INFINEON TLE5012

Angle Sensor
GMR-Based Angular Sensor
for Rotor-Position Sensing
TLE5012
TLE5012-E0318
TLE5012-E0742
Data Sheet
V 1.0, 2010-11
Final
Sensors
Edition 2010-11
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2011 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
TLE5012
TLE5012 GMR-Based Angular Sensor
Revision History: 2010-11, V 1.0
Previous Version: Page
general
Major changes since last revision
correction of typing errors
We Listen to Your Comments
Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document.
Please send your proposal (including a reference to this document) to:
[email protected]
Final Data Sheet
3
V 1.0, 2010-11
TLE5012
Table of Contents
Table of Contents
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1
1.1
1.2
1.3
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2
2.1
2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Oscillator and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SD-ADCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Signal Processing Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Safety Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
10
12
12
13
13
13
13
13
14
14
14
3
3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.5
3.5.1
3.5.1.1
3.5.1.2
3.5.1.3
3.5.1.3.1
3.5.1.4
3.5.2
3.5.3
3.5.4
3.6
3.6.1
3.7
3.7.1
3.7.2
3.7.3
3.7.4
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ESD Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GMR Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Angle Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Supply (CLK Timing Definition) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Synchronous Serial Communication (SSC) Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE5012 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Communication Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pulse-Width Modulation Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hall Switch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Incremental Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Test Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC Test Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overvoltage Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Supply Voltage Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDD Overvoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GND - Off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDD - Off Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
15
18
18
20
20
21
22
23
23
26
27
27
28
30
33
34
50
51
53
55
57
57
59
59
59
59
60
Final Data Sheet
4
8
8
9
9
V 1.0, 2010-11
TLE5012
Table of Contents
4
4.1
4.2
4.3
4.4
4.5
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Final Data Sheet
5
61
61
61
62
62
63
V 1.0, 2010-11
TLE5012
List of Figures
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Sensitive bridges of the GMR sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Theoretical output of the GMR sensor bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE5012 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PRO-SILTM Logo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application circuit for TLE5012 with SSC and PWM Interface (using internal CLK). . . . . . . . . . . .
Application circuit for TLE5012 with HS Mode (using internal CLK). . . . . . . . . . . . . . . . . . . . . . . .
Application circuit for TLE5012 with SSC Interface and IIF (using external CLK) . . . . . . . . . . . . .
Application circuit for TLE5012 with only PWM Interface (using internal CLK) . . . . . . . . . . . . . . .
Operating magnetic induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Offset and amplitude definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE5012 signal path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Delay of sensor output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External CLK timing definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC configuration in sensor-slave mode with push-pull outputs (high speed application). . . . . . .
SSC configuration in sensor-slave mode and open drain (safe bus systems) . . . . . . . . . . . . . . . .
SSC timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC data transfer (data-read example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC data transfer (data-write example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC bit ordering (read example) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fast CRC polynomial division circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical Example for a PWM Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hall Switch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HS hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Incremental Interface with Step/Direction mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Incremental Interface Protocol with symbolic illustration of SPI Interface . . . . . . . . . . . . . . . . . . .
IIF index coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC test vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OV comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GND - Off comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VDD - Off comparator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PG-DSO-8 package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Position of sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Footprint of PG-DSO-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tape and Reel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Final Data Sheet
6
10
11
12
13
14
15
16
16
17
19
22
24
25
26
27
28
28
30
30
32
32
51
53
55
55
56
56
58
59
60
60
61
62
62
62
V 1.0, 2010-11
TLE5012
List of Tables
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Table 11
Table 12
Table 13
Table 14
Table 15
Table 16
Table 17
Table 18
Table 19
Table 20
Table 21
Table 22
Table 23
Table 24
Table 25
Table 26
Table 27
Table 28
Table 29
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical parameters for 4.5V < VDD < 5.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical parameters for 3.0V < VDD < 3.6V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Basic GMR parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Angle performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signal processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CLK timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PAD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC push-pull timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC open-drain timing specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Structure of the Command Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Structure of the Safety Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Bit types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Registers Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC command to read the angle value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC command to read angle speed and angle revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC command to change Interface Mode2 register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PWM Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hall Switch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Incremental Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC Test Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC command to enable ADC test vector check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Structure of Write Data for some different test vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Test comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Final Data Sheet
7
12
18
18
20
20
21
21
22
23
24
26
27
28
29
30
31
31
33
50
50
50
51
53
56
57
58
58
59
61
V 1.0, 2010-11
TLE5012
1
Product Description
1.1
Overview
The TLE5012 is a 360° angle sensor that detects the orientation of a
magnetic field by measuring sine and cosine angle components with
monolithic integrated Giant Magneto Resistance (iGMR) elements.
Highly precise angle values are maintained at various temperatures
throughout the device’s lifetime using an internal autocalibration
algorithm.
Data communications are accomplished with a bi-directional
Synchronous Serial (SSC)-Interface that is Serial Peripheral Interface (SPI)-compatible.
The absolute angle value and other values are transmitted via SSC or via a Pulse-Width Modulation (PWM)
protocol. The sine and cosine raw values can also be read out. These raw signals are digitally processed internally
to calculate the angle orientation of the magnetic field (magnet).
The TLE5012 is a precalibrated sensor. The calibration parameters are stored in laser fuses. At start-up, the
values of the fuses are written into flip-flops, where these values can be changed by the application-specific
parameters. The TLE5012-E0318 and TLE5012-E0742 are especially configured in a Hall-Switch emulation mode
for motors with three or seven pole pairs.
Online diagnostic functions are provided to ensure reliable operation.
Product Type
Marking
Ordering Code
Package
TLE5012
5012
SP000477068
PG-DSO-8
TLE5012-E0318
5012E03
SP000611246
PG-DSO-8
TLE5012-E0742
5012E07
SP000611250
PG-DSO-8
Final Data Sheet
8
V 1.0, 2010-11
TLE5012
Product Description
1.2
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Features
GMR-based principle
Integrated magnetic field sensing for angle measurement
Fully calibrated 0 - 360° angle measurement with revolution counter and angle speed measurement
Two separate highly accurate single-bit SD-ADCs
15-bit representation of absolute angle value on the output (resolution of 0.01°)
16-bit representation of sine/cosine values on the interface
Max. 1.0° angle error over lifetime and temperature with activated auto-calibration
Bi-directional SSC Interface up to 8 Mbit/s
Supports Safety Integrity Level (SIL) with diagnostic functions and status information
Interfaces: SSC, PWM, Incremental Interface (IIF), Hall-Switch Mode (HSM)
0.25-µm CMOS technology
Automotive qualified: -40°C to 150°C (junction temperature)
ESD > 4 kV (HBM)
RoHS-compliant (Pb-free package)
1.3
Typical Applications
The TLE5012 GMR-Based Angular Sensor is designed for angular position sensing in automotive applications,
such as:
•
•
•
•
Electrical commutated motor (e.g. used in Electric Power Steering (EPS))
Rotary switch
Steering angle
General angular sensing
Final Data Sheet
9
V 1.0, 2010-11
TLE5012
Functional Description
2
Functional Description
2.1
General
The GMR sensor uses vertical integration. This means that the GMR-sensitive areas are integrated above the
logic portion of the TLE5012 device. These GMR elements change their resistance depending on the direction of
the magnetic field.
Four individual GMR elements are connected to one Wheatstone sensor bridge. These GMR elements sense one
of two components of the applied magnetic field:
•
•
X component, Vx (cosine) or the
Y component, Vy (sine)
The advantage of a full-bridge structure is that the amplitude of the GMR signal is doubled and temperature effects
cancel out each other.
GMR Resistors
S
0°
VX
VY
N
ADCX +
ADCX -
GND
ADCY+
ADCY-
VDD
90°
Figure 1
Sensitive bridges of the GMR sensor
Note: In Figure 1, the arrows in the resistors represent the magnetic direction which is fixed in the Reference
Layer. If the external magnetic field is parallel to the direction of the Reference Layer, the resistance is
minimal. If they are anti-parallel, resistance is maximal.
The output signal of each bridge is only unambiguous over 180° between two maxima. Therefore two bridges are
oriented orthogonally to each other to measure 360°.
With the trigonometric function ARCTAN, the true 360° angle value can be calculated, based on the relationship
of X and Y signals.
Because only the relative values influence the result, the absolute magnitude of the two signals is of minor
importance. Therefore, it is possible to compensate for most external influences on the amplitudes.
Final Data Sheet
10
V 1.0, 2010-11
TLE5012
Functional Description
Y Component (SIN)
VY
X Component (COS)
VX
V
VX (COS)
0°
90°
180°
270°
360°
Angle α
VY (SIN)
Figure 2
Theoretical output of the GMR sensor bridges
Final Data Sheet
11
V 1.0, 2010-11
TLE5012
Functional Description
2.2
Pin Configuration
8
7
6
5
1
2
3
4
Figure 3
Pin configuration (top view)
2.3
Pin Description
Table 1
Pin description
Center of Sensitive
Area
Pin No.
Symbol
In/Out
Function
1
CLK
I
External Clock (selection of
interface)1)
2
SCK
I
SSC Clock
3
CSQ
I
SSC Chip Select
4
DATA
(DATA / IIF_Index / HS3)
I/O
Interface DATA:
SSC DATA; IIF Index; Hall
Switch signal 3 2)
5
IFA
(IIF_A / HS1 / PWM)
O
Interface A:
IIF phase A; Hall Switch signal
1; PWM 2)
6
VDD
-
Supply voltage
7
GND
-
Ground
8
IFB
(IIF_B / HS2)
O
Interface B:
IIF phase B; Hall Switch signal
2 2)
1) Connected to VDD --> Incremental Interface is used; connected to GND--> Interface in IF_MD is used; sampling within
Power-On Time; interface change within operation via SSC IF possible
2) Depends on external circuit of CLK and IF_MD setting
Final Data Sheet
12
V 1.0, 2010-11
TLE5012
Functional Description
2.4
Block Diagram
TLE5012
VDD
Osc
VRG
VRA
VRD
PLL
X
GMR
SDADC
Y
GMR
SDADC
Temp
SDADC
Digital
Signal
Processing
Unit
CLK
CSQ
SSC Interface
SCK
DATA
CCU
Cordic
Fuses
Incremental IF
PWM
HSM
IFA
IFB
GND
Figure 4
TLE5012 block diagram
2.5
Functional Block Description
2.5.1
Internal Power Supply
The internal stages of the TLE5012 have different voltage regulators.
•
•
•
GMR Voltage Regulator VRG
Analog Voltage Regulator VRA
Digital Voltage Regulator VRD (derived from VRA)
These regulators are directly connected to the supply voltage VDD.
2.5.2
Oscillator and PLL
The internal frequency oscillator feeds the Phase-Locked Loop (PLL). Therefore the external CLocK (CLK) can
also be used.
2.5.3
SD-ADCs
The SD-ADCs transform the analog GMR voltages and temperature voltage into the digital domain.
Final Data Sheet
13
V 1.0, 2010-11
TLE5012
Functional Description
2.5.4
Digital Signal Processing Unit
The Digital Signal Processing Unit (DSPU) contains the:
•
•
•
Capture Compare Unit (CCU), which is used to generate the PWM signal
COordinate Rotation DIgital Computer (CORDIC), which contains the trigonometric function for angle
calculation
Fuses, which contain the calibration parameters
2.5.5
Interfaces
Different Interfaces can be selected:
•
•
•
•
SSC Interface
PWM
Incremental Interface
Hall Switch Mode
2.5.6
Safety Features
The TLE5012 offers a multiplicity of safety features to support Safety Integrity Level (SIL). Sensors with this
performance are identified by the following logo:
Figure 5
PRO-SILTM Logo
Safety features are:
•
•
•
•
•
•
Test vectors switchable to ADC input
Inversion or combination of filter input streams
Data transmission check via 8-bit Cyclic Redundancy Check (CRC)
Self-test routines
Two independent active interfaces possible
Overvoltage and undervoltage detection
Disclaimer
PRO-SIL™ is a Registered Trademark of Infineon Technologies AG.
The PRO-SIL™ Trademark designates Infineon products which contain SIL Supporting Features.
SIL Supporting Features are intended to support the overall System Design to reach the desired SIL (according
to IEC61508) or A-SIL (according to ISO26262) level for the high efficiency Safety System.
SIL respectively A-SIL certification for such a system has to be reached on system level by the System
Responsible at an accredited Certification Authority.
SIL stands for Safety Integrity Level (according to IEC 61508)
A-SIL stands for Automotive-Safety Integrity Level (according to ISO 26262)
Final Data Sheet
14
V 1.0, 2010-11
TLE5012
Specifications
3
Specifications
3.1
Application Circuit
The application circuits shown in Figure 6, Figure 7, Figure 8 and Figure 9 show the various communication
possibilities of the TLE5012.
TLE5012
Osc
VRG
VRA
VDD (3.0 – 5.5V)
100n
1 kΩ
VRD
CLK
PLL
X
GMR
Y
GMR
Temp
SDADC
SDADC
SDADC
CSQ
Digital
Signal
Processing
Unit
CCU
Cordic
Fuses
SCK
SSC
Interface
SSC
DATA
IFA (PWM)
Incremental IF
PWM
HSM
IFB
10 kΩ
GND
*)
PWM
IFB could remain open or
connected via 10 kΩ resistor to
GND.
*) recommended , e.g. 470 Ω
Figure 6
Application circuit for TLE5012 with SSC and PWM Interface (using internal CLK)
Figure 6 shows a basic block diagram of the TLE5012 with PWM Interface. This interface is selectable by
connecting CLK to GND. In addition to the PWM, the SSC Interface could be used. Within the SSC Interface, the
PWM Mode is selectable between push-pull and open drain.
Final Data Sheet
15
V 1.0, 2010-11
TLE5012
Specifications
TLE5012
VRG
VRA
VRD
VDD (3.0 – 5.5V)
100n
Osc
CLK
PLL
X
GMR
SDADC
Y
GMR
SDADC
SDADC
Temp
*)
*)
*)
CSQ
Digital
Signal
Processing
Unit
CCU
Cordic
Fuses
SSC
Interface
SCK
DATA (HS3)
IFA (HS1)
Incremental IF
PWM
HSM
IFB (HS2)
GND
*) recommended , e.g. 2. 2 kΩ
Figure 7
Application circuit for TLE5012 with HS Mode (using internal CLK)
Figure 7 shows a basic block-diagram of the TLE5012 in the Hall Switch Mode. This interface is selectable by
connecting CLK to GND and CSQ to VDD. In addition to the HSM, the SSC Interface can be used by pulling CSQ
to GND. Within the SSC Interface, the HSM is selectable between push-pull and open drain.
VDD (3.0 – 5.5V)
TLE5012
100 n
Osc
VRG
VRA
**)
VRD
***)
CLK
PLL
X
GMR
SDADC
Y
GMR
SDADC
Temp
SDADC
µC
PLL
CSQ
Digital
Signal
Processing
Unit
CCU
Cordic
Fuses
SSC
Interface
SCK
DATA
SSC
*)
IFA (IIF_A)
Incremental IF
PWM
HSM
CCU
IFB (IIF_B)
GND
*) recommended , e.g. 470 Ω
**) connected to V DD for use of internal CLK
***) connected to microcontroller for use of external CLK
Figure 8
Application circuit for TLE5012 with SSC Interface and IIF (using external CLK)
Figure 8 shows a basic block diagram of an angle sensor system using a TLE5012 and a microcontroller for rotorpositioning applications. The interface configuration depicted is needed for high-speed applications such as
electrical commutated motor drives. It is possible to connect the TLE5012 to a microcontroller via the Incremental
Interface, and for safety reasons also via the SSC Interface.
Final Data Sheet
16
V 1.0, 2010-11
TLE5012
Specifications
The TLE5012 Exxxx can be configured with PWM only (Figure 9). This is not possible with the Standard TLE5012
type.1)
TLE5012
Osc
VRG
VRA
VDD (3.0 – 5.5V)
100n
1 kΩ
VRD
CLK
PLL
X
GMR
Y
GMR
Temp
SDADC
SDADC
SDADC
CSQ
Digital
Signal
Processing
Unit
CCU
Cordic
Fuses
SCK
SSC
Interface
DATA
10 kΩ
DATA and IFB could remain
open or connected via 10 kΩ
resistor to GND .
IFA (PWM)
Incremental IF
PWM
HSM
IFB
10 kΩ
GND
Figure 9
Application circuit for TLE5012 with only PWM Interface (using internal CLK)
1) For more information, please contact Infineon
Final Data Sheet
17
V 1.0, 2010-11
TLE5012
Specifications
3.2
Absolute Maximum Ratings
Table 2
Absolute maximum ratings
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ.
Max.
Voltage on VDD pin with respect to VDD
ground (VSS)
-0.5
-
6.5
V
Max. 40 h/lifetime
Voltage on any pin with respect to VIN
ground (VSS)
-0.5
-
6.5
V
Additionally VDD + 0.5 V may
not be exceeded
Junction temperature
-40
-
150
°C
-
-
150
°C
For 1000 h not additive
-
-
│125│
mT
Max. 5 min @ TA = 25°C
-
-
│100│
mT
Max. 5 h @ TA = 25°C
-40
-
150
°C
Without magnetic field
Magnetic field induction
Storage temperature
TJ
B
TST
Attention: Stresses above the max. values listed here may cause permanent damage to the device.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may
cause irreversible damage to the device.
3.3
Operating Range
The following operating conditions must not be exceeded in order to ensure correct operation of the TLE5012. All
parameters specified in the following sections refer to these operating conditions, unless otherwise noted. Table 3
is valid for -40°C < TJ < 150°C unless otherwise noted.
Table 3
Operating range
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note / Test Condition
Supply voltage
VDD
3.0
5.0
5.5
V
1)
Output current (DATA-Pad)
IQ
-
-
-25
mA
PAD_DRV =’0x’, sink
current2)3)
-
-
-5
mA
PAD_DRV =’10’, sink
current2)3)
-
-
-0.4
mA
PAD_DRV =’11’, sink
current2)3)
-
-
-15
mA
PAD_DRV =’0x’, sink
current2)3)
-
-
-5
mA
PAD_DRV =’1x’, sink
current2)3)
-0.3
-
5.5
V
VDD + 0.3 V may not be
exceeded
Output current (IFA / IFB-Pad)
Input voltage
Final Data Sheet
IQ
VIN
18
V 1.0, 2010-11
TLE5012
Specifications
Table 3
Operating range (cont’d)
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ.
Max.
BXY
30
-
50
mT
-40°C < TJ < 150°C
BXY
30
-
60
mT
-40°C < TJ < 100°C
BXY
30
-
70
mT
-40°C < TJ < 85°C
Expanded magnetic induction at
TA = 25°C 4)5)
BXY
25
-
30
mT
Additional angle error of 0.1° 6)
Angle range
Ang
0
-
360
°
Magnetic induction at TA = 25°C
4)5)
1)
2)
3)
4)
5)
6)
Directly blocked with 100-nF ceramic capacitor
Max. current to GND over open-drain output
At VDD = 5V
Values refer to an homogenous magnetic field (BXY) without vertical magnetic induction (BZ = 0mT)
See Figure 10
0h
The field strength of a magnet can be selected within the colored area in Figure 10. By limitation of the junction
temperature, a higher magnetic field can be applied. In case of a maximum temperature TJ=100°C a magnet with
up to 60mT at TA=25°C is allowed.
Figure 10
Magnet performance (ambient temperature)
Note: The thermal resistances listed in Table 29 “Package parameters” on Page 61 must be used to calculate
the corresponding ambient temperature.
Final Data Sheet
19
V 1.0, 2010-11
TLE5012
Specifications
Calculation of the Junction Temperature
The total power dissipation PTOT of the chip increases its temperature above the ambient temperature.
The power multiplied by the total thermal resistance RthJA (Junction to Ambient) leads to the final junction
temperature. RthJA is the sum of the addition of the values of the two components Junction to Case and Case to
Ambient.
(1)
RthJA = RthJC + RthCA
TJ = TA + ΔT
ΔT = RthJA × PTOT = RthJA × (VDD × I DD + VOUT × I OUT )
(IDD, I OUT > 0, if direction is into IC)
Example (assuming no load on Vout):
(2)
V DD = 5V
I DD = 14 mA
⎡K
Δ T = 150 ⎢
⎣W
⎤
⎥⎦ × (5[V ]× 0 .014 [A ] + 0[VA ]) = 10 .5 K
For molded sensors, the calculation with RthJC is more appropriate.
3.4
Characteristics
3.4.1
Electrical Parameters
The indicated electrical parameters apply to the full operating range, unless otherwise specified. The typical values
correspond to a supply voltage VDD = 5.0 V and 25 °C, unless individually specified. All other values correspond
to -40 °C < TJ < 150°C.
Table 4
Electrical parameters
Parameter
Symbol
Supply current
POR level
POR hysteresis
1)
Pull-Up current
Pull-Down current
Power-on time
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
IDD
-
14
16
mA
VPOR
2.0
-
2.9
V
VPORhy
-
30
-
mV
IPU
-10
-
-225
µA
CSQ
-10
-
-150
µA
DATA
10
-
225
µA
SCK
10
-
150
µA
CLK, IFA, IFB
-
5
7
ms
VDD > VDDmin2)
IPD
tPon
Power-On Reset
1) Not subject to production test - verified by design/characterization
2) Within “Power-On Time,” write access is not permitted
Final Data Sheet
20
V 1.0, 2010-11
TLE5012
Specifications
Table 5
Electrical parameters for 4.5V < VDD < 5.5V
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
-
0.3 VDD
V
Note / Test Condition
Input signal low level
VL5
-
Input signal high level
VH5
0.7 VDD -
-
V
Output signal low level
VOL5
-
-
1
V
DATA; IQ = - 25 mA
(PAD_DRV=’0x’), IQ = - 5 mA
(PAD_DRV=’10’), IQ = - 0.4 mA
(PAD_DRV=’11’)
-
-
1
V
IFA,IFB; IQ = - 15 mA
(PAD_DRV=’0x’), IQ = - 5 mA
(PAD_DRV=’1x’)
Unit
Note / Test Condition
Table 6
Electrical parameters for 3.0V < VDD < 3.6V
Parameter
Symbol
Values
Min.
Typ.
Max.
-
0.2 VDD
V
Input signal low level
VL3
-
Input signal high level
VH3
0.8 VDD -
-
V
Output signal low level
VOL3
-
-
0.9
V
DATA; IQ = - 15 mA
(PAD_DRV=’0x’), IQ = - 3 mA
(PAD_DRV=’10’), IQ = - 0.24 mA
(PAD_DRV=’11’)
-
-
0.9
V
IFA,IFB; IQ = - 10 mA
(PAD_DRV=’0x’), IQ = - 3 mA
(PAD_DRV=’1x’)
Unit
Notes
3.4.2
ESD Protection
Table 7
ESD protection
Parameter
ESD voltage
Symbol
Values
min.
max.
VHBM
-
±4.0
kV
Human Body Model1)
VSDM
-
±0.5
kV
Socketed Device Model2)
1) Human Body Model (HBM) according to AEC-Q100-002
2) Socketed Device Model (SDM) according to ESDA/ANSI/ESD SP5.3.2-2008
Final Data Sheet
21
V 1.0, 2010-11
TLE5012
Specifications
3.4.3
GMR Parameters
All parameters apply over BXY = 30mT and TA = 25°C, unless otherwise specified.
Table 8
Basic GMR parameters
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
4)
X, Y output range
RGADC
-
-
±23230
digits
X, Y amplitude 1)
AX, AY
6000
9500
15781
digits
3922
-
20620
digits
k
87.5
100
112.49
%
OX, OY
-2048 0
+2047
digits
X, Y orthogonality error
Φ
-11.25 0
+11.24
°
X, Y without field
X 0, Y 0
-5000 -
+5000
digits
X, Y synchronism 2)
X, Y offset
1)
2)
3)
4)
3)
operating range
without magnet 4)
See Figure 11
k = 100*(AX/AY)
OY=(YMAX + YMIN) / 2; OX = (XMAX + XMIN) / 2
Not subject to production test - verified by design/characterization
VY
+A
0
Offset
0°
90°
180°
270°
360°
Angle
-A
Figure 11
Offset and amplitude definition
Final Data Sheet
22
V 1.0, 2010-11
TLE5012
Specifications
3.4.4
Angle Performance
After internal calculation the sensor has a remaining error, as shown in Table 11. The error value refers to BZ =
0mT and the operating conditions given in Table 3 “Operating range” on Page 18.
The overall angle error represents the relative angle error. This error describes the deviation from the reference
line after zero angle definition.
Table 9
Angle performance
Parameter
Symbol
Values
Min.
Overall Angle Error (with autocalibration)
Typ.
Note / Test Condition
Max.
1)
1.0
°
including lifetime and
temperature drift2)3)4)
1.6
°
including temperature
drift2)3)5)
αErr
-
0.6
Overall Angle Error (without auto- αErr
calibration)
-
0.61)
1)
2)
3)
4)
5)
Unit
At 25°C, B = 30 mT
Including hysteresis error, caused by revolution direction change.
Only with calibrated GMR-compensation parameters of customer setup; Relative error after zero angle definition.
Not subject to production test - verified by design/characterization
0h
Autocalibration
The autocalibration enables online parameter calculation and therefore reduces the angle error due to
temperature drift, lifetime drift, and misalignments.
The TLE5012 is a pre-calibrated sensor. After start-up, the parameters out of the laser fuses get loaded into flipflops. The TLE5012 needs more than a full revolution to generate new parameters. The update mode can be
chosen within the Interface Mode 2 register (AUTOCAL). The parameters are updated in a smooth way to avoid
an angle jump on the output. Therefore only one LSB will be changed within the choosen range or time. The
autocalibration is done continuously.
AUTOCAL Modes:
•
•
•
•
00: No autocalibration
01: Autocalibration Mode 1. Only one LSB to final values within the update time tupd (depending on FIR_MD
setting).
10: Autocalibration Mode 2. Only one LSB update over one full revolution. After update of one LSB, the
autocalibration will calculate the parameters again.
11: Autocalibration Mode 3. Only one LSB to final values within an angle range of 11.25°.
3.4.5
Signal Processing
The signal path of the TLE5012 is depicted in Figure 12. It consists of the GMR bridge, ADC, filter, and angle
calculation. Depending on the filter configuration, various total delay times are achieved. In addition to this delay
time, the delay time of the interface has to be considered. The delay time leads to an additional angle error at
higher speeds. By enabling the prediction, the signal delay time can be reduced (Figure 13). The prediction uses
the difference between current and last angle value and calculates the output value by adding this difference to
the current value. A linear prediction is thereby achieved.
α (t + 1) = 2 ⋅ α (t ) − α (t − 1)
Final Data Sheet
(3)
23
V 1.0, 2010-11
TLE5012
Specifications
TLE5012
Microcontroller
tupd
X
GMR
SDADC
Filter
Angle
Calculation
Y
GMR
SDADC
IF
Filter
tdelIF
tadel
Figure 12
TLE5012 signal path
At FIR_MD = 0 only raw values can be read out, due to the more time consuming angle calculation.
Table 10
Signal processing
Parameter
Update rate at interface
Angle delay time3)
Symbol
tupd
tadel
Angle delay time with prediction3) tadel
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
21.3
-
µs
FIR_MD = 0 (only raw
values)1)2)
-
42.7
-
µs
FIR_MD = 11)2)
-
85.3
-
µs
FIR_MD = 2 (default)1)2)
-
170.6
-
µs
FIR_MD = 31)2)
-
60
70
µs
FIR_MD = 11)2)
-
80
95
µs
FIR_MD = 21)2)
-
120
140
µs
FIR_MD = 31)2)
-
20
30
µs
FIR_MD = 1; PREDICT = 1
1)2)
-
5
20
µs
FIR_MD = 2; PREDICT = 1
1)2)
-
-40
-20
µs
FIR_MD = 3; PREDICT = 1
1)2)
Angle noise
NAngle
-
0.11
-
°
FIR_MD = 0, (1 sigma)2)
-
0.08
-
°
FIR_MD = 1, (1 sigma)2)
-
0.05
-
°
FIR_MD = 2, (1 sigma)2)
(default)
-
0.04
-
°
FIR_MD = 3, (1 sigma)2)
1) Depends on internal oscillator frequency variation (Section 3.4.6)
2) Not subject to production test - verified by design/characterization
3) Valid at constant rotation speed
Final Data Sheet
24
V 1.0, 2010-11
TLE5012
Specifications
Sensor output
Angle
Magnetic field
direction
tadel
Figure 13
t upd
With
Prediction
Without
Prediction
time
Delay of sensor output
Final Data Sheet
25
V 1.0, 2010-11
TLE5012
Specifications
3.4.6
Clock Supply (CLK Timing Definition)
If the external clock supply is selected, the clock signal input CLK must fulfill certain requirements:
•
•
•
The high or low pulse width must not exceed the specified values, because the PLL needs a minimum pulse
width and must be spike filtered.
The duty cycle factor should be 0.5 but can deviate to the values limited by tCLKh(f_min) and tCLKl(f_min).
The PLL is triggered at the positive edge of the clock; if more than 2 edges are missing, a chip reset is
generated automatically.
tCLK
tCLKh
tCLKl
VH
VL
t
Figure 14
External CLK timing definition
Table 11
CLK timing specification
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
fCLK
3.8
4.0
4.2
MHz
CLKDUTY
30
50
70
%
CLK rise time
tCLKr
-
-
30
ns
From VL to VH3)
CLK fall time
tCLKf
-
-
30
ns
From VH to VL3)
Digital clock
fDIG
22.8
24
25.2
MHz
Internal oscillator frequency
fCLK
3.8
4.0
4.2
MHz
Input frequency
CLK duty cycle
1)2)
1) Minimum Duty Cycle Factor: tCLKh(f_min) / tCLK(f_min) with tCLK(f_min)= 1 / fCLK(f_min)
2) Maximum Duty Cycle Factor: tCLKh(f_max) / tCLK(f_min) with tCLKh(f_max)= tCLK(f_min) - tCLKl(min)
3) Not subject to production test - verified by design/characterization
Final Data Sheet
26
V 1.0, 2010-11
TLE5012
Specifications
3.5
Interfaces
Within the register MOD_3, the driver strength and so the slope for push-pull communication can be varied with
the sensor output. The driver strength is specified in Table 3 and the slope fall and rise times in Table 12.
Table 12
PAD characteristics
Parameter
Symbol
Output fall time
Values
tfall, trise
Output rise time
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
8
ns
DATA, 50 pF,
PAD_DRV=’00’1)2)
-
-
28
ns
DATA, 50 pF,
PAD_DRV=’01’1)2)
-
-
45
ns
DATA, 50 pF,
PAD_DRV=’10’1)2)
-
-
130
ns
DATA, 50pF,
PAD_DRV=’11’1)2)
-
-
15
ns
IFA/IFB, 20 pF,
PAD_DRV=’0x’1)2)
-
-
30
ns
IFA/IFB, 20 pF,
PAD_DRV=’1x’1)2)
1) Valid for push-pull output
2) Not subject to production test - verified by design/characterization
3.5.1
Synchronous Serial Communication (SSC) Interface
The 3-pin SSC Interface has a bi-directional push-pull data line, serial clock signal, and chip select. The SSC
Interface is designed to communicate with a microcontroller peer-to-peer for fast applications.
SSC Communication
for peer to peer Data Transmission between TLE5012 and µC
(SSC Slave) TLE 5012
µC (SSC Master)
DATA
Shift Reg.
**)
MTSR
EN
MRST
SCK
*)
SCK
CSQ
*)
CSQ
Shift Reg.
EN
Clock Gen.
*) optional , e.g. 100 Ω
**) optional , e.g. 470 Ω
Figure 15
SSC configuration in sensor-slave mode with push-pull outputs (high speed application)
Final Data Sheet
27
V 1.0, 2010-11
TLE5012
Specifications
Another possibility is a 3-pin SSC Interface with bidirectional open-drain data line, serial clock signal, and chip
select. This setup is designed to communicate with a microcontroller in a bus system, together with other SSC
slaves (e.g. two TLE5012 devices for redundancy reasons). This mode can be activated using bit SSC_OD.
SSC Communication
for Bus Data Transmission between one or more TLE5012 and µC
(SSC Slave) TLE 5012
µC (SSC Master)
typ. 1kΩ
DATA
Shift Reg.
*)
*)
MTSR
Shift Reg.
MRST
*)
SCK
SCK
*)
CSQ
Clock Gen.
CSQ
*) optional , e.g. 100 Ω
Figure 16
SSC configuration in sensor-slave mode and open drain (safe bus systems)
3.5.1.1
SSC Timing Definition
tCSs
tCSh
tSCKp
tCSoff
CSQ
tSCKh
tSCKoff
tSCKl
SCK
DATA
tDATAs
Figure 17
tDATAh
SSC timing
SSC Inactive Time (CSoff)
The SSC inactive time defines the delay time after a transfer before the TLE5012 can be selected again.
Table 13
SSC push-pull timing specification
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
SSC baud rate
fSSC
-
8.0
-
Mbit/s
1)
CSQ setup time
tCSs
105
-
-
ns
1)
Final Data Sheet
28
V 1.0, 2010-11
TLE5012
Specifications
Table 13
SSC push-pull timing specification (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
CSQ hold time
tCSh
105
-
-
ns
1)
CSQ off
tCSoff
600
-
-
ns
SSC inactive time1)
SCK period
tSCKp
120
125
-
ns
1)
SCK high
tSCKh
40
-
-
ns
1)
SCK low
tSCKl
30
-
-
ns
1)
DATA setup time
tDATAs
25
-
-
ns
1)
DATA hold time
tDATAh
40
-
-
ns
1)
Write read delay
twr_delay
130
-
-
ns
1)
SCK off
tSCKoff
170
-
-
ns
1)
Unit
Note / Test Condition
1) Not subject to production test - verified by design/characterization
Table 14
SSC open-drain timing specification
Parameter
Symbol
Values
Min.
Typ.
Max.
SSC baud rate
fSSC
-
2.0
-
Mbit/s
Pull-up Resistor = 1kΩ1)
CSQ setup time
tCSs
300
-
-
ns
1)
CSQ hold time
tCSh
400
-
-
ns
1)
CSQ off
tCSoff
600
-
-
ns
SSC inactive time1)
SCK period
tSCKp
500
-
-
ns
1)
SCK high
tSCKh
-
190
-
ns
1)
SCK low
tSCKl
-
190
-
ns
1)
DATA setup time
tDATAs
25
-
-
ns
1)
DATA hold time
tDATAh
40
-
-
ns
1)
Write read delay
twr_delay
130
-
-
ns
1)
SCK off
tSCKoff
170
-
-
ns
1)
1) Not subject to production test - verified by design/characterization
Final Data Sheet
29
V 1.0, 2010-11
TLE5012
Specifications
3.5.1.2
SSC Data Transfer
The SSC data transfer is word-aligned. The following transfer words are possible:
•
•
•
Command Word (to access and change operating modes of the TLE5012)
Data Words (any data transferred in any direction)
Safety Word (confirms the data transfer and provide status information)
twr_delay
COMMAND
READ Data 1
READ Data 2
SAFETY-WORD
SSC-Master is driving DATA
SSC-Slave is driving DAT A
Figure 18
SSC data transfer (data-read example)
twr_delay
COMMAND
WRITE Data 1
SAFETY-WORD
SSC-Master is driving DATA
SSC-Slave is driving DAT A
Figure 19
SSC data transfer (data-write example)
Command Word
The TLE5012 is controlled by a Command Word. It is sent first at the start of every data transmission. The structure
of the Command Word is shown in Table 15, where the update (UPD) bit allows access to current or updated
values. If an update command is issued and UPD is set, the immediate values are stored in the update buffer
simultaneously. This enables a snapshot of all necessary system parameters at the same time. Bits with an update
buffer are marked by an “u” in the bit type in the register description.
Table 15
Structure of the Command Word
Name
Bits
Description
RW
[15]
Read - write
0:Write
1:Read
Lock
[14..11]
4-bit lock value
0000B: Default operating access for addresses 0x00:0x04
1010B: Config- access for addresses 0x05:0x11
UPD
[10]
Update register access
0: Access to current values
1: Access to updated values
Final Data Sheet
30
V 1.0, 2010-11
TLE5012
Specifications
Table 15
Structure of the Command Word
Name
Bits
Description
ADDR
[9..4]
6-bit Address
ND
[3..0]
4-bit Number of data words
Safety Word
The Safety Word contains following bits:
Table 16
Structure of the Safety Word
Name
Bits
Description
STAT
Chip and Interface Status
[15]
Indication of chip reset (resets after readout) via SSC
0: Reset occurred
1: No reset
Reset: 1B
[14]
System error (e.g. overvoltage; undervoltage; VDD-, GND- off; ROM;...)
0: Error occurred (S_VR; S_DSPU; S_OV; S_XYOL: S_MAGOL; S_ADCM;
S_FUSE)
1: No error
[13]
Interface access error (access to wrong address; wrong lock)
0: Error occurred
1: No error
[12]
Valid angle value (no system error; no interface error; NO_GMR_A = ’0’;
NO_GMR_XY=’0’)
0: Angle value invalid
1: Angle value valid
RESP
[11..8]
Sensor number response indicator
The sensor no. bit is pulled low and the other bits are high
CRC
[7..0]
Cyclic Redundancy Check
Bit Types
The types of bits used in the registers are listed here:
Table 17
Bit types
Abbreviation
Function
Description
R
Read
Read-only registers
W
Write
Read and write registers
U
Update
Update buffer for this bit is present. If an update is issued and the Update
Register Access bit (UPD in Command Word) is set, the immediate values
are stored in this update buffer simultaneously. This enables a snapshot of
all necessary system parameters at the same time.
Final Data Sheet
31
V 1.0, 2010-11
TLE5012
Specifications
Data Communication via SSC
SSC Transfer
twr_delay
Command Word
Data Word (s)
SCK
DATA
14
MSB
13
12
11
10
9
8
7
6
5
4
3
2
1
LSB
MSB
1
LSB
CSQ
RW
LOCK
UPD
ADDR
LENGTH
SSC -Master is driving DAT A
SSC -Slave is driving DAT A
Figure 20
SSC bit ordering (read example)
The data communication via SSC Interface has the following characteristics:
•
•
•
•
•
•
•
•
•
•
The data transmission order is “Most Significant Bit (MSB) first”.
Data is put on the data line with the rising edge on SCK and read with the falling edge on SCK.
The SSC Interface is word-aligned. All functions are activated after each transmitted word.
A “high” condition on the negated Chip Select pin (CSQ) of the selected TLE5012 interrupts the transfer
immediately. The CRC calculator is automatically reset.
After changing the data direction, a delay (twr_delay) has to occur before continuing the data transfer. This is
necessary for internal register access.
Every access to the TLE5012 with the number of data (ND) ≥ 1 is performed with address auto-increment. At
an overflow at address 3FH the transfer continuous at address 00H.
With ND = 0, no auto-increment is done and a continuously readout of the same address can occur. Afterwards
no Safety Word is sent and the transfer ends with high condition on CSQ.
After every data transfer with ND ≥ 1, the 16-bit Safety Word will be appended by the selected TLE5012.
After the Safety Word is sent, the transfer ends. To start another data transfer, the CSQ has to be deselected
once for tCSoff.
The SSC is by default push-pull. The push-pull driver is active only if the TLE5012 has to send data; otherwise
the push-pull is disabled for receiving data from the microcontroller.
Cyclic Redundancy Check (CRC)
•
•
•
•
•
•
This CRC complies with the J1850 Bus Specification.
Every new transfer resets the CRC generation.
Every byte of a transfer will be taken into account to generate the CRC (also the sent command(s)).
Generator polynomial: X8+X4+X3+X2+1, but for the CRC generation the fast CRC generation circuit is used
(see Figure 21)
The remainder of the fast CRC circuit is initial set to ’11111111B’.
The remainder is inverted before transmission.
Serial
CRC
output
X7
1
X6
1
X5
1
X4
1
xor
X3
1
X2
xor
1
X1
xor
1
X0
1
&
xor
Input
TX_CRC
parallel
Remainder
Figure 21
Fast CRC polynomial division circuit
Final Data Sheet
32
V 1.0, 2010-11
TLE5012
Specifications
3.5.1.3
Registers
This section describes the registers of the TLE5012. It also specifies the read/write access rights of the specific
registers. Table 18 identifies the values with symbols. Access to the registers is accomplished via the SSC
Interface.
Table 18
Registers Overview
Register Short Name
Register Long Name
Offset Address
Page Number
Registers, TLE5012 Register
STAT
Status Register
00H
34
ACSTAT
Activation Status Register
01H
36
AVAL
Angle Value Register
02H
37
ASPD
Angle Speed Register
03H
38
AREV
Angle Revolution Register
04H
39
FSYNC
Frame Synchronization Register
05H
39
MOD_1
Interface Mode1 Register
06H
40
SIL
SIL Register
07H
41
MOD_2
Interface Mode2 Register
08H
42
MOD_3
Interface Mode3 Register
09H
43
OFFX
Offset X
0AH
44
OFFY
Offset Y
0BH
45
SYNCH
Synchronicity
0CH
45
IFAB
IFAB Register
0DH
46
MOD_4
Interface Mode4 Register
0EH
47
TCO_Y
Temperature Coefficient Register
0FH
48
ADC_X
X-raw value
10H
48
ADC_Y
Y-raw value
11H
49
IIF_CNT
IIF Counter value
20H
49
The register is addressed wordwise.
Final Data Sheet
33
V 1.0, 2010-11
TLE5012
Specifications
3.5.1.3.1
TLE5012 Register
Status Register
STAT
Offset
Status Register
15
Reset Value
00H
14
RD_ST
13
S_NR
8001H
12
11
10
9
8
NO_GMR_
A
NO_GMR_
XY
S_ROM
S_ADCT
Res
r
7
6
w
5
ru
4
ru
3
r
2
ru
1
0
S_MAGOL
S_XYOL
S_OV
S_DSPU
S_FUSE
S_VR
S_WD
S_RST
ru
ru
ru
ru
ru
ru
ru
ru
Field
Bits
Type
Description
RD_ST
15
r
Read Status
0B
status values not changed since last readout
1B
status values changed
Reset: 1B
S_NR
14:13
w
Slave Number
is given at startup by the external circuit of IFA and IFB
and can be changed via SSC-IF
Reset: 00B
NO_GMR_A
12
ru
No valid GMR Angle Value
Cyclic check of DSPU output.
0B
valid GMR angle value on the interface
1B
no valid GMR angle value on the interface (e.g test
vectors)
Reset: 0B
NO_GMR_XY
11
ru
No valid GMR XY Values
Cyclic check of ADC input.
0B
valid GMR_XY values on the ADC input
1B
no valid GMR_XY values on the ADC input (e.g.
test vectors)
Reset: 0B
S_ROM
10
r
Status ROM1)
Check of ROM-CRC at startup. After fail DSPU does not
start. SPI access possible.
0B
CRC OK
1B
CRC fail or running
Reset: 0B
Final Data Sheet
34
V 1.0, 2010-11
TLE5012
Specifications
Field
Bits
Type
Description
S_ADCT
9
ru
Status ADC-Test1)
Check of signal path with test vectors. All test vectors at
startup tested. Activation in operation via AS_ADCT
possible.
0B
Test vectors OK
1B
Test vectors out of limit
Reset: 0B
S_MAGOL
7
ru
Status Magnitude Out of Limit1)
Cyclic check of available magnetic field strength.
Deactivation via AS_VEC_MAG.
0B
GMR-magnitude OK
1B
GMR-magnitude out of limit
Reset: 0B
S_XYOL
6
ru
Status X,Y Data Out of Limit1)
Cylcic check of X and Y raw values. Deactivation via
AS_VEC_XY
0B
X,Y data OK
1B
X,Y data out of limit (>23230 digits)
Reset: 0B
S_OV
5
ru
Status Overflow1)
Cyclic check of DSPU overflow. Deactivation via AS_OV.
0B
No DSPU overflow occurred
1B
DSPU overflow occurred
Reset: 0B
S_DSPU
4
ru
Status Digital Signal Processing Unit
Check of DSPU, CORDIC and CAPCOM at startup.
Activation in operation via AS_DSPU possible.
0B
DSPU self-test OK
DSPU self-test not OK, or self-test is running
1B
Reset: 0B
S_FUSE
3
ru
Status Fuse CRC1)
Cyclic CRC check of laser-cut-fuses. Deactivation via
AS_FUSE and disabled by activated autocalibration.
Note: Changing of fused parameters results in new CRC,
which differs from stored CRC --> Fuse CRC fail
0B
Fuse CRC OK
1B
Fuse CRC fail
Reset: 0B
S_VR
Final Data Sheet
2
ru
Status Voltage Regulator1)
Permanent check of internal and external supply
voltages. Deactivation via AS_VR
0B
Voltages OK
VDD overvoltage; VDD undervoltage; VDD-off; GND1B
off; or VOVG; VOVA; VOVD too high
Reset: 0B
35
V 1.0, 2010-11
TLE5012
Specifications
Field
Bits
Type
Description
S_WD
1
ru
Status Watchdog
Permanent check of watchdog. After overflow, a reset is
necessary. Deactivation via AS_WD
0B
after chip reset
1B
watchdog counter expired (DSPU stop), AS_RST
must be activated
Reset: 0B
S_RST
0
ru
Status Reset
Permanent check of any reset. Deactivation via AS_RST.
0B
no reset since last readout
1B
indication of power-up, short power-break or active
reset
Reset: 1B
1) Reset to “0” after readout
Activation Status Register
ACSTAT
Offset
Activation Status Register
Reset Value
01H
5EFEH
15
10
9
8
Res
AS_ADCT
Res
w
0
7
6
5
4
3
2
w
1
AS_VEC_
MAG
AS_VEC_
XY
AS_OV
AS_DSPU
AS_FUSE
AS_VR
AS_WD
AS_RST
w
w
w
w
w
w
w
w
Field
Bits
Type
Description
Res
15:10
w
Reserved
Reset: 010111B
AS_ADCT
9
w
Enable ADC Testvector Check
0B
after execution
1B
activation of ADC Testvector Check
Reset: 1B
AS_VEC_MAG
7
w
Activation of Magnitude Check
0B
monitoring of magnitude disabled
1B
monitoring of magnitude enabled
Reset: 1B
Final Data Sheet
36
V 1.0, 2010-11
TLE5012
Specifications
Field
Bits
Type
Description
AS_VEC_XY
6
w
Activation of X,Yout of limit Check
0B
monitoring of X,Y out of limit disabled
1B
monitoring of X,Y out of limit enabled
Reset: 1B
AS_OV
5
w
Enable of DSPU Overflow Check
0B
monitoring of DSPU Overflow disabled
1B
monitoring of DSPU Overflow enabled
Reset: 1B
AS_DSPU
4
w
Activation DSPU BIST
0B
after execution
1B
activation of DSPU BIST or BIST running
Reset: 1B
AS_FUSE
3
w
Activation Fuse CRC
0B
monitoring of Fuse CRC disabled
1B
monitoring of Fuse CRC enabled
Reset: 1B
AS_VR
2
w
Enable Voltage Regulator Check
0B
check of regulator voltages disabled
1B
check of regulator voltages enabled
Reset: 1B
AS_WD
1
w
Enable DSPU Watchdog-HW-Reset
0B
DSPU Watchdog monitoring disabled
1B
DSPU Watchdog monitoring enabled
Reset: 1B
AS_RST
0
w
Activation of Hardware Reset
Activation occurs after CSQ switches from ’0’ to ’1’ after
SSC transfer.
0B
after execution
1B
activation of HW Reset
Reset: 0B
Angle Value Register
AVAL
Offset
Angle Value Register
15
Reset Value
02H
8000H
14
8
RD_AV
ANG_VAL
r
7
ru
0
ANG_VAL
ru
Final Data Sheet
37
V 1.0, 2010-11
TLE5012
Specifications
Field
Bits
Type
Description
RD_AV
15
r
Read Status, Angle Value
0B
no new angle value since last readout
1B
new angle value (ANG_VAL) present
Reset: 1B
ANG_VAL
14:0
ru
Calculated Angle Value
(ANG_RANGE = 0x080)
Angle[°] =
360 °
ANG _ VAL [ digits ]
215
(4)
4000H -180°
0000H 0°
3FFFH +179.99°
Reset: 0H
Angle Speed Register
ASPD
Offset
Angle Speed Register
15
Reset Value
03H
8000H
14
8
RD_AS
ANG_SPD
r
7
ru
0
ANG_SPD
ru
Field
Bits
Type
Description
RD_AS
15
r
Read Status, Angle Speed
0B
no new angle speed value since last readout
1B
new angle speed value (ANG_SPD) present
Reset: 1B
ANG_SPD
14:0
ru
Calculated Angle Speed
Without prediction difference among three consecutive
angle values. With prediction, difference among three
predicted angle values.
AngleRange [ ° ]
ANG _ SPD [ digits ]
2 15
Speed [ ° / s ] =
2 t upd [ s ]
(5)
Reset: 0H
Final Data Sheet
38
V 1.0, 2010-11
TLE5012
Specifications
Angle Revolution Register
AREV
Offset
Angle Revolution Register
15
Reset Value
04H
14
8000H
9
8
RD_REV
FCNT
REVOL
r
7
wu
ru
0
REVOL
ru
Field
Bits
Type
Description
RD_REV
15
r
Read Status, Revolution
0B
no new values since last readout
1B
new value (REVOL) present
Reset: 1B
FCNT
14:9
wu
Frame Counter (unsigned 6-bit value)
Counts every new angle value
Reset: 0H
REVOL
8:0
ru
Number of Revolutions (signed 9-bit value)
If prediction is enabled, revolution counter is one
schedule delayed related to ANG_VAL.
Reset: 0H
Frame Synchronization Register
FSYNC
Offset
Frame Synchronization Register
Reset Value
05H
15
0000H
9
8
Res
FSYNC
wu
7
0
Res
Final Data Sheet
39
V 1.0, 2010-11
TLE5012
Specifications
Field
Bits
Type
Description
FSYNC
15:9
wu
Frame Synchronization Counter Value
Sub-counter within one frame.
Reset: 0H
Interface Mode1 Register
MOD_1
Offset
Interface Mode1 Register
15
Reset Value
06H
14
8001H
13
8
Res
FIR_MD
w
7
5
Res
4
3
2
1
0
CLK_SEL
SSC_OD
DSPU_HO
LD
IIF_MOD
w
w
w
w
Field
Bits
Type
Description
FIR_MD
15:14
w
Filter Decimation Setting (Update Rate Setting)
00B 21.3 µs (only for raw X/Y-values)
01B 42.7 µs
10B 85.3 µs
11B 170.6 µs
Reset: 10B
CLK_SEL
4
w
Clock Source Select
In absence of external clock or PLL out of lock,
automatically switch to internal oscillator
0B
internal oscillator
1B
external 4-MHz clock
Reset: 0B
SSC_OD
3
w
SSC Interface
0B
Push-pull
1B
Open drain (default within TLE5012-E0318 and
TLE5012-E0742)
Reset: 0B
Final Data Sheet
40
V 1.0, 2010-11
TLE5012
Specifications
Field
Bits
Type
Description
DSPU_HOLD
2
w
Hold DSPU Operation
If DSPU is on hold, no WD reset is performed by DSPU.
Deactivate watchdog with AS_WD before setting DSPU
on hold.
0B
DSPU in normal schedule operation
1B
DSPU is on hold
Reset: 0B
IIF_MOD
1:0
w
Incremental Interface Mode
00B IIF disabled
01B A/B operation with Index on DATA
10B Step/Direction operation with Index on DATA
11B not allowed
Reset: 01B
SIL Register
SIL
Offset
SIL Register
Reset Value
07H
13
0000H
15
14
11
10
9
FILT_PA
R
FILT_IN
V
w
7
w
6
Res
ADCTV_E
N
ADCTV_Y
ADCTV_X
w
w
w
FUSE_RE
L
Res
5
3
8
Res
w
2
0
Field
Bits
Type
Description
FILT_PAR
15
w
Filter Parallel
0B
filter parallel disabled
1B
filter parallel enabled (source: X-value)
Reset: 0B
FILT_INV
14
w
Filter Inverted
0B
filter inverted disabled
1B
filter inverted enabled
Reset: 0B
FUSE_REL
10
w
Fuse Reload
0B
fuse reload disabled
1B
fuse parameters reloaded to DSPU at next cycle
start
Reset: 0B
Final Data Sheet
41
V 1.0, 2010-11
TLE5012
Specifications
Field
Bits
Type
Description
ADCTV_EN
6
w
ADC-Test vectors
0B
ADC-Test vectors disabled
1B
ADC-Test vectors enabled
Reset: 0B
ADCTV_Y
5:3
w
Test vector Y
000B 0V
001B +70%
010B +100%
011B +Overflow
101B -70%
110B -100%
111B -Overflow
Reset: 0H
ADCTV_X
2:0
w
Test vector X
000B 0V
001B +70%
010B +100%
011B +OV
101B -70%
110B -100%
111B -OV
Reset: 0H
Interface Mode2 Register
MOD_2
Offset
Interface Mode2 Register
15
Reset Value
08H
0800H
14
8
Res
ANG_RANGE
7
w
3
2
ANG_RANGE
ANG_DIR
PREDICT
AUTOCAL
w
w
w
w
4
1
0
Field
Bits
Type
Description
ANG_RANGE
14:4
w
Angle Range
Angle Range [°] = 360° * (27 / ANG_RANGE[digits])
200H represents 90°
080H represents 360°
Reset: 080H
Final Data Sheet
42
V 1.0, 2010-11
TLE5012
Specifications
Field
Bits
Type
Description
ANG_DIR
3
w
Angle Direction
0B
counterclockwise rotation of magnet
1B
clockwise rotation of magnet
Reset: 0B
PREDICT
2
w
Prediction
0B
prediction disabled
1B
prediction enabled (default within TLE5012-E0318
and TLE5012-E0742)
Reset: 0B
AUTOCAL
1:0
w
Autocalibration Mode
Autocalibration modes are described on Page 23.
00B no autocalibration
01B autocalibration mode 1 (default within TLE5012E0318 and TLE5012-E0742)
10B autocalibration mode 2
11B autocalibration mode 3
Reset: 00B
Interface Mode3 Register
MOD_3
Offset
Interface Mode3 Register
Reset Value
09H
0000H
15
8
ANG_BASE
w
7
4
3
2
ANG_BASE
SPIKEF
Res
w
w
1
Field
Bits
Type
Description
ANG_BASE
15:4
w
Angle Base
800H -180°
000H 0°
001H 0.0879°
7FFH +179.912°
Reset: 000H
SPIKEF
3
w
Analog Spike Filters of Input Pads
0B
spike filter disabled
1B
spike filter enabled
Reset: 0B
Final Data Sheet
43
0
PAD_DRV
w
V 1.0, 2010-11
TLE5012
Specifications
Field
Bits
Type
Description
PAD_DRV
1:0
w
Configuration of Pad-Driver
00B IFA/IFB: strong driver, DATA: strong driver, fast
edge
01B IFA/IFB: strong driver, DATA: strong driver, slow
edge
10B IFA/IFB: weak driver, DATA: medium driver, fast
edge (default within TLE5012-E0318 and
TLE5012-E0742)
11B IFA/IFB: weak driver, DATA: weak driver, slow
edge
Reset: 00B
Offset X Register
OFFX
Offset
Offset X
Reset Value
0AH
0000H
15
8
X_OFFSET
w
7
4
3
X_OFFSET
0
Res
w
Field
Bits
Type
Description
X_OFFSET
15:4
w
Offset Correction of X-value in digits
Reset: 0H
Final Data Sheet
44
V 1.0, 2010-11
TLE5012
Specifications
Offset Y Register
OFFY
Offset
Offset Y
Reset Value
0BH
0000H
15
8
Y_OFFSET
w
7
4
3
Y_OFFSET
0
Res
w
Field
Bits
Type
Description
Y_OFFSET
15:4
w
Offset Correction of Y-value in digits
Reset: 0H
Synchronicity Register
SYNCH
Offset
Synchronicity
Reset Value
0CH
0000H
15
8
SYNCH
w
7
4
3
SYNCH
0
Res
w
Field
Bits
Type
Description
SYNCH
15:4
w
Amplitude Synchronicity
+2047D 112.494%
0D
100%
-2048D 87.500%
Reset: 0H
Final Data Sheet
45
V 1.0, 2010-11
TLE5012
Specifications
IFAB Register
IFAB
Offset
IFAB Register
Reset Value
0DH
0003H
15
8
ORTHO
w
7
4
ORTHO
3
2
Res
IFAB_OD
IFAB_HYST
w
w
w
1
0
Field
Bits
Type
Description
ORTHO
15:4
w
Orthogonality Correction of X and Y Components
+2047D 11.2445°
0D
0°
-2048D -11.2500°
Reset: 0H
IFAB_OD
2
w
IFA & IFB Open Drain
0B
Push-pull
1B
Open drain (default within TLE5012-E0318 and
TLE5012-E0742)
Reset: 0B
IFAB_HYST
1:0
w
HSM Hysteresis
00B 0°
01B 0.09°
10B 0.27°
11B 0.625°
Reset: 11B
Final Data Sheet
46
V 1.0, 2010-11
TLE5012
Specifications
Interface Mode4 Register
MOD_4
Offset
Interface Mode4 Register
Reset Value
0EH
0000H
15
9
Res
TCO_X_T
7
w
4
5
8
3
2
0
HSM_PLP
IFAB_RES
IF_MD
w
w
w
Field
Bits
Type
Description
TCO_X_T
15:9
w
Offset Temperature Coefficient for X-Component
Reset: 0H
HSM_PLP
7:5
w
Hall Switch Mode; Pole pair Configuration
000B 2 pole pairs
001B 3 pole pairs (default within TLE5012-E0318)
010B 4 pole pairs
011B 6 pole pairs
100B 7 pole pairs (default within TLE5012-E0742)
101B 8 pole pairs
110B 12 pole pairs
111B 16 pole pairs
Reset: 000B
IFAB_RES
4:3
w
IFAB Resolution
00B 12 bit = 0.088° (244Hz)
01B 11 bit = 0.176° (488Hz)
10B 10 bit = 0.352° (977Hz)
11B 9 bit = 0.703° (1953Hz)
Reset: 00B
Final Data Sheet
47
V 1.0, 2010-11
TLE5012
Specifications
Field
Bits
Type
Description
IF_MD
2:0
w
Interface Mode
Selected by external circuit of CLK pin at Power-On Time.
CLK pin connected to VDD --> Incremental Interface is
selected; CLK pin connected to GND --> IF_MD stored
Interface is used.
Switching to another interface during operation needs to
stop the DSPU (DSPU_HOLD).
Note: Combinations not listed below are not allowed
000B SSC mode; IIF
001B SSC mode; PWM
010B SSC mode; HSM (default within TLE5012-E0318
and TLE5012-E0742)
Reset: 000B
Temperature Coefficient Register
TCO_Y
Offset
Temperature Coefficient Register
15
Reset Value
0FH
9
8
0000H
7
Res
TCO_Y_T
0
CRC_PAR
w
w
Field
Bits
Type
Description
TCO_Y_T
15:9
w
Offset Temperature Coefficient for Y-Component
Reset: 0H
CRC_PAR
7:0
w
CRC of Parameters
CRC of parameters from address 08H to 0FH. When
changing any settings within these registers, this CRC
has to be updated.
Reset: 0H
X-raw Value Register
ADC_X
Offset
X-raw value
10H
Final Data Sheet
48
Reset Value
0000H
V 1.0, 2010-11
TLE5012
Specifications
15
0
ADC_X
r
Field
Bits
Type
Description
ADC_X
15:0
r
ADC value of X-GMR
Read out of this register will update ADC_Y
Reset: 0H
Y-raw Value Register
ADC_Y
Offset
Y-raw value
Reset Value
11H
0000H
15
0
ADC_Y
r
Field
Bits
Type
Description
ADC_Y
15:0
r
ADC value of Y-GMR
Updated when ADC_X or ADC_Y is read.
Reset: 0H
Increment Counter Register
IIF_CNT
Offset
IIF Counter value
15
Reset Value
20H
12
0000H
11
0
Res
IIF_CNT
r
Final Data Sheet
49
V 1.0, 2010-11
TLE5012
Specifications
Field
Bits
Type
Description
IIF_CNT
11:0
r
Counter value of increments
This value can be used for synchronization purposes
between sensor and counter value on microcontroller
side.
Reset: 0H
3.5.1.4
Communication Examples
This section gives some short SPI communication examples. The sensor has to be selected first via CSQ, and
SCK must be available for the communication.
Table 19
SSC command to read the angle value
SSC Description
Word
No.
Master transmitting
TLE5012 transmitting
Note
1
Command
1_0000_0_000010_0001
2
Read Data
1_xxxxxxxxxxxxxxx
Read angle value
3
Safety Word
1_1_1_1_xxxx_xxxxxxxx
Read Safety Word
Table 20
SSC command to read angle speed and angle revolution
SSC Description
Word
No.
Master transmitting
TLE5012 transmitting
Note
1
Command
1_0000_0_000011_0010
2
Read Data
1_xxxxxxxxxxxxxxx
Read angle speed
3
Read Data
1_xxxxxx_xxxxxxxxx
Read angle revolution
4
Safety Word
1_1_1_1_xxxx_xxxxxxxx
Read Safety Word
Table 21
SSC command to change Interface Mode2 register
SSC Description
Word
No.
Master transmitting
1
Command
0_1010_0_001000_0001
2
Write Data
0_00010000000_1_0_01
3
Safety Word
Final Data Sheet
TLE5012 transmitting
Note
ANG_Range: 080H;
ANG_DIR: 1B;
PREDICT: 0B;
AUTOCAL: 01B
1_1_1_1_xxxx_xxxxxxxx
50
Read Safety Word
V 1.0, 2010-11
TLE5012
Specifications
3.5.2
Pulse-Width Modulation Interface
The Pulse-Width Modulation (PWM) Interface can be selected via SPI.
The PWM update rate can be changed within the register 0EH (IFAB_RES) in following steps:
•
•
•
•
0.25 kHz with 12-bit resolution
0.5 kHz with 12-bit resolution
1.0 kHz with 12-bit resolution
2.0 kHz with 12-bit resolution
PWM uses a square wave with constant frequency whose duty cycle is modulated, resulting in an average value
of the waveform.
Figure 22 shows the principal behavior of a PWM with various duty cycles and the definition of timing values. The
duty cycle of a PWM is defined by following general formulas:
Duty Cycle =
ton
t PWM
t PWM = t on + toff
f PWM =
1
t PWM
(6)
The range between 0 - 6.25% and 93.75 - 100% is used only for diagnostic purposes. More details are given in
Table 22.
ON = High level
UIFA
tON
OFF = Low level
Duty cycle = 5%
Vdd
tPWM
t OFF
‚0'
UIFA
Vdd
UIFA
‚0'
Vdd
Duty cycle = 50%
t
Duty cycle = 95%
t
‚0'
t
Figure 22
Typical Example for a PWM Signal
Table 22
PWM Interface
Parameter
PWM output frequency
Final Data Sheet
Symbol
fPWM
Values
Min.
Typ.
Max.
244
-
1953
51
Unit
Note / Test Condition
Hz
selectable by IFAB_RES1)2)
V 1.0, 2010-11
TLE5012
Specifications
Table 22
PWM Interface
Parameter
Output duty cycle range
PWM period variation
Symbol
DYPWM
tPWMvar
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
6.25
-
93.75
%
Absolute angle2)
-
2
-
%
Electrical error (S_RST;
S_VR)2)
-
98
-
%
System error (S_FUSE;
S_OV; S_XYOL;
S_MAGOL; S_ADCT)2)
0
-
1
%
Short to GND2)
99
-
100
%
Short to VDD, Power-Loss2)
-5
-
5
%
2)3)
1) fPWM = (fDIG * 2IFAB_RES) / (24 * 4096)
2) Not subject to production test - verified by design/characterization
3) Depends on internal oscillator frequency variation (Section 3.4.6)
Final Data Sheet
52
V 1.0, 2010-11
TLE5012
Specifications
3.5.3
Hall Switch Mode
The Hall Switch Mode (HSM) within the TLE5012 makes it possible to emulate the output of three Hall switches.
Hall switches are often used in electrical commutated motors to get information about the rotor position. With these
three output signals, the motor will be commutated in the right way. Depending on which pole pairs of the rotor are
used, various electrical periods have to be utilized. This is selectable within 0EH (HSM_PLP). Within the TLE5012E0318 three pole pairs are fused; within the TLE5012-E0742, seven pole pairs are fused. Figure 23 depicts the
three output signals with the relationship between electrical angle and mechanical angle. The mechanical 0° point
is always used as a reference.
The HSM is generally used with open-drain output, but it can be changed to push-pull within SSC_OD and
IFAB_OD.
Hall-Switch-Mode: 3phase Generation
Electrical Angle
0°
60°
120°
180°
240°
300°
360°
HS1
HS2
HS3
Angle
Mech. Angle with
8 Pole Pairs
0°
7.5°
15°
22.5°
30°
37.5°
45°
Mech. Angle with
3 Pole Pairs
0°
20°
40°
60°
80°
100°
120°
Figure 23
Hall Switch Mode
The HSM Interface can be selected by connecting CLK to GND, and CSQ has to be logic “1”.
Table 23
Hall Switch Mode
Parameter
Rotation speed
Final Data Sheet
Symbol
n
Values
Min.
Typ.
Max.
-
-
10000
53
Unit
Note / Test Condition
rpm
2)
V 1.0, 2010-11
TLE5012
Specifications
Table 23
Hall Switch Mode
Parameter
Electrical angle accuracy
Symbol
αelect
Values
Unit
Note / Test Condition
°
2 pole pairs with
autocalibration1)2)
Min.
Typ.
Max.
-
1.2
2
-
1.8
3
3 pole pairs with autocal.1)2)
-
2.4
4
4 pole pairs with autocal.1)2)
-
3.6
6
6 pole pairs with autocal.1)2)
-
4.2
7
7 pole pairs with autocal.1)2)
-
4.8
8
8 pole pairs with autocal.1)2)
-
7.2
12
12 pole pairs with
autocal.1)2)
-
9.6
16
16 pole pairs with
autocal.1)2)
Mechanical angle switching
hysteresis
αHShystm
0
-
0.625
°
selectable by
IFAB_HYST2)3)4)
Electrical angle switching
hysteresis5)
αHShystel
-
1.25
-
°
2 pole pairs;
IFAB_HYST=111)2)
-
1.88
-
3 pole pairs;
IFAB_HYST=111)2)
-
2.50
-
4 pole pairs;
IFAB_HYST=111)2)
-
3.75
-
6 pole pairs;
IFAB_HYST=111)2)
-
4.38
-
7 pole pairs;
IFAB_HYST=111)2)
-
5.00
-
8 pole pairs;
IFAB_HYST=111)2)
-
7.50
-
12 pole pairs;
IFAB_HYST=111)2)
-
10
-
16 pole pairs;
IFAB_HYST=111)2)
Fall time
tHSfall
-
0.02
1
µs
RL = 2.2 kΩ; CL < 50 pF2)
Rise time
tHSrise
-
0.4
1
µs
RL = 2.2 kΩ; CL < 50 pF2)
1)
2)
3)
4)
5)
Depends on internal oscillator frequency variation (Section 3.4.6)
Not subject to production test - verified by design/characterization
GMR hysteresis not considered
Minimum hysteresis without switching
The hysteresis has to be considered only when rotation direction is changed.
To avoid toggling on the HS outputs during mechanical vibration of the rotor, hysteresis (IFAB_HYST) is
recommended (Figure 24).
Final Data Sheet
54
V 1.0, 2010-11
TLE5012
Specifications
Ideal Switching Point
αHShystel αHShystel
α elect
Figure 24
HS hysteresis
3.5.4
Incremental Interface
αelect
0°
The Incremental Interface (IIF) uses an up/down counter of a microcontroller for the angle transmission. The
synchronization is done by the parallel active SSC Interface. The angle value read out by the SSC Interface can
be compared to the stored counter value. In case of a non-synchronization, the microcontroller adds the difference
to the actual counter value to synchronize the TLE5012 with the microcontroller. The resolution of the IIF can be
selected within the interface mode4 register (MOD_4) under IFAB_RES.
After startup, the IIF pulses out the actual absolute angle value to notify the microcontroller about the absolute
position.
In register MOD_1 the IIF can be set in A/B mode or Step/Direction mode (IIF_MOD).
A/B Mode
The phase shift between phase A and B indicates a clockwise (A follows B) or a counterclockwise (B follows A)
rotation of the magnet.
Step/Direction Mode
Phase A pulses out the increments and phase B indicates the direction (Figure 25).
Incremental
Interface
(Step/Dir Mode)
Step
Direction
VH
VL
VH
VL
Counter Value
Figure 25
0
1
2
3
4
3
2
1
Incremental Interface with Step/Direction mode
Final Data Sheet
55
V 1.0, 2010-11
TLE5012
Specifications
VDD
µC
CSQ
N
SSC
iGMRSensor
S
SSC
SCK
DATA
INC
IFA
A
IFB
B
12bit
Up/Down
Counter
GND
CSQ
SPI
Interface
SCK
DATA
D0
D1
D2
D11
D3
D13
D14
3
2
D15
90° el. Phase shift
Phase A VH
VL
Incremental
Interface
(A/B Mode)
Phase B VH
VL
Counter Value
Figure 26
0
1
2
3
4
1
Incremental Interface Protocol with symbolic illustration of SPI Interface
Index Signal
The Index Signal is generated via the Data pin while CSQ is high (no SSC communication). The Index Signal is
coded in quadrants via a PWM sequence, Figure 27.
Angle
0°
90°
180°
270°
0°
INDEX
t0°
t90°
Figure 27
IIF index coding
Table 24
Incremental Interface
Parameter
Incremental output frequency
Final Data Sheet
t180°
Symbol
fInc
Values
Min.
Typ.
Max.
-
-
1.0
56
t 270°
Unit
Note / Test Condition
MHz
Frequency of Phase A and
Phase B1)
V 1.0, 2010-11
TLE5012
Specifications
Table 24
Incremental Interface (cont’d)
Parameter
Symbol
Index
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t0°
-
5
-
µs
0°1)
t90°
-
10
-
µs
90°1)
t180°
-
15
-
µs
180°1)
t270°
-
20
-
µs
270°1)
1) Not subject to production test - verified by design/characterization
3.6
Test Structure
3.6.1
ADC Test Vectors
It is possible to feed the ADCs with appropriate values to simulate a certain magnet position and other GMR
effects. This test can be activated within the SIL register (ADCTV_EN). With ADCTV_Y and ADCTV_X the vector
length can be adjusted as shown in Figure 28.
The values are generated with resistors on the chip.
The following X/Y ADC values can be programmed:
•
•
•
•
4 points, circle amplitude = 70% (0°,90°, 180°, 270°)
8 points, circle amplitude = 100% (0°, 45°, 90°, 135°, 180°, 225°, 270°, 315°)
8 points, circle amplitude = 122.1% (35.3°, 54.7°, 125.3°, 144.7°, 215.3°, 234.7°, 305.3°, 324.7°)
4 points, circle amplitude = 141.4% (45°, 135°, 225°, 315°)
Note: The 100% values typically correspond to 21700 digits and the 70% values to 15500 digits.
Table 25
ADC Test Vectors
Register bits
X/Y values (decimal)
min.
typ.
max.
000
0
001
15500
010
21700
011
32767
1)
100
0
101
-15500
110
-21700
111
-32768
1) Invalid
Final Data Sheet
57
V 1.0, 2010-11
TLE5012
Specifications
ADCTV_Y
122.1%
141.4%
100 .0%
0%
70%
Figure 28
ADCTV_X
ADC test vectors
Examples for ADC test vector check
The sensor has to be selected first via CSQ and SCK must be available for the communication. Table 26 shows
the structure of the communication to enable the ADC test vector for 54.7°.
Table 26
SSC command to enable ADC test vector check
SSC Description
Word
No.
Master transmitting
1
Command
0_1010_0_000111_0001
2
Write Data
0_0_000_0_000_1_010_001
3
Safety Word
Table 27
TLE5012 transmitting
Note
check of 54.7°
1_1_1_0_xxxx_xxxxxxxx
Structure of Write Data for some different test vectors
SSC Description
Word
No.
Master transmitting
1
Write Data
0_0_000_0_000_1_001_101
~135°
2
Write Data
0_0_000_0_000_1_010_110
~135°
3
Write Data
0_0_000_0_000_1_101_110
~215.3°
4
Write Data
0_0_000_0_000_1_101_000
~270°
5
Write Data
0_0_000_0_000_1_101_010
~324.7°
Final Data Sheet
TLE5012 transmitting
58
Note
V 1.0, 2010-11
TLE5012
Specifications
3.7
Overvoltage Comparators
Various comparators monitor the voltage in order to ensure error-free operation. The overvoltage must be active
at least 256 periods of tDIG to set the test comparator bits in the SSC Interface registers. This serves as digital spike
suppression.
Table 28
Test comparators
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
VOVG
-
2.80
-
V
VOVA
-
2.80
-
V
VOVD
-
2.80
-
V
VDD Overvoltage
VDDOV
-
6.05
-
V
VDD Undervoltage
VDDUV
-
2.70
-
V
GND - Off Voltage
VGNDoff
-
-0.55
-
V
VDD - Off Voltage
VVDDoff
-
0.55
-
V
Spike Filter Delay
tDEL
-
10
-
µs
Overvoltage Detection
Note / Test Condition
1)
1) Not subject to production test - verified by design/characterization
3.7.1
Internal Supply Voltage Comparators
Every voltage regulator has an overvoltage (OV) comparator to detect a malfunction. If the nominal output voltage
of 2.5 V is larger than VOVG, VOVA and VOVD, then this overvoltage comparator is activated.
VDDA
-
REF
VDD
VRG
VRA
VRD
10µs
Spike
Filter
+
GND
Figure 29
OV comparator
3.7.2
VDD Overvoltage Detection
xxx_OV
GND
The Overvoltage Detection comparator monitors the external supply voltage at the VDD pin. It activates the S_VR
bit (Figure 29).
3.7.3
GND - Off Comparator
The GND - Off comparator is used to detect a voltage difference between the GND pin and SCK. It activates the
S_VR bit of the SSC Interface. This circuit can detect a disconnection of the supply GND pin.
Final Data Sheet
59
V 1.0, 2010-11
TLE5012
Specifications
VDD
VDDA
Diodereference
SCK
+dV
-
1µs
Mono
Flop
+
GND
10µs
Spike
Filter
GND_OFF
GND
Figure 30
GND - Off comparator
3.7.4
VDD - Off Comparator
The VDD - Off comparator detects a disconnection of the VDD pin supply voltage. In this case, the TLE5012 is
supplied by the SCK and CSQ input pins via the ESD structures. It activates the S_VR bit.
VDDA
-
VDD
1µs
Mono
Flop
VVDDoff
CSQ
SCK
-dV
GND
Figure 31
+
10µs
Spike
Filter
VDD _OFF
GND
VDD - Off comparator
Final Data Sheet
60
V 1.0, 2010-11
TLE5012
Package Information
4
Package Information
4.1
Package Parameters
Table 29
Package parameters
Parameter
Symbol Limit Values
Thermal resistance
Unit
Notes
min.
typ. max.
RthJA
-
150 200
K/W
Junction to air1)
RthJC
-
-
75
K/W
Junction to case
RthJL
-
-
85
K/W
Junction to lead
Soldering moisture level
MSL 3
260°C
Cu
Lead frame
Plating
Sn 100%
> 7 µm
1) According to Jedec JESD51-7
4.2
Package Outline
Figure 32
PG-DSO-8 package dimensions
Final Data Sheet
61
V 1.0, 2010-11
TLE5012
Package Information
Position of sensing element
4.3
Footprint
1.31
Figure 33
5.69
0.65
1.27
Figure 34
Footprint of PG-DSO-8
4.4
Packing
0.3
5.2
12 ±0.3
8
1.75
6.4
2.1
Figure 35
Tape and Reel
Final Data Sheet
62
V 1.0, 2010-11
TLE5012
Package Information
4.5
Marking
Position
Marking
Description
1st Line
5012xx
See ordering table on Page 8
2nd Line
xxx
Lot code
3rd Line
Gxxxx
G..green, 4-digit..date code
Processing
Note: For processing recommendations, please refer to Infineon’s Notes on processing
Final Data Sheet
63
V 1.0, 2010-11
www.infineon.com
Published by Infineon Technologies AG