IRF IRGBC30M-S

Previous Datasheet
Index
Next Data Sheet
PD - 9.1133
IRGBC30M-S
INSULATED GATE BIPOLAR TRANSISTOR
Features
Short Circuit Rated
Fast IGBT
C
• Short circuit rated - 10µs @ 125°C, V GE = 15V
• Switching-loss rating includes all "tail" losses
• Optimized for medium operating frequency (1 to
10kHz) See Fig. 1 for Current vs. Frequency curve
VCES = 600V
VCE(sat) ≤ 2.9V
G
@VGE = 15V, I C = 16A
E
n-channel
Description
Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have
higher usable current densities than comparable bipolar transistors, while at
the same time having simpler gate-drive requirements of the familiar power
MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications.
These new short circuit rated devices are especially suited for motor control
and other applications requiring short circuit withstand capability.
SMD-220
Absolute Maximum Ratings
Parameter
VCES
IC @ T C = 25°C
IC @ T C = 100°C
ICM
ILM
tsc
VGE
EARV
PD @ T C = 25°C
PD @ T C = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
26
16
52
52
10
±20
10
100
42
-55 to +150
V
A
µs
V
mJ
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθJA
RθJA
Wt
Junction-to-Case
Junction-to-Ambient, (PCB mount)**
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
—
—
—
—
—
—
—
2 (0.07)
1.2
40
80
—
Units
°C/W
g (oz)
** When mounted on 1" square PCB (FR-4 or G-10 Material)
For recommended footprint and soldering techniques refer to application note #AN-994.
C-341
To Order
Revision 1
Previous Datasheet
Index
Next Data Sheet
IRGBC30M-S
Electrical Characteristics @ T
J
= 25°C (unless otherwise specified)
VCE(on)
Parameter
Collector-to-Emitter Breakdown Voltage
Emitter-to-Collector Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
Gate Threshold Voltage
Temperature Coeff. of Threshold Voltage
Forward Transconductance
Zero Gate Voltage Collector Current
IGES
Gate-to-Emitter Leakage Current
V(BR)CES
V(BR)ECS
∆V(BR)CES/∆TJ
Switching Characteristics @ T
J
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Min. Typ. Max. Units
Conditions
600
—
—
V
VGE = 0V, I C = 250µA
20
—
—
V
VGE = 0V, IC = 1.0A
— 0.65 —
V/°C VGE = 0V, I C = 1.0mA
—
1.9
2.9
IC = 14A
V GE = 15V
—
2.7
—
V
IC = 24A
See Fig. 2, 5
—
2.2
—
IC = 14A, T J = 150°C
3.0
—
5.5
VCE = VGE, IC = 250µA
—
-12
— mV/°C VCE = VGE, IC = 250µA
3.3 6.5
—
S
VCE = 100V, I C = 14A
—
—
250
µA
VGE = 0V, V CE = 600V
—
— 1000
VGE = 0V, V CE = 600V, T J = 150°C
—
— ±100 nA
VGE = ±20V
= 25°C (unless otherwise specified)
Min. Typ. Max. Units
—
35
53
—
7.4
11
nC
—
14
21
—
31
—
—
31
—
ns
—
280 420
—
310 470
—
0.4
—
—
1.9
—
mJ
—
2.3 3.5
10
—
—
µs
—
—
—
—
—
—
—
—
—
31
30
530
660
4.4
7.5
750
110
9.3
—
—
—
—
—
—
—
—
—
ns
mJ
nH
pF
Conditions
IC = 16A
VCC = 400V
See Fig. 8
VGE = 15V
TJ = 25°C
IC = 16A, V CC = 480V
VGE = 15V, R G = 23Ω
Energy losses include "tail"
See Fig. 9, 10, 11, 14
VCC = 360V, T J = 125°C
VGE = 15V, R G = 23Ω, VCPK < 500V
TJ = 150°C,
IC = 16A, V CC = 480V
VGE = 15V, R G = 23Ω
Energy losses include "tail"
See Fig. 10, 14
Measured 5mm from package
VGE = 0V
VCC = 30V
See Fig. 7
ƒ = 1.0MHz
Notes:
Repetitive rating; V GE=20V, pulse width
limited by max. junction temperature.
( See fig. 13b )
Repetitive rating; pulse width limited
by maximum junction temperature.
VCC=80%(V CES), VGE=20V, L=10µH,
R G= 23Ω, ( See fig. 13a )
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
C-342
To Order
Pulse width 5.0µs,
single shot.
Previous Datasheet
Index
Next Data Sheet
IRGBC30M-S
30
For both:
Triangular wave:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
Power Dissipation = 21W
Clamp voltage:
80% of rated
20
Square wave:
60% of rated
voltage
10
Ideal diodes
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=I RMS of fundamental; for triangular wave, I=I PK)
100
IC , Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 25°C
TJ = 150°C
10
1
VGE = 15V
20µs PULSE WIDTH A
0.1
0.1
1
TJ = 150°C
TJ = 25°C
10
VCC = 100V
5µs PULSE WIDTH A
1
10
5
VCE , Collector-to-Emitter Voltage (V)
10
15
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
Fig. 2 - Typical Output Characteristics
C-343
To Order
20
Previous Datasheet
Index
Next Data Sheet
IRGBC30M-S
5.0
VGE = 15V
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
30
25
20
15
10
5
A
0
25
50
75
100
125
VGE = 15V
80µs PULSE WIDTH
I C = 32A
4.0
3.0
I C = 16A
2.0
I C = 8.0A
1.0
A
0.0
-60
150
TC , Case Temperature (°C)
-40
-20
0
20
40
60
80
100 120 140 160
TC, Case Temperature (°C)
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
T he rm al R e sp ons e (Z thJ C )
10
1
D = 0 .5 0
0 .2 0
PD M
0 .1 0
0.1
0.01
0.00001
t
0 .0 5
0 .0 2
0 .0 1
1
t
S IN G L E P U L S E
(T H E R M A L R E S P O N S E )
N o te s :
1 . D u ty fa c to r D = t
1
/t
2
2
2 . P e a k T J = P D M x Z thJ C + T C
0.0001
0.00 1
0.01
0.1
1
t 1 , R e c ta n gu la r P u ls e D ura tio n (s e c )
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
C-344
To Order
10
Previous Datasheet
Index
Next Data Sheet
IRGBC30M-S
1400
VGE , Gate-to-Emitter Voltage (V)
1200
C, Capacitance (pF)
20
V GE = 0V,
f = 1MHz
C ies = C ge + C gc , Cce SHORTED
C res = C gc
C oes = C ce + C gc
1000
Cies
800
Coes
600
400
200
Cres
A
0
1
10
VCE = 400V
I C = 16A
16
12
8
4
A
0
100
0
10
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
2.55
40
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
100
VCC
VGE
TC
IC
30
Qg , Total Gate Charge (nC)
VCE, Collector-to-Emitter Voltage (V)
2.60
20
= 480V
= 15V
= 25°C
= 16A
R G = 23Ω
V GE = 15V
V CC = 480V
I C = 32A
10
2.50
I C = 16A
2.45
I C = 8.0A
1
2.40
2.35
A
2.30
0
10
20
30
40
50
A
0.1
-60
60
-40
-20
0
20
40
60
80
100 120 140 160
TC , Case Temperature (°C)
R G , Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Case Temperature
C-345
To Order
Previous Datasheet
Index
Next Data Sheet
IRGBC30M-S
RG
TC
V CC
V GE
10
100
= 23Ω
= 150°C
= 480V
= 15V
IC , Collector-to-Emitter Current (A)
12
8
6
4
2
A
0
0
10
20
30
VGE = 20V
TJ = 125°C
SAFE OPERATING AREA
10
A
1
40
1
I C , Collector-to-Emitter Current (A)
10
VCE, Collector-to-Emitter Voltage (V)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
Refer to Section D for the following:
Appendix C: Section D - page D-5
Fig. 13a - Clamped Inductive Load Test Circuit
Fig. 13b - Pulsed Collector Current Test Circuit
Fig. 14a - Switching Loss Test Circuit
Fig. 14b - Switching Loss Waveform
Package Outline 2 - SMD-220
100
Section D - page D-12
C-346
To Order
1000