PHILIPS PHX3055E

Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
FEATURES
PHX3055E
SYMBOL
QUICK REFERENCE DATA
• ’Trench’ technology
• Low on-state resistance
• Fast switching
• Isolated mounting tab
d
VDSS = 55 V
ID = 9 A
g
RDS(ON) ≤ 150 mΩ (VGS = 10 V)
s
GENERAL DESCRIPTION
N-channel enhancement mode,
field-effect power transistor in a
plastic envelope with an electrically
isolated mounting tab. The device
uses ’trench’ technology to achieve
low on-state resistance.
Applications:• d.c. to d.c. converters
• switched mode power supplies
PINNING
PIN
SOT186A
DESCRIPTION
1
gate
2
drain
3
source
tab
isolated
case
1 2 3
The PHX3055E is supplied in the
SOT186A (isolated TO220AB)
conventional leaded package.
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VDSS
VDGR
VGS
ID
Drain-source voltage
Drain-gate voltage
Gate-source voltage
Continuous drain current
Tj = 25 ˚C to 150˚C
Tj = 25 ˚C to 150˚C; RGS = 20 kΩ
IDM
PD
Tj, Tstg
Pulsed drain current
Total power dissipation
Operating junction and
storage temperature
- 55
55
55
± 20
9
5.6
36
21
150
V
V
V
A
A
A
W
˚C
Ths = 25 ˚C
Ths = 100 ˚C
Ths = 25 ˚C
Ths = 25 ˚C
ISOLATION LIMITING VALUE & CHARACTERISTIC
Ths = 25 ˚C unless otherwise specified
SYMBOL
PARAMETER
CONDITIONS
Visol
R.M.S. isolation voltage from all
three terminals to external
heatsink
f = 50-60 Hz; sinusoidal
waveform;
R.H. ≤ 65% ; clean and dustfree
Cisol
Capacitance from T2 to external f = 1 MHz
heatsink
August 1999
1
MIN.
TYP.
-
-
10
MAX.
UNIT
2500
V
-
pF
Rev 1.000
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PHX3055E
AVALANCHE ENERGY LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL PARAMETER
EAS
Non-repetitive avalanche
energy
IAS
Peak non-repetitive
avalanche current
CONDITIONS
MIN.
MAX.
UNIT
-
25
mJ
-
9
A
TYP.
MAX.
UNIT
-
6
K/W
55
-
K/W
Unclamped inductive load, IAS = 3.3 A;
tp = 220 µs; Tj prior to avalanche = 25˚C;
VDD ≤ 25 V; RGS = 50 Ω; VGS = 10 V; refer
to fig:15
THERMAL RESISTANCES
SYMBOL PARAMETER
Rth j-hs
Rth j-a
CONDITIONS
Thermal resistance junction
to heatsink
Thermal resistance junction
to ambient
ELECTRICAL CHARACTERISTICS
Tj= 25˚C unless otherwise specified
SYMBOL PARAMETER
V(BR)DSS
VGS(TO)
Drain-source breakdown
voltage
Gate threshold voltage
CONDITIONS
MIN.
VGS = 0 V; ID = 0.25 mA;
Tj = -55˚C
VDS = VGS; ID = 1 mA
Tj = 150˚C
Tj = -55˚C
RDS(ON)
gfs
IGSS
IDSS
Drain-source on-state
resistance
Forward transconductance
Gate source leakage current
Zero gate voltage drain
current
VGS = 10 V; ID = 5.5 A
Tj = 150˚C
VDS = 25 V; ID = 5.5 A
VGS = ±10 V; VDS = 0 V
VDS = 55 V; VGS = 0 V;
Tj = 150˚C
TYP. MAX. UNIT
55
50
2.0
1.1
1.5
-
3.0
120
210
3.2
10
0.05
-
4.0
6
150
263
100
10
100
V
V
V
V
V
mΩ
mΩ
S
nA
µA
µA
Qg(tot)
Qgs
Qgd
Total gate charge
Gate-source charge
Gate-drain (Miller) charge
ID = 10 A; VDD = 44 V; VGS = 10 V
-
5.8
1.5
3.2
-
nC
nC
nC
td on
tr
td off
tf
Turn-on delay time
Turn-on rise time
Turn-off delay time
Turn-off fall time
VDD = 30 V; RD = 2.7 Ω;
RG = 5.6 Ω; VGS = 10 V
Resistive load
-
3
26
8
10
10
35
15
20
ns
ns
ns
ns
Ld
Ls
Internal drain inductance
Internal source inductance
Measured from drain lead to centre of die
Measured from source lead to source
bond pad
-
4.5
7.5
-
nH
nH
Ciss
Coss
Crss
Input capacitance
Output capacitance
Feedback capacitance
VGS = 0 V; VDS = 25 V; f = 1 MHz
-
190
55
40
250
80
50
pF
pF
pF
August 1999
2
Rev 1.000
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PHX3055E
REVERSE DIODE LIMITING VALUES AND CHARACTERISTICS
Tj = 25˚C unless otherwise specified
SYMBOL PARAMETER
VSD
Continuous source current
(body diode)
Pulsed source current (body
diode)
Diode forward voltage
trr
Qrr
Reverse recovery time
Reverse recovery charge
IS
ISM
August 1999
CONDITIONS
MIN.
TYP. MAX. UNIT
-
-
9
A
-
-
36
A
IF = 10 A; VGS = 0 V
-
1.1
1.5
V
IF = 10 A; -dIF/dt = 100 A/µs;
VGS = 0 V; VR = 30 V
-
32
50
-
ns
nC
3
Rev 1.000
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PHX3055E
Normalised Power Derating, PD (%)
Transient thermal impedance, Zth j-hs (K/W)
10
100
90
D = 0.5
80
70
0.2
60
0.1
1
50
P
D
0.05
40
30
D = tp/T
tp
0.02
20
single pulse
T
10
0.1
1E-06
0
0
25
50
75
100
Heatsink temperature, Ths (C)
125
150
90
80
70
60
50
40
30
20
10
0
125
150
VGS = 10V
7V
6V
5.5 V
5V
4.5 V
0.2
0.4
0.6
0.8
1
1.2
1.4
Drain-Source Voltage, VDS (V)
1.6
1.8
2
Fig.5. Typical output characteristics, Tj = 25 ˚C.
ID = f(VDS)
RDS(on) = VDS/ ID
Drain-Source On Resistance, RDS(on) (Ohms)
5.5V
5V
0.45
0.4
tp = 10 us
Tj = 25 C
6V
0.35
6.5 V
0.3
0.25
100 us
7V
0.2
1 ms
D.C.
1E+01
6.5 V
0.5
1
1E+00
8V
Peak Pulsed Drain Current, IDM (A)
10
1E-01
Tj = 25 C
0
Fig.2. Normalised continuous drain current.
ID% = 100⋅ID/ID 25 ˚C = f(Ths); conditions: VGS ≥ 10 V
100
1E-02
Drain Current, ID (A)
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
Normalised Current Derating, ID (%)
50
75
100
Heatsink temperature, Ths (C)
1E-03
Fig.4. Transient thermal impedance.
Zth j-hs = f(t); parameter D = tp/T
100
25
1E-04
Pulse width, tp (s)
Fig.1. Normalised power dissipation.
PD% = 100⋅PD/PD 25 ˚C = f(Ths)
0
1E-05
8V
0.15
10 ms
100 ms
0.1
VGS = 10V
0.05
0
0.1
1
10
Drain-Source Voltage, VDS (V)
0
100
Fig.3. Safe operating area. Tmb = 25 ˚C
ID & IDM = f(VDS); IDM single pulse; parameter tp
August 1999
1
2
3
4
5
6
Drain Current, ID (A)
7
8
9
10
Fig.6. Typical on-state resistance, Tj = 25 ˚C.
RDS(ON) = f(ID)
4
Rev 1.000
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PHX3055E
Drain current, ID (A)
4.5
10
VDS > ID X RDS(ON)
9
Threshold Voltage, VGS(TO) (V)
4
8
3.5
7
3
6
2.5
5
maximum
typical
minimum
2
4
1.5
3
175 C
1
2
0.5
Tj = 25 C
1
0
0
0
1
2
3
4
5
6
7
8
9
10
-60
-40
-20
Gate-source voltage, VGS (V)
20
40
60
80
100 120 140 160 180
Junction Temperature, Tj (C)
Fig.7. Typical transfer characteristics.
ID = f(VGS)
4
0
Fig.10. Gate threshold voltage.
VGS(TO) = f(Tj); conditions: ID = 1 mA; VDS = VGS
Transconductance, gfs (S)
Drain current, ID (A)
1.0E-01
VDS > ID X RDS(ON)
3.5
Tj = 25 C
1.0E-02
3
2.5
minimum
1.0E-03
175 C
2
typical
1.0E-04
1.5
maximum
1
1.0E-05
0.5
1.0E-06
0
0
1
2
3
4
5
6
Drain current, ID (A)
7
8
9
0
10
Fig.8. Typical transconductance, Tj = 25 ˚C.
gfs = f(ID)
0.5
1
1.5
2
2.5
3
3.5
Gate-source voltage, VGS (V)
4
4.5
5
Fig.11. Sub-threshold drain current.
ID = f(VGS); conditions: Tj = 25 ˚C; VDS = VGS
Normalised On-state Resistance
2.4
2.2
2
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
0
1000
Capacitances, Ciss, Coss, Crss (pF)
Ciss
100
Coss
Crss
10
-60
-40
-20
0
20 40 60 80 100 120 140 160 180
Junction temperature, Tj (C)
0.1
Fig.9. Normalised drain-source on-state resistance.
RDS(ON)/RDS(ON)25 ˚C = f(Tj)
August 1999
1
10
Drain-Source Voltage, VDS (V)
100
Fig.12. Typical capacitances, Ciss, Coss, Crss.
C = f(VDS); conditions: VGS = 0 V; f = 1 MHz
5
Rev 1.000
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
PHX3055E
Gate-source voltage, VGS (V)
Maximum Avalanche Current, IAS (A)
100
ID = 10A
Tj = 25 C
VDD = 11 V
10
VDD = 44 V
25 C
1
Tj prior to avalanche = 125 C
0
1
2
3
4
5
Gate charge, QG (nC)
6
7
0.1
0.001
8
0.01
0.1
1
10
Avalanche time, tAV (ms)
Fig.13. Typical turn-on gate-charge characteristics.
VGS = f(QG)
Fig.15. Maximum permissible non-repetitive
avalanche current (IAS) versus avalanche time (tAV);
unclamped inductive load
Source-Drain Diode Current, IF (A)
10
VGS = 0 V
9
8
7
6
5
175 C
4
3
Tj = 25 C
2
1
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
Source-Drain Voltage, VSDS (V)
Fig.14. Typical reverse diode current.
IF = f(VSDS); conditions: VGS = 0 V; parameter Tj
August 1999
6
Rev 1.000
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PHX3055E
MECHANICAL DATA
Dimensions in mm
Plastic single-ended package; isolated heatsink mounted; 1 mounting hole; 3 lead TO-220
SOT186A
Net Mass: 2 g
E
A
A1
P
q
D1
T
D
j
L2
L1
K
Q
b1
L
b2
1
2
3
b
c
w M
e
e1
0
5
10 mm
scale
DIMENSIONS (mm are the original dimensions)
(1)
UNIT
A
A1
b
b1
b2
c
D
D1
E
mm
4.6
4.0
2.9
2.5
0.9
0.7
1.1
0.9
1.4
1.2
0.7
0.4
15.8
15.2
6.5
6.3
10.3
9.7
e
2.54
e1
j
K
5.08
2.7
2.3
0.6
0.4
L
L1
14.4 3.30
13.5 2.79
L2
max.
P
Q
q
3
3.2
3.0
2.6
2.3
3.0
2.6
(2)
T
2.5
w
0.4
Notes
1. Terminal dimensions within this zone are uncontrolled. Terminals in this zone are not tinned.
2. Both recesses are ∅ 2.5 × 0.8 max. depth
OUTLINE
VERSION
SOT186A
REFERENCES
IEC
JEDEC
TO-220
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
97-06-11
Fig.16. SOT186A; The seating plane is electrically isolated from all terminals.
Notes
1. Observe the general handling precautions for electrostatic-discharge sensitive devices (ESDs) to prevent
damage to MOS gate oxide.
2. Refer to mounting instructions for F-pack envelopes.
3. Epoxy meets UL94 V0 at 1/8".
August 1999
7
Rev 1.000
Philips Semiconductors
Product specification
N-channel TrenchMOS transistor
PHX3055E
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and
operation of the device at these or at any other conditions above those given in the Characteristics sections of
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
 Philips Electronics N.V. 1999
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the
copyright owner.
The information presented in this document does not form part of any quotation or contract, it is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent or other
industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these
products can be reasonably expected to result in personal injury. Philips customers using or selling these products
for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting
from such improper use or sale.
August 1999
8
Rev 1.000