Previous Datasheet Index Next Data Sheet PD - 9.1133 IRGBC30M-S INSULATED GATE BIPOLAR TRANSISTOR Features Short Circuit Rated Fast IGBT C • Short circuit rated - 10µs @ 125°C, V GE = 15V • Switching-loss rating includes all "tail" losses • Optimized for medium operating frequency (1 to 10kHz) See Fig. 1 for Current vs. Frequency curve VCES = 600V VCE(sat) ≤ 2.9V G @VGE = 15V, I C = 16A E n-channel Description Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications. These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability. SMD-220 Absolute Maximum Ratings Parameter VCES IC @ T C = 25°C IC @ T C = 100°C ICM ILM tsc VGE EARV PD @ T C = 25°C PD @ T C = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Short Circuit Withstand Time Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 600 26 16 52 52 10 ±20 10 100 42 -55 to +150 V A µs V mJ W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθJA RθJA Wt Junction-to-Case Junction-to-Ambient, (PCB mount)** Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. — — — — — — — 2 (0.07) 1.2 40 80 — Units °C/W g (oz) ** When mounted on 1" square PCB (FR-4 or G-10 Material) For recommended footprint and soldering techniques refer to application note #AN-994. C-341 To Order Revision 1 Previous Datasheet Index Next Data Sheet IRGBC30M-S Electrical Characteristics @ T J = 25°C (unless otherwise specified) VCE(on) Parameter Collector-to-Emitter Breakdown Voltage Emitter-to-Collector Breakdown Voltage Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage VGE(th) ∆VGE(th)/∆TJ gfe ICES Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance Zero Gate Voltage Collector Current IGES Gate-to-Emitter Leakage Current V(BR)CES V(BR)ECS ∆V(BR)CES/∆TJ Switching Characteristics @ T J Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time td(on) tr td(off) tf Ets LE Cies Coes Cres Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units Conditions 600 — — V VGE = 0V, I C = 250µA 20 — — V VGE = 0V, IC = 1.0A — 0.65 — V/°C VGE = 0V, I C = 1.0mA — 1.9 2.9 IC = 14A V GE = 15V — 2.7 — V IC = 24A See Fig. 2, 5 — 2.2 — IC = 14A, T J = 150°C 3.0 — 5.5 VCE = VGE, IC = 250µA — -12 — mV/°C VCE = VGE, IC = 250µA 3.3 6.5 — S VCE = 100V, I C = 14A — — 250 µA VGE = 0V, V CE = 600V — — 1000 VGE = 0V, V CE = 600V, T J = 150°C — — ±100 nA VGE = ±20V = 25°C (unless otherwise specified) Min. Typ. Max. Units — 35 53 — 7.4 11 nC — 14 21 — 31 — — 31 — ns — 280 420 — 310 470 — 0.4 — — 1.9 — mJ — 2.3 3.5 10 — — µs — — — — — — — — — 31 30 530 660 4.4 7.5 750 110 9.3 — — — — — — — — — ns mJ nH pF Conditions IC = 16A VCC = 400V See Fig. 8 VGE = 15V TJ = 25°C IC = 16A, V CC = 480V VGE = 15V, R G = 23Ω Energy losses include "tail" See Fig. 9, 10, 11, 14 VCC = 360V, T J = 125°C VGE = 15V, R G = 23Ω, VCPK < 500V TJ = 150°C, IC = 16A, V CC = 480V VGE = 15V, R G = 23Ω Energy losses include "tail" See Fig. 10, 14 Measured 5mm from package VGE = 0V VCC = 30V See Fig. 7 ƒ = 1.0MHz Notes: Repetitive rating; V GE=20V, pulse width limited by max. junction temperature. ( See fig. 13b ) Repetitive rating; pulse width limited by maximum junction temperature. VCC=80%(V CES), VGE=20V, L=10µH, R G= 23Ω, ( See fig. 13a ) Pulse width ≤ 80µs; duty factor ≤ 0.1%. C-342 To Order Pulse width 5.0µs, single shot. Previous Datasheet Index Next Data Sheet IRGBC30M-S 30 For both: Triangular wave: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified Power Dissipation = 21W Clamp voltage: 80% of rated 20 Square wave: 60% of rated voltage 10 Ideal diodes A 0 0.1 1 10 100 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=I RMS of fundamental; for triangular wave, I=I PK) 100 IC , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 25°C TJ = 150°C 10 1 VGE = 15V 20µs PULSE WIDTH A 0.1 0.1 1 TJ = 150°C TJ = 25°C 10 VCC = 100V 5µs PULSE WIDTH A 1 10 5 VCE , Collector-to-Emitter Voltage (V) 10 15 VGE, Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics C-343 To Order 20 Previous Datasheet Index Next Data Sheet IRGBC30M-S 5.0 VGE = 15V VCE , Collector-to-Emitter Voltage (V) Maximum DC Collector Current (A) 30 25 20 15 10 5 A 0 25 50 75 100 125 VGE = 15V 80µs PULSE WIDTH I C = 32A 4.0 3.0 I C = 16A 2.0 I C = 8.0A 1.0 A 0.0 -60 150 TC , Case Temperature (°C) -40 -20 0 20 40 60 80 100 120 140 160 TC, Case Temperature (°C) Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature Fig. 4 - Maximum Collector Current vs. Case Temperature T he rm al R e sp ons e (Z thJ C ) 10 1 D = 0 .5 0 0 .2 0 PD M 0 .1 0 0.1 0.01 0.00001 t 0 .0 5 0 .0 2 0 .0 1 1 t S IN G L E P U L S E (T H E R M A L R E S P O N S E ) N o te s : 1 . D u ty fa c to r D = t 1 /t 2 2 2 . P e a k T J = P D M x Z thJ C + T C 0.0001 0.00 1 0.01 0.1 1 t 1 , R e c ta n gu la r P u ls e D ura tio n (s e c ) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case C-344 To Order 10 Previous Datasheet Index Next Data Sheet IRGBC30M-S 1400 VGE , Gate-to-Emitter Voltage (V) 1200 C, Capacitance (pF) 20 V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc 1000 Cies 800 Coes 600 400 200 Cres A 0 1 10 VCE = 400V I C = 16A 16 12 8 4 A 0 100 0 10 Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 2.55 40 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 100 VCC VGE TC IC 30 Qg , Total Gate Charge (nC) VCE, Collector-to-Emitter Voltage (V) 2.60 20 = 480V = 15V = 25°C = 16A R G = 23Ω V GE = 15V V CC = 480V I C = 32A 10 2.50 I C = 16A 2.45 I C = 8.0A 1 2.40 2.35 A 2.30 0 10 20 30 40 50 A 0.1 -60 60 -40 -20 0 20 40 60 80 100 120 140 160 TC , Case Temperature (°C) R G , Gate Resistance (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance Fig. 10 - Typical Switching Losses vs. Case Temperature C-345 To Order Previous Datasheet Index Next Data Sheet IRGBC30M-S RG TC V CC V GE 10 100 = 23Ω = 150°C = 480V = 15V IC , Collector-to-Emitter Current (A) 12 8 6 4 2 A 0 0 10 20 30 VGE = 20V TJ = 125°C SAFE OPERATING AREA 10 A 1 40 1 I C , Collector-to-Emitter Current (A) 10 VCE, Collector-to-Emitter Voltage (V) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Refer to Section D for the following: Appendix C: Section D - page D-5 Fig. 13a - Clamped Inductive Load Test Circuit Fig. 13b - Pulsed Collector Current Test Circuit Fig. 14a - Switching Loss Test Circuit Fig. 14b - Switching Loss Waveform Package Outline 2 - SMD-220 100 Section D - page D-12 C-346 To Order 1000