System Power Supply ICs for CCD Camera of Mobile Phones Power Supply for CCD Camera Module BD6029GU No.10033EAT01 ●Description BD6029GU is system power supply LSI for CCD camera that supplies all voltage sources for CCD camera. This IC has Step up DC/DC converter and LDO for CCD sensor, Inverted DC/DC converter for CCD sensor, Series Regulators for DSP 3ch, CCD I/O 1ch and V-driver 1ch. Each output voltage has an adjustable to the register, and this IC can correspond to various CCD modules. A necessary power supply for CCD camera is integrated into 1chip, and it contributes to space saving. BD6029GU achieves compact size with the chip size package. ●Features 1) The BD6029GU is equipped with all voltage sources for CCD camera. 2) Each output has an adjustable voltage, and hence this IC can correspond to various CCD modules. 3) The BD6029GU has 3ch voltage regulators which have adjustable voltage for DSP, and hence BD6029GU can correspond to various DSP chip sets. 4) The BD6029GU has other 2ch voltage regulators for CCD I/O and V-driver. 2 5) The BD6029GU is controlled by I C BUS format. 6) The BD6029GU employs 4.35mm2 chip size package, so this IC achieves compact size. ●Functions 1) Step up DC/DC converter and LDO for CCD sensor (+15V/+14.5V/+13V) 2) Inverted DC/DC converter for CCD sensor (-8V/-7.5V/-7V) 3) 5ch Series Regulator REG1 : 1.2V/1.8V, Iomax=150mA REG2 : 2.7V/3.0V/3.3V, Iomax=150mA REG5 : 1.8V/3.0V, Iomax=150mA REG6 : 3.0V/3.1V/3.2V/3.3V, Iomax=200mA REGA: 1.8V/3.0V/3.3, Iomax=150mA 2 4) Correspondence to I C BUS format 5) Thermal shutdown (Auto-reset type) 6) VCSP85H4 small package (chip size package) ●Absolute Maximum Ratings (Ta=25°C) Parameter Symbol Ratings Unit Maximum Applied voltage 1 (Note 1) VMAX1 20 V Maximum Applied Voltage 2 (Note 2) VMAX2 18 V Maximum Applied Voltage 3 (Note 3) VMAX3 -13.5 V Maximum Applied Voltage 4 (Note 4) VMAX4 6 V Power Dissipation (Note 5) Pd 1925 mW Operating Temperature Range Topr -30 ~ +85 °C Storage Temperature Range Tstg -55 ~ +125 °C (Note 1) SW,VPLUS1,VPLUS2 pin (Note 2) VDD3 pin (Note 3) VDD4 pin (Note 4) Except Note1~Note3 pin (Note 5) Power dissipation deleting is 15.4mW/ oC, when it’s used in over 25 oC. (It’s deleting is on the board that is ROHM’s standard) ●Recommended Operating Conditions (VBAT≥VIO, Ta=-30~85 °C) Parameter Symbol VBAT input voltage VIO pin voltage www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. Limits Unit VBAT 2.7 ~ 5.5 V VIO 1.62 ~ 3.3 V 1/19 2010.03 - Rev.A Technical Note BD6029GU ●Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V/3.0V) Limits Parameter Symbol Unit Condition Min. Typ. Max. Circuit Current VBAT Circuit current 1 IBAT1 - 0.1 3.0 μA RST=0V, VIO=0V VBAT Circuit current 2 IBAT2 - 0.5 3.0 μA RST=0V VBAT Circuit current 3 IBAT3 - 90 135 μA REG1:ON, Io=0mA VBAT Circuit current 4 IBAT4 - 90 135 μA REG2:ON, Io=0mA VBAT Circuit current 5 IBAT5 - 90 135 μA REG5:ON, Io=0mA VBAT Circuit current 6 IBAT6 - 90 135 μA REG6:ON, Io=0mA VBAT Circuit current 7 IBAT7 - 90 135 μA VBAT Circuit current 8 IBAT8 - 9 14 mA REGA:ON, Io=0mA SWREG3:ON,REG3:ON, SWREG4:ON, Io=0mA Output voltage 1 VoPD1 - 17.0 - V Io=60mA Output voltage 2 VoPD2 - 16.5 - V Io=60mA Output voltage 3 VoPD3 - 14.5 - V Io=60mA Output current IoPD - - 60 mA Efficiency EffPD - (80) - % Oscillator frequency foscPD 0.8 1.0 1.2 MHz SW saturation voltage VsatPD - 200 400 mV Over voltage protection OvPD 18.0 18.5 19.0 V Over current protection OcPD 1.0 1.25 1.5 A Output voltage 1 VoND1 -8.4 -8.0 -7.6 V Io=100mA Output voltage 2 VoND2 -7.9 -7.5 -7.1 V Io=100mA Output voltage 3 VoND3 -7.4 -7.0 -6.6 V Io=100mA Output current IoND - - 100 mA Efficiency EffND - (75) - % foscND 0.8 1.0 1.2 MHz Over voltage protection OvND -10.5 -10.0 -9.5 V Over current protection OcND 1.0 1.25 1.5 A ROFFN 0.5 1.0 1.5 kΩ SWREG3 SWREG4 (Step up DC/DC) (Note 6) Io=60mA (Note 6) Iin=200mA (Inverted DC/DC) Oscillator frequency Electric discharge resister at OFF (Note 6) Io=100mA (Note 6) (Note 6) The power efficiency changes with the fluctuation of external parts and the board mounting condition. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 2/19 2010.03 - Rev.A Technical Note BD6029GU ●Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V/3.0V) Limits Parameter Symbol Unit Condition Min. Typ. Max. REG1 (1.2V/1.8V LDO) Output voltage 1 Vo11 1.140 1.20 1.260 Output voltage 2 Vo12 1.746 1.80 1.854 V Io1 - - 150 mA Load stability ∆Vo11 - 10 60 mV Io=1~150mA, Vo=1.8V Input stability ∆Vo12 - 10 60 mV RR1 - 65 - dB Ilim01 - 200 400 mA VBAT=3.2~4.5V, Io=100mA, Vo=1.8V f=100Hz, Vin=200mVp-p, Vo=1.2V Io=50mA, BW=20Hz~20kHz Vo=0V ROFF1 - 1.0 1.5 kΩ Output voltage 1 Vo21 2.619 2.70 2.781 V Io=150mA Output voltage 2 Vo22 2.910 3.00 3.090 V Io=150mA Output voltage 3 Vo23 3.201 3.30 3.399 V Io=150mA Output current Ripple rejection ratio Current over load limiter Discharge resister at OFF REG2 V Io=150mA Io=150mA Vo=1.8V (2.7V/3.0V/3.3V LDO) Output current Io2 - - 150 mA I/O voltage difference Vsat2 - 0.2 0.3 V Load stability ∆Vo21 - 10 60 mV Io=1~150mA, Vo=2.7V Input stability ∆Vo22 - 10 60 mV RR2 - 60 - dB Ilim02 - 200 400 mA VBAT=3.4~4.5V, Io=50mA, Vo=2.7V f=100Hz, Vin=200mVp-p, Vo=2.7V Io=50mA, BW=20Hz~20kHz Vo=0V ROFF2 - 1.0 1.5 kΩ Output voltage 1 Vo31 14.05 14.5 14.95 V Io=60mA Output voltage 2 Vo32 14.55 15.0 15.45 V Io=60mA Output voltage 3 Vo33 12.55 13.0 13.45 V Io=60mA I/O voltage difference Vsat3 - 0.32 0.5 V VPLUS2=11V, Io=60mA Load stability ∆Vo31 - 20 80 mV Io=1~60mA Input stability Output voltage temperature fluctuation rate Output ripple voltage ∆Vo32 - 10 60 mV VPLUS2=16.5~17.5V, Io=60mA ∆Vo33 - ±100 - ppm/°C Ta=-30℃~85℃, Io=60mA RR3 - - 3 mVp-p Io=60mA, BW=20Hz~80kHz(Note 7) Ilim03 - 100 - mA ROFF3 0.5 1.0 1.5 kΩ Ripple rejection ratio Current over load limiter Discharge resister at OFF REG3 VBAT=2.5V, Io=150mA, Vo=2.7V (15V/14.5V/13V LDO) Current over load limiter Discharge resister at OFF (Note 7) Vo=2.7V Vo=0V BW: Band width www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 3/19 2010.03 - Rev.A Technical Note BD6029GU ●Electrical Characteristics (Unless otherwise specified, Ta=25°C, VBAT=3.6V, VIO=1.8V/3.0V) Limits Parameter Symbol Unit Condition Min. Typ. Max. REG5 (1.8V/3.0V LDO) Output voltage 1 Vo51 1.746 1.80 1.854 Output voltage 2 Vo52 2.910 3.00 3.090 V Io5 - - 150 mA Output current V Io=150mA Io=150mA Vo=1.8V I/O voltage difference Vsat5 - 0.2 0.3 V Load stability ∆Vo51 - 10 60 mV Io=1~150mA, Vo=1.8V Input stability ∆Vo52 - 10 60 mV RR5 - 65 - dB VBAT=3.3~4.5V, Io=80mA, Vo=1.8V f=100Hz, Vin=200mVp-p, Vo=1.8V Io=50mA, BW=20Hz~20kHz Vo=0V Ripple rejection ratio Current over load limiter VBAT=2.5V, Io=150mA, Vo=3.0V Ilim05 - 200 400 mA ROFF5 - 1.0 1.5 kΩ Output voltage 1 Vo61 2.910 3.00 3.090 V Io=200mA Output voltage 2 Vo62 3.007 3.10 3.193 V Io=200mA Output voltage 3 Vo63 3.104 3.20 3.296 V Io=200mA Output voltage 4 Vo64 3.201 3.30 3.399 V Io=200mA Io6 - - 200 mA Discharge resister at OFF REG6 (3.0V/3.1V/3.2V/3.3V LDO) Output current Vo=3.0V I/O voltage difference Vsat6 - 0.2 0.3 V Load stability ∆Vo61 - 10 60 mV Io=1~200mA, Vo=3.0V Input stability ∆Vo62 - 10 60 mV RR6 - 60 - dB VBAT=3.4~4.5V, Io=200mA, Vo=3.0V f=100Hz, Vin=200mVp-p, Vo=3.0V Io=50mA, BW=20Hz~20kHz Vo=0V Ripple rejection ratio Current over load limiter VBAT=2.5V, Io=200mA, Vo=3.0V Ilim06 - 250 500 mA ROFF6 - 1.0 1.5 kΩ Output voltage 1 VoA1 1.746 1.80 1.854 V Io=150mA Output voltage 2 VoA2 2.910 3.00 3.090 V Io=150mA Output voltage 3 VoA3 3.201 3.30 3.399 V Io=150mA IoA - - 150 mA Discharge resister at OFF REGA (1.8V/3.0V/3.3V LDO) Output current I/O voltage difference Vo=1.8V VsatA - 0.2 0.3 V Load stability ΔVoA1 - 10 60 mV Io=1~150mA, Vo=1.8V Input stability ΔVoA2 - 10 60 mV RRA - 65 - dB Current over load limiter Ilim0A - 200 400 mA VBAT=3.4~4.5V, Io=150mA, Vo=1.8V f=100Hz, Vin=200mVp-p, Vo=1.8V Io=50mA, BW=20Hz~20kHz Vo=0V Discharge resister at OFF ROFFA - 1.0 1.5 kΩ Ripple rejection ratio VBAT=2.5V, Io=150mA, Vo=3.0V I2C Input (RST, SDA, SCL) LOW level input voltage VIL -0.3 - 0.25VIO V HIGH level input voltage Hysteresis of Schmitt trigger input LOW level output voltage (SDA) at 3mA sink current VIH 0.75VIO - VIO+0.3 V Vhys 0.05VIO - - V VOL 0 - 0.30 V li -10 - 10 μA Input current each I/O pin www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 4/19 input voltage between 0.1 VIO and 0.9 VIO 2010.03 - Rev.A Technical Note BD6029GU ●Power Dissipation (On the ROHM’s standard board) 2 1925mW 1.8 Power Dissipation Pd (W) 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 150 Ta(℃) Fig.1 Power Dissipation Information of the ROHM’s standard board Material : glass-epoxy Size : 50mm×58mm×1.75mm (8 Layer) Pattern of the board : Refer to P.18 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 5/19 2010.03 - Rev.A Technical Note BD6029GU ●Block Diagram / Application Circuit example Battery 1μF(6.3V) F RB521S-30 VPLUS2 GNDP GNDPS VPLUS1 1μF(25V) SW 10μH MONR1 2.2μF(6.3V) MONR2 F VBAT1 VBAT2 0.08Ω VBAT7 - S R Q VBAT6 + Driver VBAT5 - 1μF(16V) REG1 REG2 T3 2.7V / 3.0V / 3.3V Iomax=150mA OSC + T1 - - 1μF(6.3V) VDD2 1μF(6.3V) Feed Back REG5 + T4 VDD5 1.8V / 3.0V Iomax=150mA SWREG3 REGA VREF VDD1 1.2V / 1.8V Iomax=150mA + Control T2 VDD3 REG3 15V / 14.5V /13V Iomax=60mA Over Voltage Limit VBAT4 Current Sense VBAT3 1μF(6.3V) AVDD 1.8V / 3.0V / 3.3V Iomax=150mA VREF 0.1μF(6.3V) REG6 1μF(6.3V) VDD6 3.0V / 3.1V / 3.2V / 3.3V Iomax=200mA VIO CCD Camera Module 1μF(6.3V) MVDD1 RST MVDD2 CONT SDA CPU 2 IC SWREG4 VBATN2 Current Sense SCL - VBATN1 0.08Ω + OSC TESTO1 + - TESTO2 SENSN1 2.2μF(6.3V) SENSN2 Control R TRSW Q QS5U26 Driver S TESTI1 Over Voltage Limit - TESTI2 + -8V / -7.5V / -7V Iomax=100mA GND7 + GND6 GND5 GND4 GND3 GND2 GND1 Pin Connection 1μF(16V) VDD4 - TSD 4.7μH T1~T4, TESTI1, TESTI2 TEST01, TEST02, MVDD1, MVDD2 Output of unused LDO MONR1-MONR2 short MVDD1-MVDD2 short : GND short : Open : Open Fig.2 Block Diagram / Application Circuit example www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 6/19 2010.03 - Rev.A Technical Note BD6029GU ●Pin Configuration [Bottom View] H T4 VDD3 VPLUS1 GNDP MONR2 SW GND6 T3 G TESTI1 TESTI2 VPLUS2 GNDPS MONR1 VBAT5 TESTO2 AVDD F RST VIO VBAT4 VDD5 E GND7 SDA VREF GND5 D VDD2 SCL VBAT3 VDD1 C VBAT6 VBAT7 VBAT2 VDD6 B MVDD2 MVDD1 VBATN1 SENSN2 VBAT1 GND3 TESTO1 GND4 A T1 GND1 VBATN2 SENSN1 TRSW GND2 VDD4 T2 1 2 3 4 5 6 7 8 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 7/19 2010.03 - Rev.A Technical Note BD6029GU ●Package Outline VCSP85H4 (BU6029GU) (unit:mm) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 8/19 2010.03 - Rev.A Technical Note BD6029GU ●Pin Functions No Pin No Pin Name 1 B5 VBAT1 2 C7 VBAT2 3 D7 VBAT3 4 F7 VBAT4 5 G6 VBAT5 6 C1 VBAT6 7 C2 VBAT7 8 A1 T1 9 A8 T2 10 H8 T3 11 H1 T4 12 E7 VREF 13 F2 VIO 14 F1 RST 15 E2 SDA 16 D2 SCL 17 A2 GND1 18 A6 GND2 19 B6 GND3 20 B8 GND4 21 E8 GND5 22 H7 GND6 23 E1 GND7 24 H6 SW 25 H5 MONR2 26 G5 MONR1 27 H4 GNDP 28 G4 GNDPS 29 H3 VPLUS1 30 G3 VPLUS2 31 H2 VDD3 32 D8 VDD1 33 D1 VDD2 34 F8 VDD5 35 G8 AVDD 36 C8 VDD6 37 B2 MVDD1 38 B1 MVDD2 39 B7 TESTO1 40 G7 TESTO2 41 G1 TESTI1 42 G2 TESTI2 43 A3 VBATN2 44 B3 VBATN1 45 A4 SENSN1 46 B4 SENSN2 47 A5 TRSW 48 A7 VDD4 Total: 48Pin I/O Input Level O I I I O I I I I I I O O O O O O O O O O I I I I I I O O VIO VIO VIO - www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. ESD Diode For For Power GND GND GND GND GND GND GND GND VBAT GND GND GND VBAT GND VBAT GND VBAT GND VIO GND VIO GND VIO GND VBAT VBAT VBAT VBAT VBAT VBAT VBAT GND VBAT GND VBAT GND VBAT GND VBAT GND GND GND VPLUS2 GND VBAT GND VBAT GND VBAT GND VBAT GND VBAT GND VBAT GND VBAT GND VBAT GND VBAT GND VIO GND VIO GND VBAT GND VBAT GND VBAT GND VBAT GND VBAT GND GND - Functions Initial Conditions Battery is connected Battery is connected Battery is connected Battery is connected Battery is connected Battery is connected Battery is connected Test pin Test pin Test pin Test pin Reference voltage output Power supply for logic Reset input I2C data input I2C clock input Ground Ground Ground Ground Ground Ground Ground SWREG3 coil switching pin SWREG3 current sense pin SWREG3 current sense pin SWREG3 current sense pin SWREG3 current sense pin SWREG3 boost voltage feedback pin Power supply input for REG3 (15.5V/14.5V/13V LDO) REG3 (15.5V/14.5V/13V LDO) output pin REG1 (1.2V/1.8V LDO) output pin REG2 (2.7V/3.0V/3.3V LDO) output pin REG5 (1.8V/3.0V LDO) output pin REGA (1.8V/3.0V/3.3V LDO) output pin REG6 (3.0V/3.1V/3.2V/3.3V LDO) output pin NC NC Test pin Test pin Test pin Test pin Battery is connected (SWREG4 current sense) Battery is connected (SWREG4 current sense) SWREG4 current sense pin SWREG4 current sense pin SWREG4 switching Tr. drive pin SWREG4 (-8V/-7.5V/-7V) output pin 0V output Stop operating 0V output 0V output 0V output 0V output 0V output 0V output Stop operating 0V output 9/19 2010.03 - Rev.A Technical Note BD6029GU ●I2C BUS format 2 The writing/reading operation is based on the I C slave standard. ◦ Slave address A7 A6 0 0 A5 0 A4 1 A3 0 A2 0 A1 1 R/W 1/0 ◦ Bit Transfer SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal. SDA SCL data line Stable; data valid change of data allowed ◦ START and STOP condition 2 When SDA and SCL are H, data is not transferred on the I C- bus. This condition indicates, if SDA changes from H to L while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL has been H, it will become STOP (P) conditions and an access end. SDA SCL S P START condition STOP condition ◦ Acknowledge It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and a receiver returns the acknowledge signal by setting SDA to L. DATA OUTPUT BY TRANSMITTER not acknowledge DATA OUTPUT BY RECEIVER acknowledge SCL S 1 2 www.rohm.com 9 clock pulse for acknowledgement START condition © 2010 ROHM Co., Ltd. All rights reserved. 8 10/19 2010.03 - Rev.A Technical Note BD6029GU ◦ Writing protocol A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is carried out automatically. However, when a register address turns into the last address(07h), it is set to 00h by the next transmission. After the transmission end, the increment of the address is carried out. * 1 S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A D7 D6 D5 D4 D3 D2 D1 D0 A slave address register address * 1 D7 D6 D5 D4 D3 D2 D1 D0 A P DATA DATA R/W=0(write) register address increment register address increment A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition *1: Write Timing from master to slave from slave to master ◦ Reading protocol It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the last address(07h), the next byte will read out 00h. After the transmission end, the increment of the address is carried out. S X X X X X X X 1 A D7 D6 D5 D4 D3 D2 D1 D0 A slave address D7 D6 D5 D4 D3 D2 D1 D0 A P DATA DATA register address increment register address increment R/W=1(read) A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition from master to slave from slave to master ◦ Multiple reading protocols After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out. S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A Sr X X X X X X X 1 A slave address register address slave address R/W=0(write) R/W=1(read) D7 D6 D5 D4 D3D2 D1D0 A DATA D7D6 D5D4D3D2D1D0 A P DATA register address increment register address increment A=acknowledge(SDA LOW) A=not acknowledge(SDA HIGH) S=START condition P=STOP condition Sr=repeated START condition from master to slave from slave to master As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading data of that time is 0. However, this state returns usually when SCL is moved, data is read, and A(not acknowledge) is done. www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 11/19 2010.03 - Rev.A Technical Note BD6029GU ●Timing Diagram SDA tf t LOW tr t SU;DAT tf t BUF tr t HD;STA t SP SCL S t HD;STA t SU;STO t SU;STA t HD;DAT t HIGH S P Sr ●Electrical Characteristics (Unless otherwise specified, Ta=25oC, VBAT=3.6V, VIO=1.8V/3.0V) Standard-mode Fast-mode Parameter Symbol Min. Typ. Max. Min. Typ. Max. Unit I2C BUS format SCL clock frequency fSCL 0 - 100 0 - 400 kHz LOW period of the SCL clock tLOW 4.7 - - 1.3 - - μs HIGH period of the SCL clock tHIGH 4.0 - - 0.6 - - μs Hold time (repeated) START condition After this period, the first clock is generated tHD;STA 4.0 - - 0.6 - - μs Set-up time for a repeated START condition tSU;STA 4.7 - - 0.6 - - μs Data hold time tHD;DAT 0 - 3.45 0 - 0.9 μs Data set-up time tSU;DAT 250 - - 100 - - ns Set-up time for STOP condition tSU;STO 4.0 - - 0.6 - - μs Bus free time between a STOP and START condition tBUF 4.7 - - 1.3 - - μs www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 12/19 2010.03 - Rev.A Technical Note BD6029GU ●Register List - b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 Address b4 b3 b2 b1 b0 D0 Register data Function 8bit A7 A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 00h 0 0 0 0 0 0 0 0 - - - - - - - 01h 0 0 0 0 0 0 0 1 - 02h 0 0 0 0 0 0 1 0 03h 0 0 0 0 0 0 1 1 - 04h 0 0 0 0 0 1 0 0 05h 0 0 0 0 0 1 0 06h 0 0 0 0 0 1 07h 0 0 0 0 0 08h 0 0 0 0 1 REGAPD REG6PD REG5PD SWREG4 SWREG4 VSEL1 VSEL0 SFTRST Software reset SWREG4 REG3PD REG2PD REG1PD Power down PD REG3 VSEL1 REG3 VSEL0 REG2 VSEL1 REG2 VSEL0 REG1 VSEL1 REG1 VSEL0 Output Voltage Setting 1 - REGA VSEL1 REGA VSEL0 REG6 VSEL1 REG6 VSEL0 REG5 VSEL1 REG5 VSEL0 Output Voltage Setting 2 - - - - - - - - (reserved) 1 - - - - - - - - (reserved) 1 0 - - - - - - - - (reserved) 1 1 1 reserved for TEST 0 0 0 reserved for TEST ●Register Map Address 00h <Software reset> Function BIT Name Initial 0 1 D7 - - - - D6 - - - - D5 - - - - D4 - - - - D3 - - - - D2 - - - - D1 - - - - D0 SFTRST 0 Reset cancel Reset Address 01h <Power down> Function BIT Name Initial 0 1 D7 - - - - D6 REGAPD 0 REGA power OFF REGA power ON D5 REG6PD 0 REG6 power OFF REG6 power ON D4 REG5PD 0 REG5 power OFF REG5 power ON D3 SWREG4PD 0 SWREG4 power OFF SWREG4 power ON D2 REG3PD 0 REG3 power OFF REG3 power ON D1 REG2PD 0 REG2 power OFF REG2 power ON D0 REG1PD 0 REG1 power OFF REG1 power ON www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 13/19 2010.03 - Rev.A Technical Note BD6029GU Address 02h <Output Voltage Setting 1> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 SWREG4VSEL1 SWREG4VSEL0 REG3VSEL1 REG3VSEL0 REG2VSEL1 REG2VSEL0 REG1VSEL1 REG1VSEL0 0 0 0 0 0 0 0 0 Function 0 1 SWREG4VSEL1 0 0 1 1 SWREG4VSEL0 0 1 0 1 SWREG4 output -8V -7.5V -7V -(prohibition of use) REG3VSEL1 0 0 1 1 REG3VSEL0 0 1 0 1 REG3 output 14.5V 15V 13V -(prohibition of use) REG2VSEL1 0 0 1 1 REG2VSEL0 0 1 0 1 REG2 output 3.3V -(prohibition of use) 3.0V 2.7V REG1VSEL1 0 0 1 1 REG1VSEL0 0 1 0 1 REG1 output 1.8V 1.2V 1.2V Address 03h <Output Voltage Setting 2> BIT Name Initial D7 D6 D5 D4 D3 D2 D1 D0 REGAVSEL1 REGAVSEL0 REG6VSEL1 REG6VSEL0 REG5VSEL1 REG5VSEL0 0 0 0 0 0 0 www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. Function 0 1 REGAVSEL1 0 0 1 1 REGAVSEL0 0 1 0 1 REGA output 3.3V -(prohibition of use) 3.0V 1.8V REG6VSEL1 0 0 1 1 REG6VSEL0 0 1 0 1 REG6 output 3.3V 3.1V 3.0V 3.2V REG5VSEL1 0 0 1 1 REG5VSEL0 0 1 0 1 REG5 output 3.0V -(prohibition of use) 1.8V 1.8V 14/19 2010.03 - Rev.A Technical Note BD6029GU ●Explanation for Operate 1. Reset There are two kinds of reset, Software reset and Hardware reset. (1) Software reset ◦ It shifts to software reset with changing a register (SFTRST) setting “0” → “1”. ◦ I The register is returned to the initials value under the state of Soft Reset, and it stops accepting all address except for SFTRST. ◦ I It’s possible to release from a state of Soft Reset by setting register “1” → “0”. (2) Hardware reset ◦ I It shifts to hard reset by changing RST pin “H” → “L”. ◦ I The condition of all registers under Hardware Reset pin is returned to the initial value, and it stops accepting all address. ◦ I It’s possible to release from a state of hardware reset by setting register “L” → “H”. (3) Reset Sequence ◦ I When hardware reset was done during software reset, Software reset is canceled when hard reset is canceled. (Because the initial value of Soft Reset is “0” ) 2. Thermal shutdown The blocks which thermal shutdown function is effective in SWREG3 (Step up DC/DC converter) SWREG4 (Inverted DC/DC converter) REG1 REG2 REG3 REG5 REG6 REGA A thermal shutdown function works in about 175 oC. (Design reference value) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 15/19 2010.03 - Rev.A Technical Note BD6029GU 3. Sequencer block The sequencer block does the power control (like VREF is turned on → SWREG3 is turned on → REG3 is turned on) on the following condition corresponding to resister condition and output voltage of each block. Block VREF SWREG3 REG3 POWER ON Condition POWER OFF Condition Any one of REG3PD to REGAPD = H REG3PD to REGAPD = all L REG3PD = H and VREF ≥ 1.1V REG3PD=L REG3PD = H and VPLUS2 ≥ 8V REG3PD=L SWREG4PD = H, VDD3 ≥ 8V and VREF ≥ 1.1V SWREG4PD=L REG1 REG1PD = H and VREF ≥ 1.1V REG1PD=L REG2 REG2PD = H and VREF ≥ 1.1V REG2PD=L REG5 REG5PD = H and VREF ≥ 1.1V REG5PD=L SWREG4 REG6 REG6PD = H and VREF ≥ 1.1V REG6PD=L REGA REGAPD = H and VREF ≥ 1.1V REGAPD=L REG3PD SWREG4PD REG1PD REG2PD REG5PD REG6PD REGAPD REG1 REG2 REG5 REG6 REGA VDD1 VDD2 VDD5 VDD6 AVDD VREF VREF>1.1[V] SWREG4 SWREG3 VPLUS2>8[V] REG3 VDD3>8[V] VDD4 VDD3 When a thermal shutdown hangs, the whole block except for VREF turns off the power. When it reverts from the thermal shutdown, it starts from the sequence after VREF ON in the above pattern. The start of SWREG4 (CCD negative power supply) requires the rise-up of REG3 (CCD positive power supply). This requirement is valid for the reversion from the thermal shutdown and the short circuit. Detection voltage of VREF’s rise-up is 1.1V when static output is 1.2V. As shown in the former page description, VREF receives a turning on instruction blocked either each and beginsrise up. Therefore, it is necessary to consider the block started up first at the rise time of VREF. LDO ON VREF output 95% up LDO output Worst 5ms www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 16/19 2010.03 - Rev.A Technical Note BD6029GU 4. I2C BUS Operation when a signal beyond fSCL=400kHz is input cannot be guaranteed, because this LSI doesn’t correspond to the H/S(High Speed) mode of the I2C BUS format. When it uses on the serial-bus-system which the F/S(Fast Speed) mode was mixed in with the H/S mode, please connect it and remove a connection by using the mutual connection bridge from the H/S mode section to F/S mode section or in that reverse direction. However, an optional input signal never spreads to the logic part of IC, because it stops the operation of the input buffer of SDA and SCL at RST pin=L. At RST=L, output ”H” fixed SCL (SDA) Level shifter EN Logic RST www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 17/19 2010.03 - Rev.A Technical Note BD6029GU ●PCB Pattern of the Power Dissipation Measuring Board 1st layer(component) 2nd layer 3rd layer 4th layer 5th layer 6th layer 7th layer 8th layer(solder) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. 18/19 2010.03 - Rev.A Technical Note BD6029GU ●Ordering part number B D 6 Part No. 0 2 9 G Part No. U - Package GU: VCSP85H4 E 2 Packaging and forming specification E2: Embossed tape and reel VCSP85H4 (BD6029GU) <Tape and Reel information> (φ0.15)INDEX POST A H G F E D C B A Embossed carrier tape Quantity 2500pcs Direction of feed S E2 The direction is the 1pin of product is at the upper left when you hold ( reel on the left hand and you pull out the tape on the right hand B 1 2 3 4 5 6 7 8 0.425±0.05 ) 0.425±0.05 0.06 S 48-φ0.3±0.05 0.05 A B Tape P=0.5×7 4.35±0.05 0.25±0.1 1.0MAX 4.35±0.05 1PIN MARK 1pin P=0.5×7 (Unit : mm) www.rohm.com © 2010 ROHM Co., Ltd. All rights reserved. Reel 19/19 Direction of feed ∗ Order quantity needs to be multiple of the minimum quantity. 2010.03 - Rev.A Notice Notes No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http://www.rohm.com/contact/ www.rohm.com © 2009 ROHM Co., Ltd. All rights reserved. R0039A