2003-10
TC1920
Preliminary
Write Access:
EBUCLK
t1
CKE
t3
t4
Row
A(23:0)
Column
t5
t6
CSx
t8
RAS
t7
t10
CAS
t9
t12
RD/WR
t11
t14
BC(3:0)
t13
Data
(0)
AD(31:0)
Data
(n-1)
t15
t16
Read Access:
EBUCLK
t2
CKE
A(23:0)
t3
Row
t4
Column
t6
CSx
RAS
t9
t10
CAS
RD/WR
t13
t14
BC(3:0)
t17
t18
Data
(0)
AD(31:0)
Data
(n-1)
MCT05319
Figure 23
Data Sheet
SDRAM Access Timing
59
V 1.3, 2003-10
TC1920
Preliminary
Timing for Burst Flash Access Signals
Operating Conditions apply; CL = 50 pF)
Parameter
Symbol
Limits
min.
t1
t2
t3
t5
t6
t7
t8
t9
t11
t12
A(23:0) output valid from BFCLK0
A(23:0) output hold from BFCLK0
CS(6:0) low from BFCLK0
ADV low from BFCLK0
ADV high from BFCLK0
BAA low from BFCLK0
BAA high from BFCLK0
RD low from BFCLK0
AD(31:0) input setup to BFCLK0
AD(31:0) input hold from BFCLK0
Data Sheet
60
Unit
max.
CC −
11.0
ns
CC 0.0
−
ns
CC −
9.0
ns
CC −
10.0
ns
CC 3.0
−
ns
CC −
10.0
ns
CC 3.0
−
ns
CC −
10.0
ns
SR 6.0
−
ns
SR 3.0
−
ns
V 1.3, 2003-10
TC1920
Preliminary
BFCLK0
t1
t2
A[23:0]
Address Valid
t5
t6
ADV
t3
CSx
t9
RD
t7
t8
BAA
t11
t12
D[31:0]
Valid
Valid
Note: Between the end of the Address Phase (ADV goes high) and the beginning of the Command
Phase (RD goes low) several cycles of Command Delay Phase can be inserted.
mct04889_mod_la
Figure 24
Data Sheet
Burst Flash Access Timing (Instruction Read)
61
V 1.3, 2003-10
TC1920
Preliminary
Timing for Demultiplexed Access Signals1)
(Operating Conditions apply; CL = 50 pF)
Parameter
Symbol
Limits
min.
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
t23
t24
ALE high from EBUCLK
ALE low from EBUCLK
A(23:0) output valid from EBUCLK
A(23:0) output hold from EBUCLK
CS(6:0) low from EBUCLK
CS(6:0) high from EBUCLK
MR/W low from EBUCLK
MR/W high from EBUCLK
RMW low from EBUCLK
RMW high from EBUCLK
RD low from EBUCLK
RD high from EBUCLK
RD/WR low from EBUCLK
RD/WR high from EBUCLK
CMDELAY input setup to EBUCLK
CMDELAY hold from EBUCLK
WAIT input setup to EBUCLK
WAIT hold from EBUCLK
BC(3:0) low from EBUCLK
BC(3:0) high from EBUCLK
AD(31:0) output valid from EBUCLK
AD(31:0) output hold from EBUCLK
AD(31:0) input setup to EBUCLK
AD(31:0) input hold from EBUCLK
1)
max.
Uni
t
CC −
8.0
ns
CC 2.0
−
ns
CC −
8.0
ns
CC 2.0
−
ns
CC −
8.0
ns
CC 2.0
−
ns
CC −
8.0
ns
CC 2.0
−
ns
CC −
8.0
ns
CC 1.0
−
ns
CC −
8.0
ns
CC 0.0
−
ns
CC −
8.0
ns
CC 2.0
ns
SR 4.0
−
ns
SR 3.0
−
ns
SR 4.0
−
ns
SR 3.0
−
ns
CC −
8.0
ns
CC 2.0
−
ns
CC −
8.0
ns
CC 0.0
−
ns
SR 4.0
−
ns
SR 4.0
−
ns
It is user responsibility to program an appropriate whole number of clock cycles to generate the correct phase
length according to the particular asynchronous memory/peripheral device specification.
Data Sheet
62
V 1.3, 2003-10
TC1920
Preliminary
EBUCLK
t1
ALE
t2
t3
t4
Address
A(23:0)
t5
t6
CSx
t7
MR/W
t14
RD/WR
t16
t15
t13
CMDELAY
t18
t17
WAIT
t20
t19
t19
t20
t21
t22
BC(3:0)
Data Out
AD(31:0)
MCT05320
Figure 25
Demultiplexed Write Access
Data Sheet
63
V 1.3, 2003-10
TC1920
Preliminary
EBUCLK
t1
ALE
t2
t3
t4
Address
A(23:0)
t6
CSx
t5
MR/W
t8
t10
t9
t12
RMW
RD
t16
t15
t11
CMDELAY
t18
t17
WAIT
t19
t19
t20
BC(3:0)
t23
t24
Data
AD(31:0)
Note: RMW signal is available only during Read-Modify-Write Access.
MCT05321
Figure 26
Demultiplexed Read Access
Data Sheet
64
V 1.3, 2003-10
TC1920
Preliminary
Timing for Multiplexed Access Signals1)
(Operating Conditions apply; CL = 50 pF)
Parameter
Symbol
Limits
min.
t1
t2
t3
t4
t5
t6
t7
t8
t9
t10
t11
t12
t13
t14
t15
t16
t17
t18
t19
t20
t21
t22
ALE high from EBUCLK
ALE low from EBUCLK
AD(31:0) output valid from EBUCLK
AD(31:0) output hold from EBUCLK
AD(31:0) input setup to EBUCLK
AD(31:0) input hold from EBUCLK
CS(6:0) low from EBUCLK
CS(6:0) high from EBUCLK
MR/W low from EBUCLK
MR/W high from EBUCLK
RMW low from EBUCLK
RMW high from EBUCLK
RD/WR low from EBUCLK
RD/WR high from EBUCLK
RD low from EBUCLK
RD high from EBUCLK
CMDELAY input setup to EBUCLK
CMDELAY hold from EBUCLK
WAIT input setup to EBUCLK
WAIT hold from EBUCLK
BC(3:0) low from EBUCLK
BC(3:0) high from EBUCLK
1)
Unit
max.
CC −
8.0
ns
CC 2.0
−
ns
CC −
8.0
ns
CC 0.0
−
ns
SR 4.0
−
ns
SR 4.0
−
ns
CC −
8.0
ns
CC 1.0
−
ns
CC −
8.0
ns
CC 2.0
−
ns
CC −
8.0
ns
CC 1.0
−
ns
CC −
8.0
ns
CC 2.0
−
ns
CC −
8.0
ns
CC 0.0
−
ns
SR 4.0
−
ns
SR 3.0
−
ns
SR 4.0
−
ns
SR 3.0
−
ns
CC −
8.0
ns
CC 2.0
−
ns
It is user responsibility to program an appropriate whole number of clock cycles to generate the correct phase
length according to the particular asynchronous memory/peripheral device specification.
Data Sheet
65
V 1.3, 2003-10
TC1920
Preliminary
EBUCLK
t1
ALE
t2
t3
t4
Address
AD(31:0)
t7
Data
t4
t8
t3
CSx
t9
MR/W
t14
RD/WR
t18
t17
t13
CMDELAY
t20
t19
WAIT
t22
t21
t21
t22
BC(3:0)
MCT05322
Figure 27
Data Sheet
Multiplexed Write Access
66
V 1.3, 2003-10
TC1920
Preliminary
EBUCLK
t1
ALE
t2
t5
t3
t6
Address
AD(31:0)
Data
t4
t8
CSx
t7
MR/W
t10
t12
t11
t16
RMW
RD
t18
t17
t15
CMDELAY
t20
t19
WAIT
t21
t21
t22
BC(3:0)
Note: RMW signal is only available during Read-Modify-Write Access.
Figure 28
Data Sheet
MCT05323
Multiplexed Read Access
67
V 1.3, 2003-10
TC1920
Preliminary
Timing for External Bus Arbitration Signals
(Operating Conditions apply; CL = 50 pF)
Parameter
Symbol
Limits
min.
t1
t2
t3
t4
t5
t6
t7
t8
HOLD input setup to EBUCLK
HOLD input hold from EBUCLK
HLDA low from EBUCLK
HLDA high from EBUCLK
HLDA input setup to EBUCLK
HLDA input hold from EBUCLK
BREQ low from EBUCLK
BREQ high from EBUCLK
Unit
max.
SR 6.0
−
ns
SR 8.0
−
ns
CC −
10.0
ns
CC −
9.0
ns
SR 8.0
−
ns
SR 8.0
−
ns
CC −
10.0
ns
CC −
9.0
ns
Note: The signals HOLD, HLDA and BREQ are alternate function of the CS5, CS6 and
CSOVL Pins.
Data Sheet
68
V 1.3, 2003-10
TC1920
Preliminary
External M aster M ode
EBU C LK
t1
t2
H OLD
t4
H LDA
t3
t8
BREQ
t7
External S lave M ode
EBU C LK
t7
t8
BREQ
t5
t6
H LDA
t1
t2
H OLD
M C T 05324_m od
Figure 29
Data Sheet
External Bus Arbitration Timing
69
V 1.3, 2003-10
TC1920
Preliminary
SSC Master Mode Timing
(Operating Conditions apply; CL = 50 pF)
Parameter
Symbol
Limit Values
min.
Unit
max.
SCLK period
tSCLK
CC
40
ns
MTSR low/high from SCLK edge
t5
CC
-
2.0
ns
MRST setup to SCLK edge
t6
SR
15
-
ns
MRST hold from SCLK edge
t7
SR
15
-
ns
tSCL K
SCLK
(C O N .P O ,C O N .P H =0 0 o r 1 1 )
SCLK
(C O N .P O ,C O N .P H =0 1 o r 1 0 )
0 .5 V D D
0 .9 V D D
0 .1 V D D
0 .5 V D D
0 .9 V D D
0 .1 V D D
t5
M TSR
S tate n -1
S ta te n
t6
M RST
S ta te n +1
t7
D a ta va lid
D a ta va lid
M C T0 4 88 5 m o d
Figure 30
Data Sheet
SSC Master Mode Timing
70
V 1.3, 2003-10
TC1920
Preliminary
Package Outlines
Figure 31
LBGA-260 Package
You can find all of our packages, sorts of packing and other in our Infineon Internet Page
“Products”: http://www.infineon.com/products
•
Data Sheet
71
V 1.3, 2003-10
TC1920
Preliminary
Data Sheet
72
V 1.3, 2003-10
((73))
Infineon goes for Business Excellence
“Business excellence means intelligent approaches and clearly
defined processes, which are both constantly under review and
ultimately lead to good operating results.
Better operating results and business excellence mean less
idleness and wastefulness for all of us, more professional
success, more accurate information, a better overview and,
thereby, less frustration and more satisfaction.”
Dr. Ulrich Schumacher
http://www.infineon.com
Published by Infineon Technologies AG