PHILIPS 74HC14

INTEGRATED CIRCUITS
DATA SHEET
For a complete data sheet, please also download:
• The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
• The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
• The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
74HC/HCT14
Hex inverting Schmitt trigger
Product specification
File under Integrated Circuits, IC06
September 1993
Philips Semiconductors
Product specification
Hex inverting Schmitt trigger
74HC/HCT14
FEATURES
• Output capability: standard
• ICC category: SSI
GENERAL DESCRIPTION
The 74HC/HCT14 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL).
They are specified in compliance with JEDEC standard no. 7A.
The 74HC/HCT14 provide six inverting buffers with Schmitt-trigger action. They are capable of transforming slowly
changing input signals into sharply defined, jitter-free output signals.
QUICK REFERENCE DATA
GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns
TYPICAL
SYMBOL
PARAMETER
CONDITIONS
UNIT
HC
tPHL/ tPLH
propagation delay nA to nY
CI
input capacitance
CPD
power dissipation capacitance per gate
CL = 15 pF; VCC = 5 V
notes 1 and 2
Notes
1. CPD is used to determine the dynamic power dissipation (PD in µW):
PD = CPD × VCC2 × fi + ∑ (CL × VCC2 × fo) where:
fi = input frequency in MHz
fo = output frequency in MHz
CL = output load capacitance in pF
VCC = supply voltage in V
∑ (CL × VCC2 × fo) = sum of outputs
2. For HC the condition is VI = GND to VCC
For HCT the condition is VI = GND to VCC − 1.5 V
ORDERING INFORMATION
See “74HC/HCT/HCU/HCMOS Logic Package Information”.
September 1993
2
HCT
12
17
ns
3.5
3.5
pF
7
8
pF
Philips Semiconductors
Product specification
Hex inverting Schmitt trigger
74HC/HCT14
PIN DESCRIPTION
PIN NO.
SYMBOL
NAME AND FUNCTION
1, 3, 5, 9, 11, 13
1A to 6A
data inputs
2, 4, 6, 8, 10, 12
1Y to 6Y
data outputs
7
GND
ground (0 V)
14
VCC
positive supply voltage
Fig.1 Pin configuration.
Fig.2 Logic symbol.
Fig.3 IEC logic symbol.
FUNCTION TABLE
INPUT
OUTPUT
nA
nY
L
H
H
L
Notes
1. H = HIGH voltage level
L = LOW voltage level
APPLICATIONS
• Wave and pulse shapers
• Astable multivibrators
• Monostable multivibrators
Fig.4 Functional diagram.
September 1993
Fig.5
Logic diagram
(one Schmitt trigger).
3
Philips Semiconductors
Product specification
Hex inverting Schmitt trigger
74HC/HCT14
DC CHARACTERISTICS FOR 74HC
For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”. Transfer characteristics are
given below.
Output capability: standard
ICC category: SSI
Transfer characteristics for 74HC
Voltages are referenced to GND (ground = 0 V)
Tamb (°C)
TEST CONDITIONS
74HC
SYMBOL PARAMETER
−40 to +85
+25
min.
typ.
max.
min.
max.
−40 to +125
min.
UNIT
VCC
WAVEFORMS
(V)
max.
VT+
positive-going
threshold
0.7
1.7
2.1
1.18
2.38
3.14
1.5
3.15
4.2
0.7
1.7
2.1
1.5
3.15
4.2
0.7
1.7
2.1
1.5
3.15
4.2
V
2.0
4.5
6.0
Figs 6 and 7
VT −
negative-going
threshold
0.3
0.9
1.2
0.52
1.40
1.89
0.90
2.00
2.60
0.3
0.90
1.20
0.90
2.00
2.60
0.30
0.90
1.2
0.90
2.00
2.60
V
2.0
4.5
6.0
Figs 6 and 7
VH
hysteresis
(VT+ − VT−)
0.2
0.4
0.6
0.66
0.98
1.25
1.0
1.4
1.6
0.2
0.4
0.6
1.0
1.4
1.6
0.2
0.4
0.6
1.0
1.4
1.6
V
2.0
4.5
6.0
Figs 6 and 7
AC CHARACTERISTICS FOR 74HC
GND = 0 V; tf = tf = 6 ns; CL = 50 pF
Tamb (°C)
TEST CONDITIONS
74HC
SYMBOL PARAMETER
−40 to +85
+25
min.
typ.
max.
min.
max.
−40 to +125
min.
UNIT
VCC
WAVEFORMS
(V)
max.
tPHL/ tPLH
propagation delay
nA to nY
41
15
12
125
25
21
155
31
26
190
38
32
ns
2.0
4.5
6.0
Fig.8
tTHL/ tTLH
output transition
time
19
7
6
75
15
13
95
19
15
110
22
19
ns
2.0
4.5
6.0
Fig.8
September 1993
4
Philips Semiconductors
Product specification
Hex inverting Schmitt trigger
74HC/HCT14
DC CHARACTERISTICS FOR 74HCT
For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”. Transfer characteristics are
given below.
Output capability: standard
ICC category: SSI
Note to HCT types
The value of additional quiescent supply current (∆ICC) for a unit load of 1 is given in the family specifications.
To determine ∆ICC per input, multiply this value by the unit load coefficient shown in the table below.
INPUT
UNIT LOAD COEFFICIENT
nA
0.3
Transfer characteristics for 74HCT
Voltages are referenced to GND (ground = 0 V)
Tamb (°C)
TEST CONDITIONS
74HCT
SYMBOL PARAMETER
−40 to +85
+25
min.
typ.
max.
min.
max.
−40 to +125
min.
UNIT
VCC
WAVEFORMS
(V)
max.
VT+
positive-going
threshold
1.2
1.4
1.41
1.59
1.9
2.1
1.2
1.4
1.9
2.1
1.2
1.4
1.9
2.1
V
4.5
5.5
Figs 6 and 7
VT −
negative-going
threshold
0.5
0.6
0.85
0.99
1.2
1.4
0.5
0.6
1.2
1.4
0.5
0.6
1.2
1.4
V
4.5
5.5
Figs 6 and 7
VH
hysteresis
(VT+ −VT−)
0.4
0.4
0.56
0.60
−
−
0.4
0.4
−
−
0.4
0.4
−
−
V
4.5
5.5
Figs 6 and 7
AC CHARACTERISTICS FOR 74HCT
GND = 0 V; tr = tf = 6 ns; CL = 50 pF
Tamb (°C)
TEST CONDITIONS
74HCT
SYMBOL PARAMETER
−40 to +85
+25
min.
typ.
max.
min.
max.
−40 to +125
min.
UNIT
VCC
(V)
WAVEFORMS
max.
tPHL/ tPLH
propagation delay
nA, to nY
20
34
43
51
ns
4.5
Fig.8
tTHL/ tTLH
output transition
time
7
15
19
22
ns
4.5
Fig.8
September 1993
5
Philips Semiconductors
Product specification
Hex inverting Schmitt trigger
74HC/HCT14
TRANSFER CHARACTERISTIC WAVEFORMS
Fig.7
Fig.6 Transfer characteristic.
Waveforms showing the definition of VT+,
VT− and VH; where VT+ and VT− are
between limits of 20% and 70%.
Fig.8 Typical HC transfer characteristics; VCC = 2 V.
Fig.9 Typical HC transfer characteristics; VCC = 4.5 V.
Fig.10 Typical HC transfer characteristics; VCC = 6 V.
Fig.11 Typical HCT transfer characteristics; VCC = 4.5 V.
September 1993
6
Philips Semiconductors
Product specification
Hex inverting Schmitt trigger
74HC/HCT14
Fig.12 Typical HCT transfer characteristics; VCC = 5.5 V.
AC WAVEFORMS
(1) HC : VM = 50%; VI = GND to VCC.
HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.13 Waveforms showing the input (nA) to
output (nY) propagation delays and
output transitions times.
September 1993
7
Philips Semiconductors
Product specification
Hex inverting Schmitt trigger
74HC/HCT14
APPLICATION INFORMATION
The slow input rise and fall times cause additional power
dissipation, this can be calculated using the following
formula:
Pad = fi × (tr × ICCa + tf × ICCa) × VCC.
Where:
Pad
= additional power dissipation (µW)
fi
= input frequency (MHz)
tr
= input rise time (µs); 10% − 90%
tf
= input fall time (µs); 10% − 90%
ICCa
= average additional supply current (µA)
Average ICCa differs with positive or negative input
transitions, as shown in Figs 14 and 15.
Fig.14 Average ICC for HC Schmitt trigger devices;
linear change of Vi between 0.1 VCC to
0.9 VCC
Fig.15 Average ICC for HCT Schmitt trigger devices;
linear change of Vi between 0.1 VCC to
0.9 VCC.
HC/HCT14 used in a relaxation oscillator circuit, see
Fig.16.
Note to Application information
All values given are typical unless otherwise specified.
PACKAGE OUTLINES
1
1
HC : f = --- ≈ ------------------T 0.8 RC
See “74HC/HCT/HCU/HCMOS Logic Package Outlines”.
1
1
HCT : f = --- ≈ ---------------------T 0.67 RC
Fig.16 Relaxation oscillator using HC/HCT14.
September 1993
8