INTEGRATED CIRCUITS DATA SHEET 74HC14; 74HCT14 Hex inverting Schmitt trigger Product specification Supersedes data of 1997 Aug 26 2003 Oct 30 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 FEATURES DESCRIPTION • Applications: The 74HC14 and 74HCT14 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. – Wave and pulse shapers – Astable multivibrators – Monostable multivibrators. The 74HC14 and 74HCT14 provide six inverting buffers with Schmitt-trigger action. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. • Complies with JEDEC standard no. 7A • ESD protection: HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V. • Specified from −40 to +85 °C and −40 to +125 °C. QUICK REFERENCE DATA GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns TYPICAL SYMBOL PARAMETER CONDITIONS UNIT HC CL = 15 pF; VCC = 5 V 12 HCT tPHL/tPLH propagation delay nA to nY CI input capacitance 3.5 3.5 pF CPD power dissipation capacitance per gate notes 1 and 2 7 8 pF Notes 1. CPD is used to determine the dynamic power dissipation (PD in µW): PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; VCC = supply voltage in Volts; N = total load switching outputs; Σ(CL × VCC2 × fo) = sum of the outputs. 2. For type 74HC14 the condition is VI = GND to VCC. For type 74HCT14 the condition is VI = GND to VCC − 1.5 V. 2003 Oct 30 2 17 ns Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 FUNCTION TABLE INPUT OUTPUT nA nY L H H L Note 1. H = HIGH voltage level; L = LOW voltage level. ORDERING INFORMATION PACKAGE TYPE NUMBER TEMPERATURE RANGE PINS PACKAGE MATERIAL CODE 74HC14D −40 to +125 °C 14 SO14 plastic SOT108-1 74HCT14D −40 to +125 °C 14 SO14 plastic SOT108-1 74HC14DB −40 to +125 °C 14 SSOP14 plastic SOT337-1 74HCT14DB −40 to +125 °C 14 SSOP14 plastic SOT337-1 74HC14N −40 to +125 °C 14 DIP14 plastic SOT27-1 74HCT14N −40 to +125 °C 14 DIP14 plastic SOT27-1 74HC14PW −40 to +125 °C 14 TSSOP14 plastic SOT402-1 74HCT14PW −40 to +125 °C 14 TSSOP14 plastic SOT402-1 74HC14BQ −40 to +125 °C 14 DHVQFN14 plastic SOT762-1 74HCT14BQ −40 to +125 °C 14 DHVQFN14 plastic SOT762-1 PINNING PIN SYMBOL DESCRIPTION 1 1A data input 2 1Y data output 3 2A data input 4 2Y data output 5 3A data input 6 3Y data output 7 GND ground (0 V) 8 4Y data output 9 4A data input 10 5Y data output 11 5A data input 12 6Y data output 13 6A data input 14 VCC supply voltage 2003 Oct 30 3 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 handbook, halfpage handbook, halfpage 1A 14 VCC 1 1A VCC 1 14 1Y 2 13 6A 2A 3 12 6Y 2Y 4 11 5A 1Y 2 13 6A 2A 3 12 6Y 2Y 4 3A 5 10 5Y 3Y 6 9 4A 3A 5 10 5Y GND 7 8 4Y 3Y 6 9 4A 11 5A 14 GND(1) MNA839 Top view 7 8 GND 4Y MBL760 (1) The die substrate is attached to this pad using conductive die attach material. It can not be used as a supply pin or input. Fig.1 Pin configuration. Fig.2 Pin configuration DHVQFN14. handbook, halfpage handbook, halfpage 1 3 5 9 11 13 1A 1Y 2A 2Y 3A 3Y 4A 4Y 5A 5Y 6A 6Y 1 2 3 4 5 6 9 8 11 10 13 12 2 4 6 8 10 12 MNA840 MNA841 Fig.3 Logic symbol. 2003 Oct 30 Fig.4 IEC logic symbol. 4 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 handbook, halfpage 1 3 5 1A 1Y 2A 2Y 3A 3Y 4A 4Y 5A 5Y 6A 6Y 2 4 6 handbook, halfpage 9 A Y 8 MNA843 11 13 10 12 MNA842 Fig.5 Functional diagram. 2003 Oct 30 Fig.6 Logic diagram (one Schmitt trigger). 5 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 RECOMMENDED OPERATING CONDITIONS 74HC14 SYMBOL PARAMETER 74HCT14 CONDITIONS UNIT MIN. TYP. MAX. MIN. TYP. MAX. VCC supply voltage 2.0 5.0 6.0 4.5 5.0 5.5 V VI input voltage 0 − VCC 0 − VCC V VO output voltage 0 − VCC 0 − VCC V Tamb operating ambient temperature −40 +25 +85 −40 +25 +85 °C −40 − +125 −40 − +125 °C see DC and AC characteristics per device LIMITING VALUES In accordance with the Absolute Maximum System (IEC 60134); voltages are referenced to GND (ground = 0 V). SYMBOL PARAMETER VCC supply voltage IIK input diode current CONDITIONS MIN. MAX. UNIT −0.5 +7 V VI < −0.5 V or VI > VCC + 0.5 V − ±20 mA IOK output diode current VO < −0.5 V or VO > VCC + 0.5 V − ±20 mA IO output source or sink current −0.5 V < VO < VCC + 0.5 V − ±25 mA ICC; IGND VCC or GND current − 50 mA Tstg storage temperature −65 +150 °C Ptot power dissipation DIP14 packages; note 1 − 750 mW Other packages; note 2 − 500 mW Tamb = −40 to +125 °C Notes 1. For DIP14 packages: above 70 °C the value of PD derates linearly with 12 mW/K. 2. For SO14 packages: above 70 °C the value of PD derates linearly with 8 mW/K. For (T)SSOP14 packages: above 60 °C the value of PD derates linearly with 5.5 mW/K. For DHVQFN14 packages: above 60 °C the value of PD derates linearly with 4.5 mW/K. 2003 Oct 30 6 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 DC CHARACTERISTICS Type 74HC14 At recommended operating conditions; voltages are referenced to GND (ground = 0 V). TEST CONDITIONS SYMBOL PARAMETER TYP.(1) MIN. OTHER MAX. UNIT VCC (V) Tamb = 25 °C VOH VOL HIGH-level output voltage LOW-level output voltage VI = VIH or VIL IO = −20 µA 2.0 1.9 2.0 − V IO = −20 µA 4.5 4.4 4.5 − V IO = −20 µA 6.0 5.9 6.0 − V IO = −4.0 mA 4.5 3.98 4.32 − V IO = −5.2 mA 6.0 5.48 5.81 − V IO = 20 µA 2.0 − 0 0.1 V IO = 20 µA 4.5 − 0 0.1 V IO = 20 µA 6.0 − 0 0.1 V IO = 4.0 mA 4.5 − 0.15 0.26 V VI = VIH or VIL IO = 5.2 mA 6.0 − 0.16 0.26 V ILI input leakage current VI = VCC or GND 6.0 − − 0.1 µA ICC quiescent supply current VI = VCC or GND; IO = 0 6.0 − − 2.0 µA Tamb = −40 to +85 °C VOH VOL HIGH-level output voltage LOW-level output voltage VI = VIH or VIL IO = −20 µA 2.0 1.9 − − V IO = −20 µA 4.5 4.4 − − V IO = −20 µA 6.0 5.9 − − V IO = −4.0 mA 4.5 3.84 − − V IO = −5.2 mA 6.0 5.34 − − V IO = 20 µA 2.0 − − 0.1 V IO = 20 µA 4.5 − − 0.1 V IO = 20 µA 6.0 − − 0.1 V IO = 4.0 mA 4.5 − − 0.33 V IO = 5.2 mA 6.0 − − 0.33 V VI = VIH or VIL ILI input leakage current VI = VCC or GND 6.0 − − 1.0 µA ICC quiescent supply current VI = VCC or GND; IO = 0 6.0 − − 20 µA 2003 Oct 30 7 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 TEST CONDITIONS SYMBOL PARAMETER TYP.(1) MIN. OTHER MAX. UNIT VCC (V) Tamb = −40 to +125 °C VOH VOL HIGH-level output voltage LOW-level output voltage VI = VIH or VIL IO = −20 µA 2.0 1.9 − − V IO = −20 µA 4.5 4.4 − − V IO = −20 µA 6.0 5.9 − − V IO = −4.0 mA 4.5 3.7 − − V IO = −5.2 mA 6.0 5.2 − − V IO = 20 µA 2.0 − − 0.1 V IO = 20 µA 4.5 − − 0.1 V IO = 20 µA 6.0 − − 0.1 V IO = 4.0 mA 4.5 − − 0.4 V VI = VIH or VIL IO = 5.2 mA 6.0 − − 0.4 V ILI input leakage current VI = VCC or GND 6.0 − − 1.0 µA ICC quiescent supply current VI = VCC or GND; IO = 0 6.0 − − 40 µA Note 1. All typical values are measured at Tamb = 25 °C. 2003 Oct 30 8 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 Type 74HCT14 At recommended operating conditions; voltages are referenced to GND (ground = 0 V). TEST CONDITIONS SYMBOL PARAMETER MIN. OTHER TYP.(1) MAX. UNIT VCC (V) Tamb = 25 °C VOH VOL HIGH-level output voltage LOW-level output voltage VI = VIH or VIL IO = −20 µA 4.5 4.4 4.5 − V IO = −4.0 mA 4.5 3.98 4.32 − V IO = 20 µA 4.5 − 0 0.1 V IO = 4.0 mA 4.5 − 0.15 0.26 V VI = VIH or VIL ILI input leakage current VI = VCC or GND 5.5 − − 0.1 µA ICC quiescent supply current VI = VCC or GND; IO = 0 5.5 − − 2.0 µA ∆ICC additional supply current per input VI = VCC − 2.1 V; IO = 0 4.5 to 5.5 − 30 108 µA Tamb = −40 to +85 °C VOH VOL HIGH-level output voltage VI = VIH or VIL LOW-level output voltage VI = VIH or VIL IO = −20 µA 4.5 4.4 − − V IO = −4.0 mA 4.5 3.84 − − V IO = 20 µA 4.5 − − 0.1 V IO = 4.0 mA 4.5 − − 0.33 V ILI input leakage current VI = VCC or GND 5.5 − − 1.0 µA ICC quiescent supply current VI = VCC or GND; IO = 0 5.5 − − 20 µA ∆ICC additional supply current per input VI = VCC − 2.1 V; IO = 0 4.5 to 5.5 − − 135 µA Tamb = −40 to +125 °C HIGH-level output voltage VI = VIH or VIL LOW-level output voltage VI = VIH or VIL ILI input leakage current ICC quiescent supply current VI = VCC or GND; IO = 0 ∆ICC additional supply current per input VI = VCC − 2.1 V; IO = 0 4.5 to 5.5 VOH VOL IO = −20 µA 4.5 4.4 − − V IO = −4.0 mA 4.5 3.7 − − V IO = 20 µA 4.5 − − 0.1 V IO = 4.0 mA 4.5 − − 0.4 V VI = VCC or GND 5.5 − − 1.0 µA 5.5 − − 40 µA − − 147 µA Note 1. All typical values are measured at Tamb = 25 °C. 2003 Oct 30 9 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 TRANSFER CHARACTERISTICS Type 74HC At recommended operating conditions; voltages are referenced to GND (ground = 0 V). TEST CONDITIONS SYMBOL PARAMETER MIN. WAVEFORMS TYP. MAX. UNIT VCC (V) Tamb = 25 °C; note 1 VT+ VT− VH positive-going threshold negative-going threshold hysteresis (VT+ − VT−) Figs 7 and 8 Figs 7 and 8 Figs 7 and 8 2.0 0.7 1.18 1.5 V 4.5 1.7 2.38 3.15 V 6.0 2.1 3.14 4.2 V 2.0 0.3 0.52 0.90 V 4.5 0.9 1.40 2.00 V 6.0 1.2 1.89 2.60 V 2.0 0.2 0.66 1.0 V 4.5 0.4 0.98 1.4 V 6.0 0.6 1.25 1.6 V 2.0 0.7 − 1.5 V 4.5 1.7 − 3.15 V 6.0 2.1 − 4.2 V 2.0 0.3 − 0.90 V 4.5 0.90 − 2.00 V 6.0 1.20 − 2.60 V 2.0 0.2 − 1.0 V 4.5 0.4 − 1.4 V 6.0 0.6 − 1.6 V 2.0 0.7 − 1.5 V 4.5 1.7 − 3.15 V 6.0 2.1 − 4.2 V 2.0 0.30 − 0.90 V 4.5 0.90 − 2.00 V 6.0 1.2 − 2.60 V 2.0 0.2 − 1.0 V 4.5 0.4 − 1.4 V 6.0 0.6 − 1.6 V Tamb = −40 to +85 °C VT+ VT− VH positive-going threshold negative-going threshold hysteresis (VT+ − VT−) Figs 7 and 8 Figs 7 and 8 Figs 7 and 8 Tamb = −40 to +125 °C VT+ VT− VH positive-going threshold negative-going threshold hysteresis (VT+ − VT−) Figs 7 and 8 Figs 7 and 8 Figs 7 and 8 Note 1. All typical values are measured at Tamb = 25 °C. 2003 Oct 30 10 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 Family 74HCT At recommended operating conditions: voltages are referenced to GND (ground = 0 V) TEST CONDITIONS SYMBOL PARAMETER MIN. WAVEFORMS TYP. MAX. UNIT VCC (V) Tamb = 25 °C; note 1 VT+ positive-going threshold Figs 7 and 8 VT− negative-going threshold Figs 7 and 8 VH hysteresis (VT+ − VT−) Figs 7 and 8 4.5 1.2 1.41 1.9 V 5.5 1.4 1.59 2.1 V 4.5 0.5 0.85 1.2 V 5.5 0.6 0.99 1.4 V 4.5 0.4 0.56 − V 5.5 0.4 0.60 − V 4.5 1.2 − 1.9 V 5.5 1.4 − 2.1 V Tamb = −40 to +85 °C VT+ VT− VH positive-going threshold negative-going threshold hysteresis (VT+ − VT−) Figs 7 and 8 Figs 7 and 8 Figs 7 and 8 4.5 0.5 − 1.2 V 5.5 0.6 − 1.4 V 4.5 0.4 − − V 5.5 0.4 − − V 4.5 1.2 − 1.9 V 5.5 1.4 − 2.1 V Tamb = −40 to +125 °C VT+ VT− VH positive-going threshold negative-going threshold hysteresis (VT+ − VT−) Figs 7 and 8 Figs 7 and 8 Figs 7 and 8 Note 1. All typical values are measured at Tamb = 25 °C. 2003 Oct 30 11 4.5 0.5 − 1.2 V 5.5 0.6 − 1.4 V 4.5 0.4 − − V 5.5 0.4 − − V Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 AC CHARACTERISTICS Type 74HC GND = 0 V; tf = tf = 6 ns; CL = 50 pF TEST CONDITIONS SYMBOL PARAMETER MIN. TYP. MAX. UNIT WAVEFORMS VCC (V) see Fig.9 2.0 − 41 125 ns 4.5 − 15 25 ns 6.0 − 12 21 ns 2.0 − 19 75 ns 4.5 − 7 15 ns 6.0 − 6 13 ns 2.0 − − 155 ns 4.5 − − 31 ns 6.0 − − 26 ns 2.0 − − 95 ns 4.5 − − 19 ns 6.0 − − 15 ns 2.0 − − 190 ns 4.5 − − 38 ns 6.0 − − 32 ns 2.0 − − 110 ns 4.5 − − 22 ns 6.0 − − 19 ns Tamb = 25 °C; note 1 tPHL/tPLH tTHL/tTLH propagation delay nA to nY output transition time see Fig.9 Tamb = −40 to +85 °C tPHL/tPLH tTHL/tTLH propagation delay nA to nY output transition time see Fig.9 see Fig.9 Tamb = −40 to +125 °C tPHL/tPLH tTHL/tTLH propagation delay nA to nY output transition time see Fig.9 see Fig.9 Note 1. All typical values are measured at Tamb = 25 °C. 2003 Oct 30 12 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 Type 74HCT GND = 0 V; tr = tf = 6 ns; CL = 50 pF TEST CONDITIONS SYMBOL PARAMETER MIN. WAVEFORMS TYP. MAX. UNIT VCC (V) Tamb = 25 °C; note 1 tPHL/tPLH propagation delay nA to nY see Fig.9 4.5 − 20 34 ns tTHL/tTLH output transition time see Fig.9 4.5 − 7 15 ns Tamb = −40 to +85 °C tPHL/tPLH propagation delay nA to nY see Fig.9 4.5 43 − − ns tTHL/tTLH output transition time see Fig.9 4.5 19 − − ns Tamb = −40 to +125 °C tPHL/tPLH propagation delay nA to nY see Fig.9 4.5 − − 51 ns tTHL/tTLH output transition time see Fig.9 4.5 − − 22 ns Note 1. All typical values are measured at Tamb = 25 °C. TRANSFER CHARACTERISTIC WAVEFORMS VO handbook, halfpage VI VT− VT+ VT− VH VO VI VH VT+ MNA845 MNA844 VT+ and VT− are between limits of 20% and 70%. Fig.7 Transfer characteristic. 2003 Oct 30 Fig.8 The definitions of VT+, VT− and VH. 13 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 MNA846 50 MNA847 1.0 ICC (mA) handbook, halfpage handbook, halfpage ICC (µA) 40 0.8 30 0.6 20 0.4 10 0.2 0 0 0 0.4 0.8 1.2 1.6 0 2.0 1 2 3 4 VCC = 2 V. VCC = 4.5 V. Fig.9 Typical 74HC14 transfer characteristics. Fig.10 Typical 74HC14 transfer characteristics. MNA848 1.0 handbook, halfpage ICC (mA) ICC (mA) 0.8 1.2 0.6 0.9 0.4 0.6 0.2 0.3 0 1.2 2.4 3.6 4.8 0 6.0 0 VI (V) 1 2 3 4 5 VI (V) VCC = 6 V. VCC = 4.5 V. Fig.11 Typical 74HC14 transfer characteristics. 2003 Oct 30 MNA849 1.5 handbook, halfpage 0 5 VI (V) VI (V) Fig.12 Typical 74HCT14 transfer characteristics. 14 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 MNA850 1.8 CC (mA) 1.5 handbook, halfpage I 1.2 0.9 0.6 0.3 0 0 1 2 3 4 5 6 VI (V) VCC = 5.5 V. Fig.13 Typical 74HCT14 transfer characteristics. AC WAVEFORMS VI handbook, halfpage nA input VM VM GND t PHL t PLH VOH nY output 90% VM VM 10% VOL t THL t TLH MNA722 74HC14: VM = 50%; VI = GND to VCC. 74HCT14: VM = 1.3 V; VI = GND to 3.0 V. Fig.14 The input (nA) to output (nY) propagation delays and output transitions times. 2003 Oct 30 15 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 S1 handbook, full pagewidth VCC PULSE GENERATOR RL = VI VCC open GND 1 kΩ VO D.U.T. CL = 50 pF RT MNA742 TEST S1 tPLH/tPHL open tPLZ/tPZL VCC tPHZ/tPZH GND Definitions for test circuit: RL = Load resistor. CL = load capacitance including jig and probe capacitance. RT = termination resistance should be equal to the output impedance Zo of the pulse generator. Fig.15 Load circuitry for switching times. 2003 Oct 30 16 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 APPLICATION INFORMATION The slow input rise and fall times cause additional power dissipation. This can be calculated using the following formula: MNA852 400 handbook, halfpage ICC(AV) (µA) Pad = fi × (tr × ICC(AV) + tf × ICC(AV)) × VCC. 300 Where: Pad = additional power dissipation (µW); fi = input frequency (MHz); 200 positive - going edge tr = input rise time (µs); 10% to 90%; tf = input fall time (µs); 10% to 90%; 100 ICC(AV) = average additional supply current (µA). ICC(AV) differs with positive or negative input transitions, as shown in Figs 16 and 17. negative - going edge 0 For 74HC/HCT14 used in a relaxation oscillator circuit, see Fig.18. 0 2 4 VCC (V) 6 Note to application information Linear change of VI between 0.1VCC to 0.9VCC All values given are typical unless otherwise specified. Fig.16 Average ICC for 74HC14 Schmitt trigger devices. MNA853 400 handbook, halfpage ICC(AV) (µA) positive - going egde edge 300 R handbook, halfpage 200 C negative - going egde edge 100 MNA854 0 0 2 4 VCC (V) 6 1 1 74HC14 : f = --- ≈ ------------------T 0.8 RC Linear change of VI between 0.1VCC to 0.9VCC. 1 1 74HCT14 : f = --- ≈ ---------------------T 0.67 RC Fig.17 Average ICC for HCT Schmitt trigger devices. Fig.18 Relaxation oscillator using 74HC/HCT14. 2003 Oct 30 17 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 PACKAGE OUTLINES SO14: plastic small outline package; 14 leads; body width 3.9 mm SOT108-1 D E A X c y HE v M A Z 8 14 Q A2 A (A 3) A1 pin 1 index θ Lp 1 L 7 e detail X w M bp 0 2.5 5 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e HE L Lp Q v w y Z (1) mm 1.75 0.25 0.10 1.45 1.25 0.25 0.49 0.36 0.25 0.19 8.75 8.55 4.0 3.8 1.27 6.2 5.8 1.05 1.0 0.4 0.7 0.6 0.25 0.25 0.1 0.7 0.3 0.010 0.057 0.004 0.049 0.01 0.019 0.0100 0.35 0.014 0.0075 0.34 0.16 0.15 0.05 0.028 0.024 0.01 0.01 0.004 0.028 0.012 inches 0.069 0.244 0.039 0.041 0.228 0.016 θ Note 1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC SOT108-1 076E06 MS-012 2003 Oct 30 JEITA EUROPEAN PROJECTION ISSUE DATE 99-12-27 03-02-19 18 o 8 0o Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 DIP14: plastic dual in-line package; 14 leads (300 mil) SOT27-1 ME seating plane D A2 A A1 L c e Z w M b1 (e 1) b MH 8 14 pin 1 index E 1 7 0 5 10 mm scale DIMENSIONS (inch dimensions are derived from the original mm dimensions) UNIT A max. A1 min. A2 max. b b1 c D (1) E (1) e e1 L ME MH w Z (1) max. mm 4.2 0.51 3.2 1.73 1.13 0.53 0.38 0.36 0.23 19.50 18.55 6.48 6.20 2.54 7.62 3.60 3.05 8.25 7.80 10.0 8.3 0.254 2.2 inches 0.17 0.02 0.13 0.068 0.044 0.021 0.015 0.014 0.009 0.77 0.73 0.26 0.24 0.1 0.3 0.14 0.12 0.32 0.31 0.39 0.33 0.01 0.087 Note 1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC JEITA SOT27-1 050G04 MO-001 SC-501-14 2003 Oct 30 19 EUROPEAN PROJECTION ISSUE DATE 99-12-27 03-02-13 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm SOT402-1 E D A X c y HE v M A Z 8 14 Q (A 3) A2 A A1 pin 1 index θ Lp L 1 7 e detail X w M bp 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (2) e HE L Lp Q v w y Z (1) θ mm 1.1 0.15 0.05 0.95 0.80 0.25 0.30 0.19 0.2 0.1 5.1 4.9 4.5 4.3 0.65 6.6 6.2 1 0.75 0.50 0.4 0.3 0.2 0.13 0.1 0.72 0.38 8 0o Notes 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT402-1 2003 Oct 30 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 99-12-27 03-02-18 MO-153 20 o Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; SOT762-1 14 terminals; body 2.5 x 3 x 0.85 mm A B D A A1 E c detail X terminal 1 index area terminal 1 index area C e1 e 2 6 y y1 C v M C A B w M C b L 1 7 Eh e 14 8 13 9 Dh X 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A(1) max. A1 b c D (1) Dh E (1) Eh e e1 L v w y y1 mm 1 0.05 0.00 0.30 0.18 0.2 3.1 2.9 1.65 1.35 2.6 2.4 1.15 0.85 0.5 2 0.5 0.3 0.1 0.05 0.05 0.1 Note 1. Plastic or metal protrusions of 0.075 mm maximum per side are not included. REFERENCES OUTLINE VERSION IEC JEDEC JEITA SOT762-1 --- MO-241 --- 2003 Oct 30 21 EUROPEAN PROJECTION ISSUE DATE 02-10-17 03-01-27 Philips Semiconductors Product specification Hex inverting Schmitt trigger 74HC14; 74HCT14 DATA SHEET STATUS LEVEL DATA SHEET STATUS(1) PRODUCT STATUS(2)(3) Development DEFINITION I Objective data II Preliminary data Qualification This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. III Product data This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Production This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. Notes 1. Please consult the most recently issued data sheet before initiating or completing a design. 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status. DEFINITIONS DISCLAIMERS Short-form specification The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Limiting values definition Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Right to make changes Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status ‘Production’), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Application information Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. 2003 Oct 30 22 Philips Semiconductors – a worldwide company Contact information For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: [email protected]. SCA75 © Koninklijke Philips Electronics N.V. 2003 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 613508/03/pp23 Date of release: 2003 Oct 30 Document order number: 9397 750 10497