74AUP1T34 Low-power dual supply translating buffer Rev. 01 — 4 December 2006 Product data sheet 1. General description The 74AUP1T34 is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families. Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire VCC range from 1.1 V to 3.6 V. This device ensures a very low static and dynamic power consumption across the entire VCC range from 1.1 V to 3.6 V. This device is fully specified for partial power-down applications using IOFF. The IOFF circuitry disables the output, preventing the damaging backflow current through the device when it is powered down. The 74AUP1T34 provides a single buffer with two separate supply voltages. Input A is designed to track VCC(A). Output Y is designed to track VCC(Y). Both, VCC(A) and VCC(Y) accepts any supply voltage from 1.1 V to 3.6 V. This feature allows universal low voltage interfacing between any of the 1.2 V, 1.5 V, 1.8 V, 2.5 V, and 3.3 V voltage nodes. 2. Features ■ Wide supply voltage range from 1.1 V to 3.6 V ■ High noise immunity ■ Complies with JEDEC standards: ◆ JESD8-7 (1.2 V to 1.95 V) ◆ JESD8-5 (1.8 V to 2.7 V) ◆ JESD8-B (2.7 V to 3.6 V) ■ ESD protection: ◆ HBM JESD22-A114-D Class 3A exceeds 5000 V ◆ MM JESD22-A115-A exceeds 200 V ◆ CDM JESD22-C101-C exceeds 1000 V ■ Wide supply voltage range: ◆ VCC(A): 1.1 V to 3.6 V ◆ VCC(Y): 1.1 V to 3.6 V ■ Low static power consumption; ICC = 0.9 µA (maximum) ■ Each port operates over the full 1.1 V to 3.6 V power supply range ■ Latch-up performance exceeds 100 mA per JESD 78 Class II ■ Inputs accept voltages up to 3.6 V ■ Low noise overshoot and undershoot < 10 % of VCC ■ IOFF circuitry provides partial Power-down mode operation ■ Multiple package options ■ Specified from −40 °C to +85 °C and −40 °C to +125 °C 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer 3. Ordering information Table 1. Ordering information Type number Package Temperature range Name Description Version 74AUP1T34GW −40 °C to +125 °C TSSOP5 plastic thin shrink small outline package; 5 leads; body width 1.25 mm SOT353-1 74AUP1T34GM −40 °C to +125 °C XSON6 plastic extremely thin small outline package; no leads; SOT886 6 terminals; body 1 × 1.45 × 0.5 mm 74AUP1T34GF −40 °C to +125 °C XSON6 plastic extremely thin small outline package; no leads; SOT891 6 terminals; body 1 × 1 × 0.5 mm 4. Marking Table 2. Marking Type number Marking code 74AUP1T34GW pQ 74AUP1T34GM pQ 74AUP1T34GF pQ 5. Functional diagram 2 A Y 4 2 4 A 001aac538 Y 001aac537 Fig 1. Logic symbol 001aac536 Fig 2. IEC logic symbol Fig 3. Logic diagram 6. Pinning information 6.1 Pinning 74AUP1T34 74AUP1T34 VCC(A) 1 A 2 GND 5 3 4 VCC(Y) Y 001aad741 Fig 4. Pin configuration SOT353-1 (TSSOP5) VCC(A) 1 6 VCC(Y) A 2 5 n.c. GND 3 4 Y 001aad740 Transparent top view Fig 5. Pin configuration SOT886 (XSON6) 74AUP1T34_1 Product data sheet 74AUP1T34 VCC(A) 1 6 VCC(Y) A 2 5 n.c. GND 3 4 Y 001aad832 Transparent top view Fig 6. Pin configuration SOT891 (XSON6) © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 2 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer 6.2 Pin description Table 3. Pin description Symbol Pin Description TSSOP5 XSON6 VCC(A) 1 1 supply voltage port A A 2 2 data input A GND 3 3 ground (0 V) Y 4 4 data output Y n.c. - 5 not connected VCC(Y) 5 6 supply voltage port Y 7. Functional description Table 4. Function table[1] Input Output A Y L L H H [1] H = HIGH voltage level; L = LOW voltage level. 8. Limiting values Table 5. Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V). Symbol Parameter Min Max Unit VCC(A) supply voltage port A −0.5 +4.6 V VCC(Y) supply voltage port Y −0.5 +4.6 V IIK input clamping current - −50 mA VI input voltage IOK output clamping current Conditions VI < 0 V [1] VO > VCC(Y) or VO < 0 V [1] −0.5 +4.6 V - ±50 mA −0.5 +4.6 V - ±20 mA VO output voltage Active mode and Power-down mode IO output current VO = 0 V to VCC(Y) ICC supply current - 50 mA IGND ground current - −50 mA Tstg storage temperature −65 +150 °C - 250 mW total power dissipation Ptot Tamb = −40 °C to +125 °C [2] [1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed. [2] For TSSOP5 packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K. For XSON6 packages: above 45 °C the value of Ptot derates linearly with 2.4 mW/K. 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 3 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer 9. Recommended operating conditions Table 6. Recommended operating conditions Symbol Parameter VCC(A) Conditions Min Max Unit supply voltage port A 1.1 3.6 V VCC(Y) supply voltage port Y 1.1 3.6 V VI input voltage 0 3.6 V VO output voltage 0 VCC(Y) V Tamb ambient temperature −40 +125 °C ∆t/∆V input transition rise and fall rate 0 200 ns/V control and data inputs; VCC(A) = 1.1 V to 3.6 V 10. Static characteristics Table 7. Static characteristics At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions Min Typ Max Unit Tamb = 25 °C VIH VIL VOH VOL II HIGH-level input voltage LOW-level input voltage HIGH-level output voltage LOW-level output voltage input leakage current VCC(A) = 1.1 V to 1.95 V; VCC(Y) = 1.1 V to 3.6 V 0.65 × VCC(A) - - V VCC(A) = 2.3 V to 2.7 V; VCC(Y) = 1.1 V to 3.6 V 1.6 - - V VCC(A) = 3.0 V to 3.6 V; VCC(Y) = 1.1 V to 3.6 V 2.0 - - V VCC(A) = 1.1 V to 1.95 V; VCC(Y) = 1.1 V to 3.6 V - - 0.35 × VCC(A) V VCC(A) = 2.3 V to 2.7 V; VCC(Y) = 1.1 V to 3.6 V - - 0.7 V VCC(A) = 3.0 V to 3.6 V; VCC(Y) = 1.1 V to 3.6 V - - 0.9 V IO = −20 µA; VCC(A) = VCC(Y) = 1.1 V to 3.6 V VCC(Y) − 0.1 - - V IO = −1.1 mA; VCC(A) = VCC(Y) = 1.1 V 0.75 × VCC(Y) - - V IO = −1.7 mA; VCC(A) = VCC(Y) = 1.4 V 1.11 - - V IO = −1.9 mA; VCC(A) = VCC(Y) = 1.65 V 1.32 - - V IO = −2.3 mA; VCC(A) = VCC(Y) = 2.3 V 2.05 - - V IO = −3.1 mA; VCC(A) = VCC(Y) = 2.3 V 1.9 - - V IO = −2.7 mA; VCC(A) = VCC(Y) = 3.0 V 2.72 - - V IO = −4.0 mA; VCC(A) = VCC(Y) = 3.0 V 2.6 - - V IO = 20 µA; VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 0.1 V VI = VIH VI = VIL IO = 1.1 mA; VCC(A) = VCC(Y) = 1.1 V - - 0.3 × VCC(Y) V IO = 1.7 mA; VCC(A) = VCC(Y) = 1.4 V - - 0.31 V IO = 1.9 mA; VCC(A) = VCC(Y) = 1.65 V - - 0.31 V IO = 2.3 mA; VCC(A) = VCC(Y) = 2.3 V - - 0.31 V IO = 3.1 mA; VCC(A) = VCC(Y) = 2.3 V - - 0.44 V IO = 2.7 mA; VCC(A) = VCC(Y) = 3.0 V - - 0.31 V IO = 4.0 mA; VCC(A) = VCC(Y) = 3.0 V - - 0.44 V - - ±0.1 µA VI = GND to VCC(A); VCC(A) = VCC(Y) = 1.1 V to 3.6 V 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 4 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer Table 7. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter IOFF ∆IOFF ICC Conditions Min Typ Max Unit - - ±0.2 µA Y output; VO = 0 V to 3.6 V; VCC(A) = 0 V to 3.6 V; VCC(Y) = 0 V - - ±0.2 µA A input; VI = 0 V to 3.6 V; additional power-off VCC(A) = 0 V to 0.2 V; VCC(Y) = 0 V to 3.6 V leakage current Y output; V = 0 V to 3.6 V; V O CC(A) = 0 V to 3.6 V; VCC(Y) = 0 V to 0.2 V - - ±0.2 µA - - ±0.2 µA VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 0.5 µA VCC(A) = 3.6 V; VCC(Y) = 0 V - - 0.5 µA VCC(A) = 0 V; VCC(Y) = 3.6 V - - 0.0 µA VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 0.5 µA VCC(A) = 3.6 V; VCC(Y) = 0 V - - 0.0 µA VCC(A) = 0 V; VCC(Y) = 3.6 V - - 0.5 µA port A and port Y; VI = GND or VCC(A); IO = 0 A; VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 0.5 µA power-off A input; VI = 0 V to 3.6 V; leakage current VCC(A) = 0 V; VCC(Y) = 0 V to 3.6 V supply current port A; VI = GND or VCC(A); IO = 0 A port Y; VI = GND or VCC(A); IO = 0 A ∆ICC additional supply current A input; VCC(A) = 3.3 V; VCC(Y) = 0 V to 3.6 V; VI = VCC(A) − 0.6 V - - 40 µA CI input capacitance A input; VCC(A) = VCC(Y) = 0 V to 3.6 V; VI = GND or VCC(A) - 1.0 - pF CO output capacitance Y output; VO = GND; VCC(Y) = 0 V; VCC(A) = 0 V to 3.6 V - 1.8 - pF Tamb = −40 °C to +85 °C VIH VIL VOH HIGH-level input voltage LOW-level input voltage HIGH-level output voltage VCC(A) = 1.1 V to 1.95 V; VCC(Y) = 1.1 V to 3.6 V 0.65 × VCC(A) - - V VCC(A) = 2.3 V to 2.7 V; VCC(Y) = 1.1 V to 3.6 V 1.6 - - V VCC(A) = 3.0 V to 3.6 V; VCC(Y) = 1.1 V to 3.6 V 2.0 - - V VCC(A) = 1.1 V to 1.95 V; VCC(Y) = 1.1 V to 3.6 V - - 0.35 × VCC(A) V VCC(A) = 2.3 V to 2.7 V; VCC(Y) = 1.1 V to 3.6 V - - 0.7 V VCC(A) = 3.0 V to 3.6 V; VCC(Y) = 1.1 V to 3.6 V - - 0.9 V IO = −20 µA; VCC(A) = VCC(Y) = 1.1 V to 3.6 V VCC(Y) − 0.1 - - V IO = −1.1 mA; VCC(A) = VCC(Y) = 1.1 V 0.7 × VCC(Y) - - V IO = −1.7 mA; VCC(A) = VCC(Y) = 1.4 V 1.03 - - V IO = −1.9 mA; VCC(A) = VCC(Y) = 1.65 V 1.30 - - V IO = −2.3 mA; VCC(A) = VCC(Y) = 2.3 V 1.97 - - V IO = −3.1 mA; VCC(A) = VCC(Y) = 2.3 V 1.85 - - V IO = −2.7 mA; VCC(A) = VCC(Y) = 3.0 V 2.67 - - V IO = −4.0 mA; VCC(A) = VCC(Y) = 3.0 V 2.55 - - V VI = VIH 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 5 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer Table 7. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions VOL VI = VIL LOW-level output voltage Min Typ Max Unit IO = 20 µA; VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 0.1 V IO = 1.1 mA; VCC(A) = VCC(Y) = 1.1 V - - 0.3 × VCC(Y) V IO = 1.7 mA; VCC(A) = VCC(Y) = 1.4 V - - 0.37 V IO = 1.9 mA; VCC(A) = VCC(Y) = 1.65 V - - 0.35 V IO = 2.3 mA; VCC(A) = VCC(Y) = 2.3 V - - 0.33 V IO = 3.1 mA; VCC(A) = VCC(Y) = 2.3 V - - 0.45 V IO = 2.7 mA; VCC(A) = VCC(Y) = 3.0 V - - 0.33 V IO = 4.0 mA; VCC(A) = VCC(Y) = 3.0 V - - 0.45 V - - ±0.5 µA - - ±0.5 µA Y output; VO = 0 V to 3.6 V; VCC(A) = 0 V to 3.6 V; VCC(Y) = 0 V - - ±0.5 µA additional A input; VI = 0 V to 3.6 V; power-off VCC(A) = 0 V to 0.2 V; VCC(Y) = 0 V to 3.6 V leakage current Y output; V = 0 V to 3.6 V; V O CC(A) = 0 V to 3.6 V; VCC(Y) = 0 V to 0.2 V - - ±0.6 µA - - ±0.6 µA VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 0.9 µA VCC(A) = 3.6 V; VCC(Y) = 0 V - - 0.9 µA VCC(A) = 0 V; VCC(Y) = 3.6 V - - 0.0 µA VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 0.9 µA VCC(A) = 3.6 V; VCC(Y) = 0 V - - 0.0 µA II input leakage current IOFF power-off A input; VI = 0 V to 3.6 V; leakage current VCC(A) = 0 V; VCC(Y) = 0 V to 3.6 V ∆IOFF ICC supply current VI = GND to VCC(A); VCC(A) = VCC(Y) = 1.1 V to 3.6 V port A; VI = GND or VCC(A); IO = 0 A port Y; VI = GND or VCC(A); IO = 0 A - - 0.9 µA port A and port Y; VI = GND or VCC(A); IO = 0 A; VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 0.9 µA A input; VCC(A) = 3.3 V; VCC(Y) = 0 V to 3.6 V; VI = VCC(A) − 0.6 V - - 50 µA VCC(A) = 1.1 V to 1.95 V; VCC(Y) = 1.1 V to 3.6 V 0.7 × VCC(A) - - V VCC(A) = 2.3 V to 2.7 V; VCC(Y) = 1.1 V to 3.6 V 1.6 - - V VCC(A) = 0 V; VCC(Y) = 3.6 V ∆ICC additional supply current Tamb = −40 °C to +125 °C VIH VIL HIGH-level input voltage LOW-level input voltage VCC(A) = 3.0 V to 3.6 V; VCC(Y) = 1.1 V to 3.6 V 2.0 - - V VCC(A) = 1.1 V to 1.95 V; VCC(Y) = 1.1 V to 3.6 V - - 0.3 × VCC(A) V VCC(A) = 2.3 V to 2.7 V; VCC(Y) = 1.1 V to 3.6 V - - 0.7 V VCC(A) = 3.0 V to 3.6 V; VCC(Y) = 1.1 V to 3.6 V - - 0.9 V 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 6 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer Table 7. Static characteristics …continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V). Symbol Parameter Conditions VOH VI = VIH VOL HIGH-level output voltage LOW-level output voltage Min Unit VCC(Y) − 0.11 - - V IO = −1.1 mA; VCC(A) = VCC(Y) = 1.1 V 0.6 × VCC(Y) - - V IO = −1.7 mA; VCC(A) = VCC(Y) = 1.4 V 0.93 - - V IO = −1.9 mA; VCC(A) = VCC(Y) = 1.65 V 1.17 - - V IO = −2.3 mA; VCC(A) = VCC(Y) = 2.3 V 1.77 - - V IO = −3.1 mA; VCC(A) = VCC(Y) = 2.3 V 1.67 - - V IO = −2.7 mA; VCC(A) = VCC(Y) = 3.0 V 2.40 - - V IO = −4.0 mA; VCC(A) = VCC(Y) = 3.0 V 2.30 - - V V VI = VIL IO = 20 µA; VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 0.11 IO = 1.1 mA; VCC(A) = VCC(Y) = 1.1 V - - 0.33 × VCC(Y) V IO = 1.7 mA; VCC(A) = VCC(Y) = 1.4 V - - 0.41 V IO = 1.9 mA; VCC(A) = VCC(Y) = 1.65 V - - 0.39 V IO = 2.3 mA; VCC(A) = VCC(Y) = 2.3 V - - 0.36 V IO = 3.1 mA; VCC(A) = VCC(Y) = 2.3 V - - 0.50 V IO = 2.7 mA; VCC(A) = VCC(Y) = 3.0 V - - 0.36 V IO = 4.0 mA; VCC(A) = VCC(Y) = 3.0 V - - 0.50 V - - ±0.75 µA - - ±0.75 µA Y output; VO = 0 V to 3.6 V; VCC(A) = 0 V to 3.6 V; VCC(Y) = 0 V - - ±0.75 µA additional A input; VI = 0 V to 3.6 V; power-off VCC(A) = 0 V to 0.2 V; VCC(Y) = 0 V to 3.6 V leakage current Y output; V = 0 V to 3.6 V; V O CC(A) = 0 V to 3.6 V; VCC(Y) = 0 V to 0.2 V - - ±0.75 µA - - ±0.75 µA VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 1.4 µA VCC(A) = 3.6 V; VCC(Y) = 0 V - - 1.4 µA VCC(A) = 0 V; VCC(Y) = 3.6 V - - 0.0 µA VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 1.4 µA VCC(A) = 3.6 V; VCC(Y) = 0 V - - 0.0 µA VCC(A) = 0 V; VCC(Y) = 3.6 V - - 1.4 µA port A and port Y; VI = GND or VCC(A); IO = 0 A; VCC(A) = VCC(Y) = 1.1 V to 3.6 V - - 1.4 µA A input; VCC(A) = 3.3 V; VCC(Y) = 0 V to 3.6 V; VI = VCC(A) − 0.6 V - - 75 µA input leakage current IOFF power-off A input; VI = 0 V to 3.6 V; leakage current VCC(A) = 0 V; VCC(Y) = 0 V to 3.6 V ICC Max IO = −20 µA; VCC(A) = VCC(Y) = 1.1 V to 3.6 V II ∆IOFF Typ supply current VI = GND to VCC(A); VCC(A) = VCC(Y) = 1.1 V to 3.6 V port A; VI = GND or VCC(A); IO = 0 A port Y; VI = GND or VCC(A); IO = 0 A ∆ICC additional supply current 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 7 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer 11. Dynamic characteristics Table 8. Dynamic characteristics Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8. Symbol Parameter 25 °C Conditions −40 °C to +125 °C Unit Min Typ[1] Max Min VCC(Y) = 1.1 V to 1.3 V 2.6 9.8 25.4 2.3 25.9 25.9 ns VCC(Y) = 1.4 V to 1.6 V 2.4 7.1 15.3 2.2 16.3 16.7 ns VCC(Y) = 1.65 V to 1.95 V 2.1 6.0 12.7 1.9 13.8 14.3 ns VCC(Y) = 2.3 V to 2.7 V 2.0 5.1 9.8 2.0 10.5 10.9 ns VCC(Y) = 3.0 V to 3.6 V 2.1 4.7 8.8 1.9 9.1 9.3 ns VCC(Y) = 1.1 V to 1.3 V 2.3 9.1 23.9 2.0 24.5 24.5 ns VCC(Y) = 1.4 V to 1.6 V 2.1 6.4 13.6 1.9 14.7 15.2 ns Max Max (85 °C) (125 °C) CL = 5 pF; VCC(A) = 1.1 V to 1.3 V tpd propagation delay A to Y; see Figure 7 [2] CL = 5 pF; VCC(A) = 1.4 V to 1.6 V tpd propagation delay A to Y; see Figure 7 [2] VCC(Y) = 1.65 V to 1.95 V 1.8 5.3 10.9 1.6 12.1 12.6 ns VCC(Y) = 2.3 V to 2.7 V 1.7 4.3 7.8 1.6 8.7 9.2 ns VCC(Y) = 3.0 V to 3.6 V 1.8 3.9 6.6 1.6 7.1 7.5 ns VCC(Y) = 1.1 V to 1.3 V 2.2 8.8 23.2 1.9 23.9 24.0 ns VCC(Y) = 1.4 V to 1.6 V 2.0 6.0 13.0 1.8 14.1 14.6 ns VCC(Y) = 1.65 V to 1.95 V 1.8 4.9 10.3 1.5 11.4 12.0 ns VCC(Y) = 2.3 V to 2.7 V 1.6 3.9 7.2 1.5 8.0 8.5 ns VCC(Y) = 3.0 V to 3.6 V 1.7 3.5 5.9 1.5 6.4 6.8 ns CL = 5 pF; VCC(A) = 1.65 V to 1.95 V tpd propagation delay A to Y; see Figure 7 [2] CL = 5 pF; VCC(A) = 2.3 V to 2.7 V tpd propagation delay A to Y; see Figure 7 [2] VCC(Y) = 1.1 V to 1.3 V 2.2 8.4 22.8 1.9 23.4 23.4 ns VCC(Y) = 1.4 V to 1.6 V 1.9 5.7 12.3 1.8 13.4 14.0 ns VCC(Y) = 1.65 V to 1.95 V 1.7 4.6 9.6 1.5 10.7 11.2 ns VCC(Y) = 2.3 V to 2.7 V 1.5 3.5 6.3 1.5 7.2 7.7 ns VCC(Y) = 3.0 V to 3.6 V 1.6 3.1 5.1 1.4 5.6 6.0 ns VCC(Y) = 1.1 V to 1.3 V 2.2 8.1 22.5 1.9 22.9 22.9 ns VCC(Y) = 1.4 V to 1.6 V 1.9 5.4 12.0 1.8 12.9 13.4 ns VCC(Y) = 1.65 V to 1.95 V 1.7 4.3 9.2 1.5 10.2 10.7 ns VCC(Y) = 2.3 V to 2.7 V 1.5 3.3 6.0 1.5 6.7 7.2 ns VCC(Y) = 3.0 V to 3.6 V 1.6 2.9 4.8 1.4 5.2 5.5 ns CL = 5 pF; VCC(A) = 3.0 V to 3.6 V tpd propagation delay A to Y; see Figure 7 [2] 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 8 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer Table 8. Dynamic characteristics …continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8. Symbol Parameter 25 °C Conditions −40 °C to +125 °C Unit Min Typ[1] Max Min VCC(Y) = 1.1 V to 1.3 V 2.6 10.7 27.1 2.5 27.6 27.6 ns VCC(Y) = 1.4 V to 1.6 V 2.6 7.7 16.7 2.3 17.5 17.6 ns Max Max (85 °C) (125 °C) CL = 10 pF; VCC(A) = 1.1 V to 1.3 V tpd propagation delay A to Y; see Figure 7 [2] VCC(Y) = 1.65 V to 1.95 V 2.7 6.6 13.4 2.4 14.2 14.7 ns VCC(Y) = 2.3 V to 2.7 V 2.2 5.6 10.3 2.2 11.0 11.4 ns VCC(Y) = 3.0 V to 3.6 V 2.5 5.3 9.5 2.2 9.7 10.0 ns VCC(Y) = 1.1 V to 1.3 V 2.4 10.0 25.6 2.2 26.1 26.1 ns VCC(Y) = 1.4 V to 1.6 V 2.4 7.0 15.0 2.0 15.8 16.4 ns VCC(Y) = 1.65 V to 1.95 V 2.4 5.9 11.6 2.1 12.5 13.1 ns VCC(Y) = 2.3 V to 2.7 V 2.0 4.8 8.4 1.9 9.2 9.7 ns VCC(Y) = 3.0 V to 3.6 V 2.2 4.4 7.4 1.9 7.7 8.1 ns CL = 10 pF; VCC(A) = 1.4 V to 1.6 V tpd propagation delay A to Y; see Figure 7 [2] CL = 10 pF; VCC(A) = 1.65 V to 1.95 V tpd propagation delay A to Y; see Figure 7 VCC(Y) = 1.1 V to 1.3 V 2.3 9.7 24.8 2.1 25.5 25.7 ns VCC(Y) = 1.4 V to 1.6 V 2.3 6.6 14.3 2.0 15.3 15.8 ns VCC(Y) = 1.65 V to 1.95 V 2.3 5.5 11.0 2.0 11.9 12.5 ns VCC(Y) = 2.3 V to 2.7 V 1.9 4.4 7.7 1.8 8.6 9.0 ns VCC(Y) = 3.0 V to 3.6 V 2.1 4.0 6.6 1.8 7.1 7.4 ns VCC(Y) = 1.1 V to 1.3 V 2.3 9.3 24.4 2.1 25.1 25.1 ns VCC(Y) = 1.4 V to 1.6 V 2.2 6.3 13.6 1.9 14.6 15.1 ns VCC(Y) = 1.65 V to 1.95 V 2.2 5.1 10.3 2.0 11.2 11.7 ns VCC(Y) = 2.3 V to 2.7 V 1.8 4.1 6.9 1.8 7.7 8.2 ns VCC(Y) = 3.0 V to 3.6 V 2.0 3.6 5.8 1.7 6.3 6.6 ns VCC(Y) = 1.1 V to 1.3 V 2.3 9.0 24.2 2.1 24.6 24.6 ns VCC(Y) = 1.4 V to 1.6 V 2.2 6.0 13.3 1.9 14.1 14.6 ns CL = 10 pF; VCC(A) = 2.3 V to 2.7 V tpd propagation delay A to Y; see Figure 7 [2] CL = 10 pF; VCC(A) = 3.0 V to 3.6 V tpd propagation delay A to Y; see Figure 7 [2] VCC(Y) = 1.65 V to 1.95 V 2.2 4.9 9.9 2.0 10.6 11.2 ns VCC(Y) = 2.3 V to 2.7 V 1.8 3.9 6.5 1.8 7.3 7.7 ns VCC(Y) = 3.0 V to 3.6 V 2.0 3.5 5.4 1.7 5.8 6.2 ns 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 9 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer Table 8. Dynamic characteristics …continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8. Symbol Parameter 25 °C Conditions −40 °C to +125 °C Unit Min Typ[1] Max Min VCC(Y) = 1.1 V to 1.3 V 3.0 11.5 28.6 2.8 29.2 29.2 ns VCC(Y) = 1.4 V to 1.6 V 3.1 8.3 17.3 2.7 18.6 19.1 ns Max Max (85 °C) (125 °C) CL = 15 pF; VCC(A) = 1.1 V to 1.3 V tpd propagation delay A to Y; see Figure 7 [2] VCC(Y) = 1.65 V to 1.95 V 2.8 7.1 14.1 2.7 15.2 15.8 ns VCC(Y) = 2.3 V to 2.7 V 2.6 6.1 11.1 2.7 11.6 12.1 ns VCC(Y) = 3.0 V to 3.6 V 2.9 5.7 9.9 2.6 10.3 10.6 ns VCC(Y) = 1.1 V to 1.3 V 2.8 10.8 27.1 2.6 27.7 27.7 ns VCC(Y) = 1.4 V to 1.6 V 2.8 7.6 15.7 2.4 17.0 17.6 ns VCC(Y) = 1.65 V to 1.95 V 2.5 6.3 12.3 2.4 13.5 14.1 ns VCC(Y) = 2.3 V to 2.7 V 2.3 5.3 9.2 2.4 9.9 10.3 ns VCC(Y) = 3.0 V to 3.6 V 2.6 4.9 7.8 2.3 8.3 8.7 ns CL = 15 pF; VCC(A) = 1.4 V to 1.6 V tpd propagation delay A to Y; see Figure 7 [2] CL = 15 pF; VCC(A) = 1.65 V to 1.95 V tpd propagation delay A to Y; see Figure 7 [2] VCC(Y) = 1.1 V to 1.3 V 2.7 10.5 26.4 2.5 27.1 27.3 ns VCC(Y) = 1.4 V to 1.6 V 2.7 7.2 15.0 2.3 16.4 17.0 ns VCC(Y) = 1.65 V to 1.95 V 2.4 6.0 11.7 2.3 12.8 13.5 ns VCC(Y) = 2.3 V to 2.7 V 2.2 4.9 8.5 2.2 9.2 9.7 ns VCC(Y) = 3.0 V to 3.6 V 2.5 4.5 7.1 2.2 7.7 8.0 ns VCC(Y) = 1.1 V to 1.3 V 2.6 10.1 26.0 2.4 26.7 26.7 ns VCC(Y) = 1.4 V to 1.6 V 2.7 6.9 14.3 2.3 15.7 16.3 ns VCC(Y) = 1.65 V to 1.95 V 2.4 5.6 10.9 2.2 12.1 12.7 ns VCC(Y) = 2.3 V to 2.7 V 2.1 4.5 7.6 2.2 8.4 8.9 ns VCC(Y) = 3.0 V to 3.6 V 2.4 4.1 6.2 2.1 6.8 7.2 ns VCC(Y) = 1.1 V to 1.3 V 2.6 9.8 25.7 2.4 26.2 26.2 ns VCC(Y) = 1.4 V to 1.6 V 2.7 6.6 14.0 2.3 15.2 15.7 ns CL = 15 pF; VCC(A) = 2.3 V to 2.7 V tpd propagation delay A to Y; see Figure 7 [2] CL = 15 pF; VCC(A) = 3.0 V to 3.6 V tpd propagation delay A to Y; see Figure 7 [2] VCC(Y) = 1.65 V to 1.95 V 2.4 5.4 10.5 2.2 11.6 12.1 ns VCC(Y) = 2.3 V to 2.7 V 2.1 4.3 7.3 2.2 7.9 8.4 ns VCC(Y) = 3.0 V to 3.6 V 2.4 3.9 5.9 2.1 6.4 6.8 ns 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 10 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer Table 8. Dynamic characteristics …continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8. Symbol Parameter 25 °C Conditions −40 °C to +125 °C Unit Min Typ[1] Max Min VCC(Y) = 1.1 V to 1.3 V 3.7 13.7 32.9 3.5 33.5 33.5 ns VCC(Y) = 1.4 V to 1.6 V 3.6 9.8 19.5 3.6 20.9 21.4 ns Max Max (85 °C) (125 °C) CL = 30 pF; VCC(A) = 1.1 V to 1.3 V tpd propagation delay A to Y; see Figure 7 [2] VCC(Y) = 1.65 V to 1.95 V 3.7 8.4 15.9 3.5 17.0 17.7 ns VCC(Y) = 2.3 V to 2.7 V 3.0 7.2 12.2 3.4 12.7 13.2 ns VCC(Y) = 3.0 V to 3.6 V 3.8 6.8 10.9 3.4 12.2 12.5 ns VCC(Y) = 1.1 V to 1.3 V 3.5 13.1 31.5 3.2 32.0 32.0 ns VCC(Y) = 1.4 V to 1.6 V 3.3 9.1 17.8 3.3 19.2 19.9 ns VCC(Y) = 1.65 V to 1.95 V 3.4 7.6 14.2 3.2 15.4 16.0 ns VCC(Y) = 2.3 V to 2.7 V 2.8 6.4 10.3 3.1 11.0 11.5 ns VCC(Y) = 3.0 V to 3.6 V 3.5 5.9 8.9 3.1 10.1 10.5 ns CL = 30 pF; VCC(A) = 1.4 V to 1.6 V tpd propagation delay A to Y; see Figure 7 [2] CL = 30 pF; VCC(A) = 1.65 V to 1.95 V tpd propagation delay A to Y; see Figure 7 [2] VCC(Y) = 1.1 V to 1.3 V 3.4 12.7 30.7 3.1 31.5 31.5 ns VCC(Y) = 1.4 V to 1.6 V 3.2 8.8 17.2 3.2 18.7 19.3 ns VCC(Y) = 1.65 V to 1.95 V 3.3 7.3 13.5 3.1 14.7 15.4 ns VCC(Y) = 2.3 V to 2.7 V 2.7 6.0 9.6 3.0 10.4 10.9 ns VCC(Y) = 3.0 V to 3.6 V 3.4 5.6 8.2 2.9 9.4 9.8 ns VCC(Y) = 1.1 V to 1.3 V 3.3 12.4 30.3 3.1 31.0 31.0 ns VCC(Y) = 1.4 V to 1.6 V 3.2 8.4 16.5 3.1 18.0 18.7 ns VCC(Y) = 1.65 V to 1.95 V 3.2 6.9 12.8 3.0 14.0 14.6 ns VCC(Y) = 2.3 V to 2.7 V 2.6 5.6 8.8 2.9 9.6 10.1 ns VCC(Y) = 3.0 V to 3.6 V 3.3 5.2 7.3 2.9 8.5 9.0 ns VCC(Y) = 1.1 V to 1.3 V 3.3 12.0 30.0 3.1 30.5 30.5 ns VCC(Y) = 1.4 V to 1.6 V 3.2 8.1 16.2 3.1 17.5 18.1 ns CL = 30 pF; VCC(A) = 2.3 V to 2.7 V tpd propagation delay A to Y; see Figure 7 [2] CL = 30 pF; VCC(A) = 3.0 V to 3.6 V tpd propagation delay A to Y; see Figure 7 [2] VCC(Y) = 1.65 V to 1.95 V 3.2 6.7 12.4 3.0 13.4 14.1 ns VCC(Y) = 2.3 V to 2.7 V 2.6 5.5 8.5 2.9 9.1 9.6 ns VCC(Y) = 3.0 V to 3.6 V 3.2 5.0 7.0 2.9 8.1 8.5 ns 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 11 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer Table 8. Dynamic characteristics …continued Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8. Symbol Parameter 25 °C Conditions −40 °C to +125 °C Unit Min Typ[1] Max Min VCC(A) = VCC(Y) = 1.2 V - 3.8 - - - - pF VCC(A) = VCC(Y) = 1.5 V - 3.8 - - - - pF VCC(A) = VCC(Y) = 1.8 V - 4.1 - - - - pF VCC(A) = VCC(Y) = 2.5 V - 4.2 - - - - pF VCC(A) = VCC(Y) = 3.3 V - 4.6 - - - - pF Max Max (85 °C) (125 °C) CL = 5 pF, 10 pF, 15 pF and 30 pF power dissipation capacitance CPD [3][4] fi = 1 MHz; VI = GND to VCC(A) [1] All typical values are measured at nominal VCC. [2] tpd is the same as tPLH and tPHL. [3] All specified values are the average typical values over all stated loads. [4] CPD is used to determine the dynamic power dissipation (PD in µW). PD = CPD × VCC2 × fi × N + Σ(CL × VCC2 × fo) where: fi = input frequency in MHz; fo = output frequency in MHz; CL = output load capacitance in pF; VCC = supply voltage in V; N = number of inputs switching; Σ(CL × VCC2 × fo) = sum of the outputs. 12. Waveforms VI VM A input GND t PHL t PLH VOH VM Y output VOL mnb153 Measurement points are given in Table 9. Logic levels: VOL and VOH are typical output voltage drop that occur with the output load. Fig 7. The data input (A) to output (Y) propagation delays Table 9. Measurement points Supply voltage Output Input VCC(A) / VCC(Y) VM VM VI tr = tf 1.1 V to 3.6 V 0.5 × VCC(Y) 0.5 × VCC(A) VCC(A) ≤ 3.0 ns 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 12 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer VCCA VCCY VEXT 5 kΩ PULSE GENERATOR VI VO DUT RT CL RL 001aad742 Test data is given in Table 10. Definitions for test circuit: RL = Load resistance. CL = Load capacitance including jig and probe capacitance. RT = Termination resistance should be equal to the output impedance Zo of the pulse generator. VEXT = External voltage for measuring switching times. Fig 8. Load circuitry for switching times Table 10. Test data Supply voltage Load VEXT [1] VCC(A) / VCC(Y) CL RL 1.1 V to 3.6 V 5 pF, 10 pF, 15 pF and 30 pF 5 kΩ or 1 MΩ [1] tPLH, tPHL open For measuring enable and disable times RL = 5 kΩ, for measuring propagation delays, setup and hold times and pulse width RL = 1 MΩ. 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 13 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer 13. Package outline TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm E D SOT353-1 A X c y HE v M A Z 5 4 A2 A (A3) A1 θ 1 Lp 3 L e w M bp detail X e1 0 1.5 3 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D(1) E(1) e e1 HE L Lp v w y Z(1) θ mm 1.1 0.1 0 1.0 0.8 0.15 0.30 0.15 0.25 0.08 2.25 1.85 1.35 1.15 0.65 1.3 2.25 2.0 0.425 0.46 0.21 0.3 0.1 0.1 0.60 0.15 7° 0° Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. OUTLINE VERSION SOT353-1 REFERENCES IEC JEDEC JEITA MO-203 SC-88A EUROPEAN PROJECTION ISSUE DATE 00-09-01 03-02-19 Fig 9. Package outline SOT353-1 (TSSOP5) 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 14 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm SOT886 b 1 2 3 4× (2) L L1 e 6 5 e1 4 e1 6× A (2) A1 D E terminal 1 index area 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A (1) max A1 max b D E e e1 L L1 mm 0.5 0.04 0.25 0.17 1.5 1.4 1.05 0.95 0.6 0.5 0.35 0.27 0.40 0.32 Notes 1. Including plating thickness. 2. Can be visible in some manufacturing processes. OUTLINE VERSION SOT886 REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 04-07-15 04-07-22 MO-252 Fig 10. Package outline SOT886 (XSON6) 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 15 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1 x 0.5 mm 1 SOT891 b 3 2 L L1 e 6 5 4 e1 e1 A A1 D E terminal 1 index area 0 1 2 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max A1 max b D E e e1 L L1 mm 0.5 0.04 0.20 0.12 1.05 0.95 1.05 0.95 0.55 0.35 0.35 0.27 0.40 0.32 OUTLINE VERSION REFERENCES IEC JEDEC JEITA EUROPEAN PROJECTION ISSUE DATE 05-03-11 05-04-06 SOT891 Fig 11. Package outline SOT891 (XSON6) 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 16 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer 14. Abbreviations Table 11. Abbreviations Acronym Description CDM Charged Device Model CMOS Complementary Metal Oxide Semiconductor DUT Device Under Test ESD ElectroStatic Discharge HBM Human Body Model MM Machine Model TTL Transistor-Transistor Logic 15. Revision history Table 12. Revision history Document ID Release date Data sheet status Change notice Supersedes 74AUP1T34_1 20061204 Product data sheet - - 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 17 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer 16. Legal information 16.1 Data sheet status Document status[1][2] Product status[3] Definition Objective [short] data sheet Development This document contains data from the objective specification for product development. Preliminary [short] data sheet Qualification This document contains data from the preliminary specification. Product [short] data sheet Production This document contains the product specification. [1] Please consult the most recently issued document before initiating or completing a design. [2] The term ‘short data sheet’ is explained in section “Definitions”. [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com. 16.2 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail. 16.3 Disclaimers General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability. Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail. No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights. 16.4 Trademarks Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners. 17. Contact information For additional information, please visit: http://www.nxp.com For sales office addresses, send an email to: [email protected] 74AUP1T34_1 Product data sheet © NXP B.V. 2006. All rights reserved. Rev. 01 — 4 December 2006 18 of 19 74AUP1T34 NXP Semiconductors Low-power dual supply translating buffer 18. Contents 1 2 3 4 5 6 6.1 6.2 7 8 9 10 11 12 13 14 15 16 16.1 16.2 16.3 16.4 17 18 General description . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ordering information . . . . . . . . . . . . . . . . . . . . . 2 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Functional diagram . . . . . . . . . . . . . . . . . . . . . . 2 Pinning information . . . . . . . . . . . . . . . . . . . . . . 2 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3 Functional description . . . . . . . . . . . . . . . . . . . 3 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 3 Recommended operating conditions. . . . . . . . 4 Static characteristics. . . . . . . . . . . . . . . . . . . . . 4 Dynamic characteristics . . . . . . . . . . . . . . . . . . 8 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 14 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Revision history . . . . . . . . . . . . . . . . . . . . . . . . 17 Legal information. . . . . . . . . . . . . . . . . . . . . . . 18 Data sheet status . . . . . . . . . . . . . . . . . . . . . . 18 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Contact information. . . . . . . . . . . . . . . . . . . . . 18 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Please be aware that important notices concerning this document and the product(s) described herein, have been included in section ‘Legal information’. © NXP B.V. 2006. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] Date of release: 4 December 2006 Document identifier: 74AUP1T34_1