BCR320U / BCR321U LED Driver Features • Continuous output current up to 250mA 4 3 5 with external resistor 2 6 1 • Supply voltage up to 24V • Digital PWM input up to 10kHz frequency (BCR321U) • Up to 1W power dissipation in a small SC74 package • Negative thermal coefficient reduces output current at higher temperatures • Easy paralleling of drivers to increase current • PB-free (RoHS compliant) package • Automotive qualified according to AEC Q101 Applications • Architectural LED lighting • Channel letters for advertising, LED strips for decorative lighting • Retail lighting in fridge, freezer case and vending machines • Emergency lighting (e.g. steps lighting, exit way signs etc.) General Description The BCR320U/BCR321U provide a low-cost solution for driving 0.5W LEDs with a typical LED current ILED of 150mA to 200mA. Internal breakdown voltage is >16V, this is the maximum voltage that the LED driver IC can sustain when the ouput is directly connected to supply voltage. The BCR320U/BCR321U can be operated at supply voltages of 16V or higher, by regarding the voltage drop of the LED load, which reduces the supply voltage to the maximum output voltage of the driver. The enable pin (BCR320) can withstand a maximum voltage of 25 V, which can also be increased by stacking a series in front of the LED drivers, resulting in a certain voltage drop of the LEDs, reducing the voltage at the enable pin below 25V. A digital input pin (BCR321U) allows dimming via a Microcontroller with frequencies of up to 10 kHz. A reduction of the output current at higher temperatures is the result of the negative temperature coefficient of 0.2 %/K. of the LED drivers. With no need for additional external components like inductors, capacitors and free wheeling diodes, the BCR320U/BCR321U LED drivers are a cost-efficient and PCB-area saving solution for driving 0.5W LEDs. 1 2010-01-15 BCR320U / BCR321U Pin Configuration Typical Application +Vs 6 5 4 µC IEN IOUT 1 OUT 2,3,5 EN 1 2 3 Rext 6 Vdrop GND 4 BCR321U Type Marking BCR320U 30 BCR321U 31 Pin Configuration 1 = EN 2;3;5 = 4 = GND Package 6 = Rext OUT SC74 SC74 Maximum Ratings Parameter Symbol Enable voltage VEN Value Unit V BCR320U 25 BCR321U 4.5 Output current Iout 300 mA Output voltage 16 V Reverse voltage between all terminals Vout VR 0.5 Total power dissipation, TS = 102 °C Ptot 1000 Junction temperature Tj Storage temperature Tstg 150 mW °C -65 ... 150 Thermal Resistance Parameter Symbol Junction - soldering point1) RthJS Value Unit 50 K/W 1For calculation of R thJA please refer to Application Note Thermal Resistance 2 2010-01-15 BCR320U / BCR321U Electrical Characteristics at TA=25°C, unless otherwise specified Parameter Symbol Values Unit min. typ. max. 16 - - Characteristics VBR(CEO) Collector-emitter breakdown voltage V IC = 1 mA, I B = 0 IEN Enable current mA VEN = 12 , BCR320U - 1.2 - VEN = 3.3 , BCR321U - 1.2 - hFE 200 350 500 - Rint 65 90 105 Ω DC current gain IC = 50 mA, VCE = 1 V Internal resistor IRint = 10 mA RB Bias resistor kΩ BCR320U - 10 - BCR321U - 1.5 mA Iout Output current Vout = 1.4 V, V EN = 12 V, BCR320U 8 10 12 Vout = 1.4 V, V EN = 3.3 V, BCR321U 8 10 12 - 250 - - 250 - Vdrop 0.85 0.95 1.05 V VSmin - 1.4 - V Vout = 1.4 V, V EN = 12 V, REXT = 3 Ω, BCR320U Vout = 1.4 V, V EN = 3.3 , R EXT = 3 Ω, BCR321U Voltage drop (VRext) IC = 10 mA DC Characteristics with stabilized LED load Lowest sufficient supply voltage overhead Iout > 18mA ∆Iout/Iout Output current change versus TA %/K VEN = 12 V; Vout > 2.0 V, BCR320U - -0.2 - VEN = 3.3 V; Vout > 2.0 V, BCR321U - -0.2 - ∆Iout/Iout Output current change versus VS %/V VEN = 12 V; Vout > 2.0 V, BCR320U - 1 - VEN = 3.3 V; Vout > 2.0 V, BCR321U - 1 - 3 2010-01-15 BCR320U / BCR321U Total power dissipation P tot = f (TS) Permissible Pulse Load RthJS = f (tp) 10 3 1200 mW 1000 10 2 R thJS Ptot 900 800 700 10 1 600 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0 500 400 10 0 300 200 100 0 0 20 40 60 80 120 °C 100 10 -1 -6 10 150 10 -5 10 -4 10 -3 10 -2 s 10 0 TP TS Permissible Pulse Load Ptotmax / PtotDC = f (tp) 10 3 Ptotmax/PtotDC - 10 2 D=0 0.005 0.01 0.02 0.05 0.1 0.2 0.5 10 1 10 0 -6 10 10 -5 10 -4 10 -3 10 -2 s 10 0 TP 4 2010-01-15 BCR320U / BCR321U BCR320U: Output current versus V out BCR320U: Output current versus Rext Iout = f (V out ); VEN = 12 V; Iout = f (R ext ); VEN = 12 V; Rext = Parameter Vout = Parameter 0.3 0.26 A Rext = 3 Ohm Vout = 5.4V Vout = 1.4V 0.22 0.2 Rext = 4 Ohm A Iout Iout 0.18 0.16 0.14 Rext = 6 Ohm 0.12 0.1 Rext = 10 Ohm 0.1 0.08 Rext = 20 Ohm 0.06 0.04 Rext = open 0 0 2 4 6 8 V 0.02 0 0 10 12 10 1 Ohm 10 Vout Rext. BCR320U: Output current versus V out BCR320U: Output current versus V out Iout = f (V S ); V EN = 12 V; Rext = open; Iout = f (V S ); V EN = 12 V; Rext = 20 Ohm; TA= Parameter TA= Parameter 0.02 2 0.1 A TA = -40°C TA = 25°C TA = 85°C A 0.08 TA = -40°C TA = 25°C TA = 85°C Iout Iout 0.07 0.01 0.06 0.05 0.04 0.03 0.005 0.02 0.01 0 0 2 4 6 8 V 0 0 12 Vout 2 4 6 8 V 12 Vout 5 2010-01-15 BCR320U / BCR321U BCR320U: Output current versus V out BCR320U: Output current versus V EN Iout = f (V S ); V EN = 12 V; Rext = 3 Ohm; Iout = f (VEN); Vout = 2.0 V; Rext = open; TA= Parameter TA = Parameter 0.5 0.02 TA = 25°C TA = -40°C TA = 85°C A TA = -40°C TA = 25°C TA = 85°C Iout Iout A 0.3 0.01 0.2 0.005 0.1 0 0 2 4 6 V 8 0 0 12 5 10 15 V 25 Vout VEN BCR320U: Output current versus V EN BCR320U: Output current versus V EN Iout = f (VEN); Vout = 2.0 V; Rext = 20 Ohm; Iout = f (VEN); Vout = 2.0 V; Rext = 3 Ohm; TA = Parameter TA = Parameter 0.3 0.06 A Iout Iout A 0.04 TA = -40°C TA = 25°C TA = 85°C 0.03 TA = 85°C TA = 25°C TA = -40°C 0.1 0.02 0.01 0 0 5 10 15 V 0 0 25 VEN 5 10 15 V 25 VEN 6 2010-01-15 BCR320U / BCR321U BCR320U: Output current versus V EN BCR320U: Enable current versus VEN Iout = f (VEN); Vout = 2.0 V; IEN = f (V EN ); Rext = open; Iout = 0; Rext = Parameter TA = Parameter 0.3 3 Rext = 3 Ohm mA TA = 80°C TA = 25°C TA = -40°C Rext = 4 Ohm Iout IEN A Rext = 6 Ohm 1.5 Rext = 10 Ohm 0.1 2 1 Rext = 20 Ohm 0.5 Rext = open 0 0 5 10 V 15 0 0 25 5 10 15 V 25 VEN VEN BCR321U: Output current versus V out BCR321U: Output current versus Rext Iout = f (V out); VEN = 3.3 V; Iout = f (R ext); V EN = 3.3 V; Rext = Parameter Vout = Parameter 0.4 0.3 Rext = 3 Ohm A Vout = 5.4V Vout = 1.4V Rext = 4 Ohm Iout Iout A Rext = 6 Ohm 0.2 Rext = 10 Ohm 0.1 0.1 Rext = 20 Ohm Rext = open 0 0 2 4 6 8 V 0 0 10 12 Vout 10 1 Ohm 10 2 Rext. 7 2010-01-15 BCR320U / BCR321U BCR321U: Output current versus V out BCR321U: Output current versus V out Iout = f (V S ); V EN = 3.3 V; Rext = open; Iout = f (V S ); V EN = 3.3 V; Rext = 20 Ohm; TA= Parameter TA= Parameter 0.015 0.06 TA = -40°C TA = 25°C TA = 85°C Iout A Iout A TA = -40°C TA = 25°C TA = 85°C 0.005 0 0 0.02 2 4 6 8 V 0 0 12 2 4 6 V 8 12 Vout Vout BCR321U: Output current versus V out BCR321U: Output current versus V EN Iout = f (V S ); V EN = 3.3 V; Rext = 3 Ohm; Iout = f (VEN); Vout = 2.0 V; Rext = open; TA= Parameter TA = Parameter 0.02 0.3 TA = -40°C TA = 25°C TA = 85°C A Iout Iout A TA = 25°C TA = 85°C TA = -40°C 0.01 0.1 0.005 0 0 2 4 6 8 V 0 0 12 Vout 1 2 3 V 5 VEN 8 2010-01-15 BCR320U / BCR321U BCR321U: Output current versus V EN BCR321U: Output current versus V EN Iout = f (VEN); Vout = 2.0 V; Rext = 20 Ohm; Iout = f (VEN); Vout = 2.0 V; Rext = 3 Ohm; TA = Parameter TA = Parameter 0.3 0.06 A Iout Iout A 0.04 TA = -40°C TA = 25°C TA = 85°C 0.03 TA = 85°C TA = 25°C TA = -40°C 0.1 0.02 0.01 0 0 1 2 V 3 0 0 5 1 2 V 3 5 VEN VEN BCR321U: Output current versus V EN BCR321U: Enable current versus VEN Iout = f (VEN); VS = 3.3 V; IEN = f (V EN); Rext = open; Iout = 0; Rext = Parameter TA = Parameter 4 0.3 TA = 80°C TA = 25°C TA = -40°C Rext = 3 Ohm mA Rext = 4 Ohm Iout IEN A Rext = 6 Ohm 2 Rext = 10 Ohm 0.1 1 Rext = 20 Ohm Rext = open 0 0 1 2 3 4 V 0 0 6 VEN 1 2 3 4 V 6 VEN 9 2010-01-15 BCR320U / BCR321U Application circuit: Enabling / PWM by micro controller Application circuit: Enabling by connecting to Vs +Vs +Vs µC IOUT IEN EN 1 OUT 2,3,5 EN IEN IOUT OUT 2,3,5 Rext Rext 6 6 Vdrop Vdrop GND GND 4 4 BCR320U BCR321U Application hints BCR320U / BCR321U serve as an easy to use constant current sources for LEDs. In stand alone application an external resistor can be connected to adjust the current from 10 mA to 250 mA. Rext can be determined by using the diagram 'Output current versus external resistor'. Please take into account that the resulting output currents will be slightly lower due to the self heating of the component and the negative thermal coefficient. Please visit our web site for application notes: www.infineon.com/lowcostleddriver for up-to-date application information 10 2010-01-15 Package SC74 BCR320U / BCR321U Package Outline B 1.1 MAX. 1 2 3 0.35 +0.1 -0.05 Pin 1 marking 0.2 B 6x M A 0.1 MAX. 0.95 0.2 1.9 1.6 ±0.1 4 10˚ MAX. 5 2.5 ±0.1 6 0.25 ±0.1 0.15 +0.1 -0.06 (0.35) 10˚ MAX. 2.9 ±0.2 (2.25) M A Foot Print 2.9 1.9 0.5 0.95 Marking Layout (Example) Small variations in positioning of Date code, Type code and Manufacture are possible. Manufacturer 2005, June Date code (Year/Month) Pin 1 marking Laser marking BCW66H Type code Standard Packing Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel For symmetric types no defined Pin 1 orientation in reel. 0.2 2.7 8 4 Pin 1 marking 3.15 1.15 11 2010-01-15 BCR320U / BCR321U Edition 2009-11-16 Published by Infineon Technologies AG 81726 Munich, Germany 2009 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 12 2010-01-15