74AUP2G126 Low-power dual buffer/line driver; 3-state Rev. 01 — 9 October 2006 Product data sheet 1. General description The 74AUP2G126 is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families. Schmitt-trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire VCC range from 0.8 V to 3.6 V. This device ensures a very low static and dynamic power consumption across the entire VCC range from 0.8 V to 3.6 V. This device is fully specified for partial Power-down applications using IOFF. The IOFF circuitry disables the output, preventing the damaging backflow current through the device when it is powered down. The 74AUP2G126 provides the dual non-inverting buffer/line driver with 3-state output. The 3-state output is controlled by the output enable input (nOE). A LOW level at pin nOE causes the output to assume a high-impedance OFF-state. This device has the input-disable feature, which allows floating input signals. The inputs are disabled when the output enable input nOE is LOW. 2. Features n Wide supply voltage range from 0.8 V to 3.6 V n High noise immunity n Complies with JEDEC standards: u JESD8-12 (0.8 V to 1.3 V) u JESD8-11 (0.9 V to 1.65 V) u JESD8-7 (1.2 V to 1.95 V) u JESD8-5 (1.8 V to 2.7 V) u JESD8-B (2.7 V to 3.6 V) n ESD protection: u HBM JESD22-A114-D Class 3A exceeds 4000 V u MM JESD22-A115-A exceeds 200 V u CDM JESD22-C101-C exceeds 1000 V n Low static power consumption; ICC = 0.9 µA (maximum) n Latch-up performance exceeds 100 mA per JESD 78 Class II n Inputs accept voltages up to 3.6 V n Low noise overshoot and undershoot < 10 % of VCC n Input-disable feature allows floating input conditions n IOFF circuitry provides partial Power-down mode operation n Multiple package options n Specified from −40 °C to +85 °C and −40 °C to +125 °C 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state 3. Ordering information Table 1. Ordering information Type number Package Temperature range Name Description Version 74AUP2G126DC −40 °C to +125 °C VSSOP8 plastic very thin shrink small outline package; 8 leads; SOT765-1 body width 2.3 mm 74AUP2G126GT −40 °C to +125 °C XSON8 plastic extremely thin small outline package; no leads; SOT833-1 8 terminals; body 1 × 1.95 × 0.5 mm 74AUP2G126GM −40 °C to +125 °C XQFN8 plastic extremely thin quad flat package; no leads; 8 terminals; body 1.6 × 1.6 × 0.5 mm SOT902-1 4. Marking Table 2. Marking Type number Marking code 74AUP2G126DC p26 74AUP2G126GT p26 74AUP2G126GM p26 5. Functional diagram 2 1 5 7 1Y 1A 6 1OE nA 2Y 2A nY 3 2OE nOE mna234 mna946 Fig 1. Logic symbol Fig 2. Logic diagram (one gate) 6. Pinning information 6.1 Pinning 74AUP2G126 1OE 1 8 VCC 1A 2 7 2OE 2Y 3 6 1Y GND 4 5 2A 001aae997 Fig 3. Pin configuration SOT765-1 (VSSOP8) 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 2 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state 74AUP2G126 1 8 VCC 1A 2 7 2OE 2Y 3 6 1Y 2OE 1 1Y 2A 7 1OE 2 6 1A 3 5 2Y 4 1OE 8 74AUP2G126 VCC terminal 1 index area 4 5 2A GND GND 001aae998 001aae999 Transparent top view Transparent top view Fig 4. Pin configuration SOT833-1 (XSON8) Fig 5. Pin configuration SOT902-1 (XQFN8) 6.2 Pin description Table 3. Pin description Symbol Pin Description SOT765-1/SOT833-1 SOT902-1 1OE 1 7 output enable input 1OE (active HIGH) 1A 2 6 data input 1A 2Y 3 5 data output 2Y GND 4 4 ground (0 V) 2A 5 3 data input 2A 1Y 6 2 data output 1Y 2OE 7 1 output enable input 2OE (active HIGH) VCC 8 8 supply voltage 7. Functional description Table 4. Function table[1] Input Output nOE nA nY H L L H H H L X Z [1] H = HIGH voltage level; L = LOW voltage level; X = Don’t care; Z = high-impedance OFF-state. 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 3 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state 8. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter VCC supply voltage IIK input clamping current VI input voltage IOK output clamping current Conditions VI < 0 V [1] VO < 0 V [1] Min Max Unit −0.5 +4.6 V - −50 mA −0.5 +4.6 V - −50 mA −0.5 +4.6 V VO output voltage Active mode and Power-down mode IO output current VO = 0 V to VCC - ±20 mA ICC supply current - +50 mA IGND ground current - −50 mA Tstg storage temperature −65 +150 °C - 250 mW total power dissipation Ptot Tamb = −40 °C to +125 °C [2] [1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed. [2] For VSSOP8 packages: above 110 °C the value of Ptot derates linearly with 8.0 mW/K. For XSON8 and XQFN8 packages: above 45 °C the value of Ptot derates linearly with 2.4 mW/K. 9. Recommended operating conditions Table 6. Recommended operating conditions Symbol Parameter VCC supply voltage VI input voltage VO output voltage Conditions Tamb ambient temperature ∆t/∆V input transition rise and fall rate Min Max Unit 0.8 3.6 V 0 3.6 V Active mode 0 VCC V Power-down mode; VCC = 0 V 0 3.6 V −40 +125 °C 0 200 ns/V Typ Max Unit VCC = 0.8 V to 3.6 V 10. Static characteristics Table 7. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min VCC = 0.8 V 0.70 × VCC - - V VCC = 0.9 V to 1.95 V 0.65 × VCC - - V VCC = 2.3 V to 2.7 V 1.6 - - V VCC = 3.0 V to 3.6 V 2.0 - - V VCC = 0.8 V - - 0.30 × VCC V VCC = 0.9 V to 1.95 V - - 0.35 × VCC V VCC = 2.3 V to 2.7 V - - 0.7 V VCC = 3.0 V to 3.6 V - - 0.9 V Tamb = 25 °C VIH VIL HIGH-level input voltage LOW-level input voltage 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 4 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state Table 7. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions VOH VI = VIH or VIL VOL HIGH-level output voltage LOW-level output voltage Min Typ Max Unit IO = −20 µA; VCC = 0.8 V to 3.6 V VCC − 0.1 - - V IO = −1.1 mA; VCC = 1.1 V 0.75 × VCC - - V IO = −1.7 mA; VCC = 1.4 V 1.11 - - V IO = −1.9 mA; VCC = 1.65 V 1.32 - - V IO = −2.3 mA; VCC = 2.3 V 2.05 - - V IO = −3.1 mA; VCC = 2.3 V 1.9 - - V IO = −2.7 mA; VCC = 3.0 V 2.72 - - V IO = −4.0 mA; VCC = 3.0 V 2.6 - - V VI = VIH or VIL IO = 20 µA; VCC = 0.8 V to 3.6 V - - 0.1 V IO = 1.1 mA; VCC = 1.1 V - - 0.3 × VCC V IO = 1.7 mA; VCC = 1.4 V - - 0.31 V IO = 1.9 mA; VCC = 1.65 V - - 0.31 V IO = 2.3 mA; VCC = 2.3 V - - 0.31 V IO = 3.1 mA; VCC = 2.3 V - - 0.44 V IO = 2.7 mA; VCC = 3.0 V - - 0.31 V IO = 4.0 mA; VCC = 3.0 V - - 0.44 V II input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - ±0.1 µA IOZ OFF-state output current VI = VIH or VIL; VO = 0 V to 3.6 V; VCC = 0 V to 3.6 V - - ±0.1 µA IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.2 µA ∆IOFF additional power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V to 0.2 V - - ±0.2 µA ICC supply current VI = GND or VCC; IO = 0 A; VCC = 0.8 V to 3.6 V - - 0.5 µA ∆ICC additional supply current data input; VI = VCC − 0.6 V; IO = 0 A; VCC = 3.3 V [1] - - 40 µA nOE input; VI = VCC − 0.6 V; IO = 0 A; VCC = 3.3 V [1] - - 110 µA all inputs; VI = GND to 3.6 V; nOE = GND; VCC = 0.8 V to 3.6 V [2] - - 1 µA CI input capacitance VCC = 0 V to 3.6 V; VI = GND or VCC - 0.9 - pF CO output capacitance output enabled; VO = GND; VCC = 0 V - 1.7 - pF output disabled; VCC = 0 V to 3.6 V; VO = GND or VCC - 1.5 - pF VCC = 0.8 V 0.70 × VCC - - V VCC = 0.9 V to 1.95 V 0.65 × VCC - - V VCC = 2.3 V to 2.7 V 1.6 - - V VCC = 3.0 V to 3.6 V 2.0 - - V Tamb = −40 °C to +85 °C VIH HIGH-level input voltage 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 5 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state Table 7. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Typ Max VIL VCC = 0.8 V - - 0.30 × VCC V VCC = 0.9 V to 1.95 V - - 0.35 × VCC V VCC = 2.3 V to 2.7 V - - 0.7 V VCC = 3.0 V to 3.6 V - - 0.9 V IO = −20 µA; VCC = 0.8 V to 3.6 V VCC − 0.1 - - V VOH VOL LOW-level input voltage HIGH-level output voltage LOW-level output voltage Unit VI = VIH or VIL IO = −1.1 mA; VCC = 1.1 V 0.7 × VCC - - V IO = −1.7 mA; VCC = 1.4 V 1.03 - - V IO = −1.9 mA; VCC = 1.65 V 1.30 - - V IO = −2.3 mA; VCC = 2.3 V 1.97 - - V IO = −3.1 mA; VCC = 2.3 V 1.85 - - V IO = −2.7 mA; VCC = 3.0 V 2.67 - - V IO = −4.0 mA; VCC = 3.0 V 2.55 - - V VI = VIH or VIL IO = 20 µA; VCC = 0.8 V to 3.6 V - - 0.1 V IO = 1.1 mA; VCC = 1.1 V - - 0.3 × VCC V IO = 1.7 mA; VCC = 1.4 V - - 0.37 V IO = 1.9 mA; VCC = 1.65 V - - 0.35 V IO = 2.3 mA; VCC = 2.3 V - - 0.33 V IO = 3.1 mA; VCC = 2.3 V - - 0.45 V IO = 2.7 mA; VCC = 3.0 V - - 0.33 V IO = 4.0 mA; VCC = 3.0 V - - 0.45 V II input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - ±0.5 µA IOZ OFF-state output current VI = VIH or VIL; VO = 0 V to 3.6 V; VCC = 0 V to 3.6 V - - ±0.5 µA IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.5 µA ∆IOFF additional power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V to 0.2 V - - ±0.6 µA ICC supply current VI = GND or VCC; IO = 0 A; VCC = 0.8 V to 3.6 V - - 0.9 µA ∆ICC additional supply current data input; VI = VCC − 0.6 V; IO = 0 A; VCC = 3.3 V [1] - - 50 µA nOE input; VI = VCC − 0.6 V; IO = 0 A; VCC = 3.3 V [1] - - 120 µA all inputs; VI = GND to 3.6 V; nOE = GND; VCC = 0.8 V to 3.6 V [2] - - 1 µA VCC = 0.8 V 0.75 × VCC - - V VCC = 0.9 V to 1.95 V 0.70 × VCC - - V VCC = 2.3 V to 2.7 V 1.6 - - V VCC = 3.0 V to 3.6 V 2.0 - - V Tamb = −40 °C to +125 °C VIH HIGH-level input voltage 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 6 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state Table 7. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Typ Max VIL VCC = 0.8 V - - 0.25 × VCC V VCC = 0.9 V to 1.95 V - - 0.30 × VCC V VCC = 2.3 V to 2.7 V - - 0.7 V VCC = 3.0 V to 3.6 V - - 0.9 V LOW-level input voltage VOH HIGH-level output voltage LOW-level output voltage VOL Unit VI = VIH or VIL IO = −20 µA; VCC = 0.8 V to 3.6 V VCC − 0.11 - - V IO = −1.1 mA; VCC = 1.1 V 0.6 × VCC - - V IO = −1.7 mA; VCC = 1.4 V 0.93 - - V IO = −1.9 mA; VCC = 1.65 V 1.17 - - V IO = −2.3 mA; VCC = 2.3 V 1.77 - - V IO = −3.1 mA; VCC = 2.3 V 1.67 - - V IO = −2.7 mA; VCC = 3.0 V 2.40 - - V IO = −4.0 mA; VCC = 3.0 V 2.30 - - V V VI = VIH or VIL IO = 20 µA; VCC = 0.8 V to 3.6 V - - 0.11 IO = 1.1 mA; VCC = 1.1 V - - 0.33 × VCC V IO = 1.7 mA; VCC = 1.4 V - - 0.41 V IO = 1.9 mA; VCC = 1.65 V - - 0.39 V IO = 2.3 mA; VCC = 2.3 V - - 0.36 V IO = 3.1 mA; VCC = 2.3 V - - 0.50 V IO = 2.7 mA; VCC = 3.0 V - - 0.36 V IO = 4.0 mA; VCC = 3.0 V - - 0.50 V II input leakage current VI = GND to 3.6 V; VCC = 0 V to 3.6 V - - ±0.75 µA IOZ OFF-state output current VI = VIH or VIL; VO = 0 V to 3.6 V; VCC = 0 V to 3.6 V - - ±0.75 µA IOFF power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V - - ±0.75 µA ∆IOFF additional power-off leakage current VI or VO = 0 V to 3.6 V; VCC = 0 V to 0.2 V - - ±0.75 µA ICC supply current VI = GND or VCC; IO = 0 A; VCC = 0.8 V to 3.6 V - - 1.4 µA ∆ICC additional supply current data input; VI = VCC − 0.6 V; IO = 0 A; VCC = 3.3 V [1] - - 75 µA nOE input; VI = VCC − 0.6 V; IO = 0 A; VCC = 3.3 V [1] - - 180 µA all inputs; VI = GND to 3.6 V; nOE = GND; VCC = 0.8 V to 3.6 V [2] - - 1 µA [1] One input at VCC − 0.6 V, other input at VCC or GND. [2] To show ICC remains very low when the input-disable feature is enabled. 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 7 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state 11. Dynamic characteristics Table 8. Dynamic characteristics Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8. Symbol Parameter 25 °C Conditions −40 °C to +125 °C Unit Min Typ[1] Max Min Max (85 °C) Max (125 °C) - 20.6 - - - - ns VCC = 1.1 V to 1.3 V 2.8 5.5 10.5 2.5 11.7 12.9 ns VCC = 1.4 V to 1.6 V 2.2 3.9 6.1 2.0 7.3 8.1 ns VCC = 1.65 V to 1.95 V 1.9 3.2 4.1 1.7 6.1 6.7 ns VCC = 2.3 V to 2.7 V 1.6 2.6 3.6 1.4 4.3 4.9 ns 1.4 2.4 3.1 1.2 3.9 4.4 ns - 71.6 - - - - ns VCC = 1.1 V to 1.3 V 2.8 6.2 12.4 2.6 13.6 13.6 ns VCC = 1.4 V to 1.6 V 2.3 4.2 6.9 2.2 7.4 7.7 ns VCC = 1.65 V to 1.95 V 1.9 3.3 5.3 1.7 5.9 6.2 ns VCC = 2.3 V to 2.7 V 1.5 2.4 3.6 1.4 3.8 4.1 ns 1.3 2.0 2.9 1.2 3.2 3.4 ns - 10.3 - - - - ns VCC = 1.1 V to 1.3 V 2.6 4.2 6.2 2.9 6.4 6.5 ns VCC = 1.4 V to 1.6 V 2.1 3.2 4.4 2.2 4.6 4.7 ns CL = 5 pF tpd propagation delay nA to nY; see Figure 6 [2] VCC = 0.8 V VCC = 3.0 V to 3.6 V ten enable time nOE to nY; see Figure 7 [3] VCC = 0.8 V VCC = 3.0 V to 3.6 V tdis disable time nOE to nY; see Figure 7 [4] VCC = 0.8 V VCC = 1.65 V to 1.95 V 2.1 3.1 4.4 1.7 4.6 4.8 ns VCC = 2.3 V to 2.7 V 1.7 2.4 3.2 1.4 3.4 3.6 ns VCC = 3.0 V to 3.6 V 2.1 2.8 3.6 1.2 3.7 3.8 ns - 24.0 - - - - ns VCC = 1.1 V to 1.3 V 3.2 6.4 12.3 3.0 13.8 15.2 ns VCC = 1.4 V to 1.6 V 2.1 4.5 7.3 1.9 8.5 9.4 ns CL = 10 pF tpd propagation delay nA to nY; see Figure 6 VCC = 0.8 V [2] VCC = 1.65 V to 1.95 V 1.9 3.8 5.5 1.7 6.8 7.6 ns VCC = 2.3 V to 2.7 V 2.1 3.2 4.2 1.6 5.3 5.9 ns VCC = 3.0 V to 3.6 V 1.8 3.0 3.8 1.6 4.6 5.2 ns 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 8 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state Table 8. Dynamic characteristics …continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8. Symbol Parameter ten enable time 25 °C Conditions Max Min Max (85 °C) Max (125 °C) - 75.3 - - - - ns VCC = 1.1 V to 1.3 V 3.2 7.1 14.1 3.0 15.4 15.4 ns VCC = 1.4 V to 1.6 V 2.2 4.8 8.0 2.1 8.3 8.6 ns nOE to nY; see Figure 7 [3] VCC = 1.65 V to 1.95 V 1.8 3.9 5.9 1.7 6.5 6.8 ns VCC = 2.3 V to 2.7 V 1.5 2.9 4.2 1.4 4.5 4.8 ns 1.4 2.6 3.6 1.3 3.8 4.0 ns VCC = 3.0 V to 3.6 V disable time Unit Min VCC = 0.8 V tdis −40 °C to +125 °C Typ[1] nOE to nY; see Figure 7 [4] VCC = 0.8 V - 12.2 - - - - ns VCC = 1.1 V to 1.3 V 3.5 5.3 7.6 3.3 7.9 7.9 ns VCC = 1.4 V to 1.6 V 2.2 4.1 5.6 2.1 5.7 5.9 ns VCC = 1.65 V to 1.95 V 2.4 4.2 5.7 1.7 5.8 6.0 ns VCC = 2.3 V to 2.7 V 1.9 3.2 4.1 1.4 4.3 4.5 ns VCC = 3.0 V to 3.6 V 2.4 4.1 5.0 1.3 5.2 5.3 ns CL = 15 pF tpd propagation delay nA to nY; see Figure 6 [2] VCC = 0.8 V ten enable time - 27.4 - - - - ns VCC = 1.1 V to 1.3 V 3.6 7.2 14.1 3.3 15.8 17.5 ns VCC = 1.4 V to 1.6 V 3.0 5.1 8.1 2.5 9.8 10.9 ns VCC = 1.65 V to 1.95 V 2.2 4.3 6.3 2.0 7.9 8.8 ns VCC = 2.3 V to 2.7 V 2.0 3.7 4.9 1.8 6.0 6.7 ns VCC = 3.0 V to 3.6 V 2.0 3.5 4.4 1.8 5.4 6.1 ns - 79.2 - - - - ns VCC = 1.1 V to 1.3 V 3.6 7.8 15.8 3.3 17.1 17.1 ns VCC = 1.4 V to 1.6 V 3.0 5.4 8.8 2.9 9.4 9.7 ns VCC = 1.65 V to 1.95 V 2.1 4.3 6.7 2.0 7.3 7.7 ns VCC = 2.3 V to 2.7 V 1.8 3.4 4.8 1.7 5.2 5.6 ns 1.6 3.1 4.1 1.5 4.5 4.7 ns - 14.9 - - - - ns VCC = 1.1 V to 1.3 V 4.3 6.4 8.5 3.7 9.3 9.4 ns VCC = 1.4 V to 1.6 V 3.0 5.0 6.6 2.5 6.9 7.0 ns VCC = 1.65 V to 1.95 V 3.1 5.4 6.6 2.0 7.4 7.5 ns VCC = 2.3 V to 2.7 V 2.4 4.0 5.0 1.7 5.1 5.5 ns VCC = 3.0 V to 3.6 V 3.2 5.3 6.2 1.5 6.7 6.9 ns nOE to nY; see Figure 7 [3] VCC = 0.8 V VCC = 3.0 V to 3.6 V tdis disable time nOE to nY; see Figure 7 VCC = 0.8 V [4] 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 9 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state Table 8. Dynamic characteristics …continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8. Symbol Parameter 25 °C Conditions −40 °C to +125 °C Unit Min Typ[1] Max Min Max (85 °C) Max (125 °C) - 37.4 - - - - ns VCC = 1.1 V to 1.3 V 4.8 9.5 18.7 4.4 21.4 24.0 ns VCC = 1.4 V to 1.6 V 4.0 6.7 10.8 3.0 13.0 14.5 ns VCC = 1.65 V to 1.95 V 2.9 5.6 8.4 2.6 10.3 11.5 ns VCC = 2.3 V to 2.7 V 2.7 4.8 6.3 2.5 7.8 8.7 ns 2.7 4.6 5.8 2.5 7.0 8.3 ns - 90.6 - - - - ns VCC = 1.1 V to 1.3 V 4.7 10.0 20.4 4.3 22.0 22.0 ns VCC = 1.4 V to 1.6 V 3.0 6.9 11.3 3.7 12.0 12.5 ns CL = 30 pF tpd propagation delay nA to nY; see Figure 6 [2] VCC = 0.8 V VCC = 3.0 V to 3.6 V ten enable time nOE to nY; see Figure 7 [3] VCC = 0.8 V VCC = 1.65 V to 1.95 V 2.6 5.6 8.6 3.2 9.5 10.1 ns VCC = 2.3 V to 2.7 V 2.3 4.5 6.3 2.9 6.8 7.3 ns 2.2 4.2 5.8 2.7 6.4 6.7 ns VCC = 3.0 V to 3.6 V tdis disable time nOE to nY; see Figure 7 VCC = 0.8 V [4] - 51.6 - - - - ns VCC = 1.1 V to 1.3 V 6.0 9.8 13.6 4.7 14.3 14.4 ns VCC = 1.4 V to 1.6 V 4.5 7.7 10.5 3.0 10.7 11.0 ns VCC = 1.65 V to 1.95 V 5.2 8.8 11.4 2.6 11.5 11.6 ns VCC = 2.3 V to 2.7 V 3.9 6.4 7.4 2.3 9.0 10.2 ns VCC = 3.0 V to 3.6 V 5.5 9.0 10.7 2.2 10.8 12.0 ns 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 10 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state Table 8. Dynamic characteristics …continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8. Symbol Parameter 25 °C Conditions −40 °C to +125 °C Unit Min Typ[1] Max Min Max (85 °C) Max (125 °C) VCC = 0.8 V - 2.7 - - - - pF VCC = 1.1 V to 1.3 V - 2.8 - - - - pF VCC = 1.4 V to 1.6 V - 2.9 - - - - pF VCC = 1.65 V to 1.95 V - 3.0 - - - - pF VCC = 2.3 V to 2.7 V - 3.6 - - - - pF VCC = 3.0 V to 3.6 V - 4.2 - - - - pF CL = 5 pF, 10 pF, 15 pF and 30 pF power dissipation capacitance CPD [5] output enabled; fi = 1 MHz; VI = GND to VCC [1] All typical values are measured at nominal VCC. [2] tpd is the same as tPLH and tPHL. [3] ten is the same as tPZH and tPZL. [4] tdis is the same as tPHZ and tPLZ. [5] CPD is used to determine the dynamic power dissipation (PD in µW). PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; VCC = supply voltage in V; N = number of inputs switching; Σ(CL × VCC2 × fo) = sum of the outputs. 12. Waveforms VI VM nA input GND tPHL tPLH VOH VM nY output VOL mna230 Measurement points are given in Table 9. Logic levels: VOL and VOH are typical output voltage drop that occur with the output load. Fig 6. The data input (nA) to output (nY) propagation delays Table 9. Measurement points Supply voltage Output Input VCC VM VM VI tr = tf 0.8 V to 3.6 V 0.5 × VCC 0.5 × VCC VCC ≤ 3.0 ns 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 11 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state VI nOE input VM GND t PLZ t PZL VCC output LOW-to-OFF OFF-to-LOW VM VX VOL t PZH t PHZ VOH VY output HIGH-to-OFF OFF-to-HIGH VM GND outputs enabled outputs enabled outputs disabled mna949 Measurement points are given in Table 10. Logic levels: VOL and VOH are typical output voltage drop that occur with the output load. Fig 7. Enable and disable times Table 10. Measurement points Supply voltage Input Output VCC VM VM VX VY 0.8 V to 1.6 V 0.5 × VCC 0.5 × VCC VOL + 0.1 V VOH − 0.1 V 1.65 V to 2.7 V 0.5 × VCC 0.5 × VCC VOL + 0.15 V VOH − 0.15 V 3.0 V to 3.6 V 0.5 × VCC 0.5 × VCC VOL + 0.3 V VOH − 0.3 V 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 12 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state VCC VEXT 5 kΩ PULSE GENERATOR VI VO DUT RT CL RL 001aac521 Test data is given in Table 11. Definitions for test circuit: RL = Load resistance. CL = Load capacitance including jig and probe capacitance. RT = Termination resistance should be equal to the output impedance Zo of the pulse generator. VEXT = External voltage for measuring switching times. Fig 8. Load circuitry for switching times Table 11. Test data Supply voltage Load VEXT RL[1] VCC CL 0.8 V to 3.6 V 5 pF, 10 pF, 15 pF and 30 pF 5 kΩ or 1 MΩ [1] tPLH, tPHL tPZH, tPHZ tPZL, tPLZ open GND 2 × VCC For measuring enable and disable times RL = 5 kΩ, for measuring propagation delays, setup and hold times and pulse width RL = 1 MΩ. 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 13 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state 13. Package outline VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm D E SOT765-1 A X c y HE v M A Z 5 8 Q A A2 A1 pin 1 index (A3) θ Lp 1 4 e L detail X w M bp 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D(1) E(2) e HE L Lp Q v w y Z(1) θ mm 1 0.15 0.00 0.85 0.60 0.12 0.27 0.17 0.23 0.08 2.1 1.9 2.4 2.2 0.5 3.2 3.0 0.4 0.40 0.15 0.21 0.19 0.2 0.13 0.1 0.4 0.1 8° 0° Notes 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT765-1 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 02-06-07 MO-187 Fig 9. Package outline SOT765-1 (VSSOP8) 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 14 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state XSON8: plastic extremely thin small outline package; no leads; 8 terminals; body 1 x 1.95 x 0.5 mm 1 2 SOT833-1 b 4 3 4× (2) L L1 e 8 7 6 e1 5 e1 e1 8× A (2) A1 D E terminal 1 index area 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A (1) max A1 max b D E e e1 L L1 mm 0.5 0.04 0.25 0.17 2.0 1.9 1.05 0.95 0.6 0.5 0.35 0.27 0.40 0.32 Notes 1. Including plating thickness. 2. Can be visible in some manufacturing processes. REFERENCES OUTLINE VERSION IEC JEDEC JEITA SOT833-1 --- MO-252 --- EUROPEAN PROJECTION ISSUE DATE 04-07-22 04-11-09 Fig 10. Package outline SOT833-1 (XSON8) 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 15 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state XQFN8: plastic extremely thin quad flat package; no leads; 8 terminals; body 1.6 x 1.6 x 0.5 mm B D SOT902-1 A terminal 1 index area E A A1 detail X L1 e e C ∅v M C A B ∅w M C L 4 y1 C y 5 3 metal area not for soldering e1 b 2 6 e1 7 1 terminal 1 index area 8 X 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max A1 b D E e e1 L L1 v w y y1 mm 0.5 0.05 0.00 0.25 0.15 1.65 1.55 1.65 1.55 0.55 0.5 0.35 0.25 0.15 0.05 0.1 0.05 0.05 0.05 REFERENCES OUTLINE VERSION IEC JEDEC JEITA SOT902-1 --- MO-255 --- EUROPEAN PROJECTION ISSUE DATE 05-11-16 05-11-25 Fig 11. Package outline SOT902-1 (XQFN8) 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 16 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state 14. Abbreviations Table 12. Abbreviations Acronym Description CDM Charged Device Model CMOS Complementary Metal Oxide Semiconductor DUT Device Under Test ESD ElectroStatic Discharge HBM Human Body Model MM Machine Model TTL Transistor-Transistor Logic 15. Revision history Table 13. Revision history Document ID Release date Data sheet status Change notice Supersedes 74AUP2G126_1 20061009 Product data sheet - - 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 17 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state 16. Legal information 16.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 16.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. 16.3 Disclaimers General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. 16.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 17. Contact information For additional information, please visit: http://www.nxp.com For sales office addresses, send an email to: [email protected] 74AUP2G126_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 9 October 2006 18 of 19 74AUP2G126 NXP Semiconductors Low-power dual buffer/line driver; 3-state 18. Contents 1 2 3 4 5 6 6.1 6.2 7 8 9 10 11 12 13 14 15 16 16.1 16.2 16.3 16.4 17 18 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 2 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3 Functional description . . . . . . . . . . . . . . . . . . . 3 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 4 Recommended operating conditions. . . . . . . . 4 Static characteristics. . . . . . . . . . . . . . . . . . . . . 4 Dynamic characteristics . . . . . . . . . . . . . . . . . . 8 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 14 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 17 Legal information. . . . . . . . . . . . . . . . . . . . . . . 18 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 18 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Contact information. . . . . . . . . . . . . . . . . . . . . 18 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2006. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] Date of release: 9 October 2006 Document identifier: 74AUP2G126_1