INFINEON BCR320U

BCR320U / BCR321U
LED Driver
Features
• Continuous output current up to 250mA
4
3
5
with external resistor
2
6
1
• Supply voltage up to 24V
• Digital PWM input up to 10kHz frequency (BCR321U)
• Up to 1W power dissipation in a small SC74 package
• Negative thermal coefficient reduces output current
at higher temperatures
• Easy paralleling of drivers to increase current
• PB-free (RoHS compliant) package
• Automotive qualified according to AEC Q101
Applications
• Architectural LED lighting
• Channel letters for advertising, LED strips for decorative lighting
• Retail lighting in fridge, freezer case and vending machines
• Emergency lighting (e.g. steps lighting, exit way signs etc.)
General Description
The BCR320U/BCR321U provide a low-cost solution for driving 0.5W LEDs with a typical
LED current ILED of 150mA to 200mA. Internal breakdown voltage is >16V, this is the
maximum voltage that the LED driver IC can sustain when the ouput is directly connected
to supply voltage. The BCR320U/BCR321U can be operated at supply voltages of 16V or
higher, by regarding the voltage drop of the LED load, which reduces the supply voltage
to the maximum output voltage of the driver.
The enable pin (BCR320) can withstand a maximum voltage of 25 V, which can also be
increased by stacking a series in front of the LED drivers, resulting in a certain voltage
drop of the LEDs, reducing the voltage at the enable pin below 25V.
A digital input pin (BCR321U) allows dimming via a Microcontroller
with frequencies of up to 10 kHz.
A reduction of the output current at higher temperatures is the result of the negative
temperature coefficient of 0.2 %/K. of the LED drivers.
With no need for additional external components like inductors, capacitors and
free wheeling diodes, the BCR320U/BCR321U LED drivers are a cost-efficient and
PCB-area saving solution for driving 0.5W LEDs.
1
2010-01-15
BCR320U / BCR321U
Pin Configuration
Typical Application
+Vs
6
5
4
µC
IEN
IOUT
1 OUT 2,3,5
EN
1
2
3
Rext
6
Vdrop
GND
4
BCR321U
Type
Marking
BCR320U
30
BCR321U
31
Pin Configuration
1 = EN
2;3;5 =
4 = GND
Package
6 = Rext
OUT
SC74
SC74
Maximum Ratings
Parameter
Symbol
Enable voltage
VEN
Value
Unit
V
BCR320U
25
BCR321U
4.5
Output current
Iout
300
mA
Output voltage
16
V
Reverse voltage between all terminals
Vout
VR
0.5
Total power dissipation, TS = 102 °C
Ptot
1000
Junction temperature
Tj
Storage temperature
Tstg
150
mW
°C
-65 ... 150
Thermal Resistance
Parameter
Symbol
Junction - soldering point1)
RthJS
Value
Unit
50
K/W
1For calculation of R
thJA please refer to Application Note Thermal Resistance
2
2010-01-15
BCR320U / BCR321U
Electrical Characteristics at TA=25°C, unless otherwise specified
Parameter
Symbol
Values
Unit
min.
typ.
max.
16
-
-
Characteristics
VBR(CEO)
Collector-emitter breakdown voltage
V
IC = 1 mA, I B = 0
IEN
Enable current
mA
VEN = 12 , BCR320U
-
1.2
-
VEN = 3.3 , BCR321U
-
1.2
-
hFE
200
350
500
-
Rint
65
90
105
Ω
DC current gain
IC = 50 mA, VCE = 1 V
Internal resistor
IRint = 10 mA
RB
Bias resistor
kΩ
BCR320U
-
10
-
BCR321U
-
1.5
mA
Iout
Output current
Vout = 1.4 V, V EN = 12 V, BCR320U
8
10
12
Vout = 1.4 V, V EN = 3.3 V, BCR321U
8
10
12
-
250
-
-
250
-
Vdrop
0.85
0.95
1.05
V
VSmin
-
1.4
-
V
Vout = 1.4 V, V EN = 12 V, REXT = 3 Ω,
BCR320U
Vout = 1.4 V, V EN = 3.3 , R EXT = 3 Ω,
BCR321U
Voltage drop (VRext)
IC = 10 mA
DC Characteristics with stabilized LED load
Lowest sufficient supply voltage overhead
Iout > 18mA
∆Iout/Iout
Output current change versus TA
%/K
VEN = 12 V; Vout > 2.0 V, BCR320U
-
-0.2
-
VEN = 3.3 V; Vout > 2.0 V, BCR321U
-
-0.2
-
∆Iout/Iout
Output current change versus VS
%/V
VEN = 12 V; Vout > 2.0 V, BCR320U
-
1
-
VEN = 3.3 V; Vout > 2.0 V, BCR321U
-
1
-
3
2010-01-15
BCR320U / BCR321U
Total power dissipation P tot = f (TS)
Permissible Pulse Load RthJS = f (tp)
10 3
1200
mW
1000
10 2
R thJS
Ptot
900
800
700
10 1
600
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0
500
400
10 0
300
200
100
0
0
20
40
60
80
120 °C
100
10 -1 -6
10
150
10
-5
10
-4
10
-3
10
-2
s
10
0
TP
TS
Permissible Pulse Load
Ptotmax / PtotDC = f (tp)
10 3
Ptotmax/PtotDC
-
10 2
D=0
0.005
0.01
0.02
0.05
0.1
0.2
0.5
10 1
10 0 -6
10
10
-5
10
-4
10
-3
10
-2
s
10
0
TP
4
2010-01-15
BCR320U / BCR321U
BCR320U: Output current versus V out
BCR320U: Output current versus Rext
Iout = f (V out ); VEN = 12 V;
Iout = f (R ext ); VEN = 12 V;
Rext = Parameter
Vout = Parameter
0.3
0.26
A
Rext = 3 Ohm
Vout = 5.4V
Vout = 1.4V
0.22
0.2
Rext = 4 Ohm
A
Iout
Iout
0.18
0.16
0.14
Rext = 6 Ohm
0.12
0.1
Rext = 10 Ohm
0.1
0.08
Rext = 20 Ohm
0.06
0.04
Rext = open
0
0
2
4
6
8
V
0.02
0 0
10
12
10
1
Ohm
10
Vout
Rext.
BCR320U: Output current versus V out
BCR320U: Output current versus V out
Iout = f (V S ); V EN = 12 V; Rext = open;
Iout = f (V S ); V EN = 12 V; Rext = 20 Ohm;
TA= Parameter
TA= Parameter
0.02
2
0.1
A
TA = -40°C
TA = 25°C
TA = 85°C
A
0.08
TA = -40°C
TA = 25°C
TA = 85°C
Iout
Iout
0.07
0.01
0.06
0.05
0.04
0.03
0.005
0.02
0.01
0
0
2
4
6
8
V
0
0
12
Vout
2
4
6
8
V
12
Vout
5
2010-01-15
BCR320U / BCR321U
BCR320U: Output current versus V out
BCR320U: Output current versus V EN
Iout = f (V S ); V EN = 12 V; Rext = 3 Ohm;
Iout = f (VEN); Vout = 2.0 V; Rext = open;
TA= Parameter
TA = Parameter
0.5
0.02
TA = 25°C
TA = -40°C
TA = 85°C
A
TA = -40°C
TA = 25°C
TA = 85°C
Iout
Iout
A
0.3
0.01
0.2
0.005
0.1
0
0
2
4
6
V
8
0
0
12
5
10
15
V
25
Vout
VEN
BCR320U: Output current versus V EN
BCR320U: Output current versus V EN
Iout = f (VEN); Vout = 2.0 V; Rext = 20 Ohm;
Iout = f (VEN); Vout = 2.0 V; Rext = 3 Ohm;
TA = Parameter
TA = Parameter
0.3
0.06
A
Iout
Iout
A
0.04
TA = -40°C
TA = 25°C
TA = 85°C
0.03
TA = 85°C
TA = 25°C
TA = -40°C
0.1
0.02
0.01
0
0
5
10
15
V
0
0
25
VEN
5
10
15
V
25
VEN
6
2010-01-15
BCR320U / BCR321U
BCR320U: Output current versus V EN
BCR320U: Enable current versus VEN
Iout = f (VEN); Vout = 2.0 V;
IEN = f (V EN ); Rext = open; Iout = 0;
Rext = Parameter
TA = Parameter
0.3
3
Rext = 3 Ohm
mA
TA = 80°C
TA = 25°C
TA = -40°C
Rext = 4 Ohm
Iout
IEN
A
Rext = 6 Ohm
1.5
Rext = 10 Ohm
0.1
2
1
Rext = 20 Ohm
0.5
Rext = open
0
0
5
10
V
15
0
0
25
5
10
15
V
25
VEN
VEN
BCR321U: Output current versus V out
BCR321U: Output current versus Rext
Iout = f (V out); VEN = 3.3 V;
Iout = f (R ext); V EN = 3.3 V;
Rext = Parameter
Vout = Parameter
0.4
0.3
Rext = 3 Ohm
A
Vout = 5.4V
Vout = 1.4V
Rext = 4 Ohm
Iout
Iout
A
Rext = 6 Ohm
0.2
Rext = 10 Ohm
0.1
0.1
Rext = 20 Ohm
Rext = open
0
0
2
4
6
8
V
0 0
10
12
Vout
10
1
Ohm
10
2
Rext.
7
2010-01-15
BCR320U / BCR321U
BCR321U: Output current versus V out
BCR321U: Output current versus V out
Iout = f (V S ); V EN = 3.3 V; Rext = open;
Iout = f (V S ); V EN = 3.3 V; Rext = 20 Ohm;
TA= Parameter
TA= Parameter
0.015
0.06
TA = -40°C
TA = 25°C
TA = 85°C
Iout
A
Iout
A
TA = -40°C
TA = 25°C
TA = 85°C
0.005
0
0
0.02
2
4
6
8
V
0
0
12
2
4
6
V
8
12
Vout
Vout
BCR321U: Output current versus V out
BCR321U: Output current versus V EN
Iout = f (V S ); V EN = 3.3 V; Rext = 3 Ohm;
Iout = f (VEN); Vout = 2.0 V; Rext = open;
TA= Parameter
TA = Parameter
0.02
0.3
TA = -40°C
TA = 25°C
TA = 85°C
A
Iout
Iout
A
TA = 25°C
TA = 85°C
TA = -40°C
0.01
0.1
0.005
0
0
2
4
6
8
V
0
0
12
Vout
1
2
3
V
5
VEN
8
2010-01-15
BCR320U / BCR321U
BCR321U: Output current versus V EN
BCR321U: Output current versus V EN
Iout = f (VEN); Vout = 2.0 V; Rext = 20 Ohm;
Iout = f (VEN); Vout = 2.0 V; Rext = 3 Ohm;
TA = Parameter
TA = Parameter
0.3
0.06
A
Iout
Iout
A
0.04
TA = -40°C
TA = 25°C
TA = 85°C
0.03
TA = 85°C
TA = 25°C
TA = -40°C
0.1
0.02
0.01
0
0
1
2
V
3
0
0
5
1
2
V
3
5
VEN
VEN
BCR321U: Output current versus V EN
BCR321U: Enable current versus VEN
Iout = f (VEN); VS = 3.3 V;
IEN = f (V EN); Rext = open; Iout = 0;
Rext = Parameter
TA = Parameter
4
0.3
TA = 80°C
TA = 25°C
TA = -40°C
Rext = 3 Ohm
mA
Rext = 4 Ohm
Iout
IEN
A
Rext = 6 Ohm
2
Rext = 10 Ohm
0.1
1
Rext = 20 Ohm
Rext = open
0
0
1
2
3
4
V
0
0
6
VEN
1
2
3
4
V
6
VEN
9
2010-01-15
BCR320U / BCR321U
Application circuit:
Enabling / PWM by micro controller
Application circuit:
Enabling by connecting to Vs
+Vs
+Vs
µC
IOUT
IEN
EN 1 OUT 2,3,5
EN
IEN
IOUT
OUT 2,3,5
Rext
Rext
6
6
Vdrop
Vdrop
GND
GND
4
4
BCR320U
BCR321U
Application hints
BCR320U / BCR321U serve as an easy to use constant current sources for LEDs.
In stand alone application an external resistor can be connected to adjust the current from
10 mA to 250 mA. Rext can be determined by using the diagram 'Output current versus
external resistor'. Please take into account that the resulting output currents will be slightly
lower due to the self heating of the component and the negative thermal coefficient.
Please visit our web site for application notes: www.infineon.com/lowcostleddriver
for up-to-date application information
10
2010-01-15
Package SC74
BCR320U / BCR321U
Package Outline
B
1.1 MAX.
1
2
3
0.35 +0.1
-0.05
Pin 1
marking
0.2
B 6x
M
A
0.1 MAX.
0.95
0.2
1.9
1.6 ±0.1
4
10˚ MAX.
5
2.5 ±0.1
6
0.25 ±0.1
0.15 +0.1
-0.06
(0.35)
10˚ MAX.
2.9 ±0.2
(2.25)
M
A
Foot Print
2.9
1.9
0.5
0.95
Marking Layout (Example)
Small variations in positioning of
Date code, Type code and Manufacture are possible.
Manufacturer
2005, June
Date code (Year/Month)
Pin 1 marking
Laser marking
BCW66H
Type code
Standard Packing
Reel ø180 mm = 3.000 Pieces/Reel
Reel ø330 mm = 10.000 Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.
0.2
2.7
8
4
Pin 1
marking
3.15
1.15
11
2010-01-15
BCR320U / BCR321U
Edition 2009-11-16
Published by
Infineon Technologies AG
81726 Munich, Germany
 2009 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee
of conditions or characteristics. With respect to any examples or hints given herein,
any typical values stated herein and/or any information regarding the application of
the device, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation, warranties of non-infringement of
intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices,
please contact the nearest Infineon Technologies Office (<www.infineon.com>).
Warnings
Due to technical requirements, components may contain dangerous substances.
For information on the types in question, please contact the nearest Infineon
Technologies Office.
Infineon Technologies components may be used in life-support devices or systems
only with the express written approval of Infineon Technologies, if a failure of such
components can reasonably be expected to cause the failure of that life-support
device or system or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body or
to support and/or maintain and sustain and/or protect human life. If they fail, it is
reasonable to assume that the health of the user or other persons may be
endangered.
12
2010-01-15