PHILIPS 74HCT5555D

INTEGRATED CIRCUITS
DATA SHEET
For a complete data sheet, please also download:
• The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
• The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
• The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
74HC/HCT5555
Programmable delay timer with
oscillator
Product specification
File under Integrated Circuits, IC06
September 1993
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
FEATURES
GENERAL DESCRIPTION
• Positive and negative edge
triggered
The 74HC/HCT5555 are high-speed
Si-gate CMOS devices and are pin
compatible with low power Schottky
TTL (LSTTL). They are specified in
compliance with JEDEC standard
no. 7A.
• Retriggerable or non-retriggerable
• Programmable delay
minimum: 100 ns
maximum: depends on input
frequency and division ratio
• Divide-by range of 2 to 224
• Direct reset terminates output
pulse
• Very low power consumption in
triggered start mode
• retriggerable/non-retriggerable
monostable
• automatic power-ON reset
• output control logic
• oscillator control logic
• overriding asynchronous master
reset (MR).
The 74HC/HCT5555 are precision
programmable delay timers which
consist of:
• 24-stage binary counter
• integrated oscillator (using external
timing components)
• 3 oscillator operating modes:
– RC oscillator
– Crystal oscillator
– External oscillator
• Device is unaffected by variations
in temperature and VCC when using
an external oscillator
QUICK REFERENCE DATA
GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns.
SYMBOL
tPHL/tPLH
• Direct drive for a power transistor
• Low power consumption in active
mode with respect to TTL type
timers
CONDITIONS
propagation delay
CL = 15 pF;
VCC = 5 V
A, B to Q/Q
• Automatic power-ON reset
• Schmitt trigger action on both
trigger inputs
PARAMETER
TYP.
24
UNIT
24
ns
MR to Q/Q
19
20
ns
RS to Q/Q
26
28
ns
3.5
3.5
pF
23
36
pF
CI
input capacitance
CPD
power dissipation
capacitance per buffer
notes 1 and 2
Notes
1. CPD is used to determine the dynamic power dissipation (PD in µW):
• High precision due to digital timing
PD = CPD x VCC2 x fi + Σ(CL x VCC2 x fo) where:
• Output capability: 20 mA
fi = input frequency in MHz
• ICC category: MSI.
fo = output frequency in MHz
Σ(CL x VCC2 x fo) = sum of outputs.
APPLICATIONS
CL = output load capacitance in pF
• Motor control
VCC = supply voltage in V
• Attic fan timers
• Delay circuits
• Automotive applications
• Precision timing
• Domestic appliances.
September 1993
2. For HC the condition is VI = GND to VCC
For HCT the condition is VI = GND to VCC − 1.5 V.
ORDERING INFORMATION
EXTENDED TYPE
NUMBER
PACKAGE
PINS
PIN POSITION
MATERIAL
CODE
74HC/HCT5555N
16
DIL
plastic
SOT38Z
74HC/HCT5555D
16
SO16
plastic
SOT109A
2
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
PINNING
SYMBOL
PIN
DESCRIPTION
RS
1
clock input/oscillator pin
RTC
2
external resistor connection
CTC
3
external capacitor connection
A
4
trigger input (positive-edge
triggered)
B
5
trigger input (negative-edge
triggered)
RTR/RTR
6
retriggerable/non-retriggerable
input (active HIGH/active LOW)
Q
7
pulse output (active LOW)
GND
8
ground (0 V)
Q
9
pulse output (active HIGH)
S 0 − S3
10, 11,
12, 13
programmable input
OSC CON
14
oscillator control
MR
15
master reset input (active
HIGH)
VCC
16
positive supply voltage
handbook, halfpage
X/Y
10
0
1
2
11
12
13
4
8
2
15
RX
CX
3
14
handbook, halfpage
CTRDIVm
[T]
Y=0
Y = 15
+
&
4
1
5
CT = 0
CT = m
R
S
I=0
15
V16
9
7
R
R
MGA643
Fig.2 IEC logic diagram.
September 1993
16
R TC
2
15 MR
C TC
3
OSC
14 CON
A
4
13 S 3
5555
B
5
RTR/
RTR
6
11 S1
Q
7
10 S 0
GND
8
9
12 S2
Q
Fig.1 Pin configuration.
!G
6
1
MGA642
16G17
17
1
VCC
RS
3
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
handbook, full pagewidth
1 RS
74HC/HCT5555
2
3
10
11
12
13
R TC
C TC
S0
S1
S2
S3
CP
24 - STAGE COUNTER
CD
OSC
14 CON
POWER-ON
RESET
15 MR
4 A
5 B
MONOSTABLE
CIRCUITRY
Q 9
OUTPUT
STAGE
Q 7
6 RTR/RTR
MGA644
Fig.3 Functional diagram.
FUNCTIONAL DESCRIPTION
The oscillator configuration allows the
design of RC or crystal oscillator
circuits. The device can operate from
an external clock signal applied to the
RS input (RTC and CTC must not be
connected). The oscillator frequency
is determined by the external timing
components (RT and CT), within the
frequency range 1 Hz to 4 MHz
(32 kHz to 20 MHz with crystal
oscillator).
In the HCT version the MR input is
TTL compatible but the RS input has
CMOS input switching levels. The RS
input can be driven by TTL input
levels if RS is tied to VCC via a pull-up
resistor.
The counter divides the frequency to
obtain a long pulse duration. The
24-stage is digitally programmed via
the select inputs (S0 to S3). Pin S3 can
also be used to select the test mode,
which is a convenient way of
functionally testing the counter.
The “5555” is triggered on either the
positive-edge, negative-edge or both.
• Trigger pulse applied to input A for
positive-edge triggering
September 1993
• Trigger pulse applied input B for
negative-edge triggering
• Trigger pulse applied to inputs A
and B (tied together) for both
positive-edge and negative
triggering.
The Schmitt trigger action in the
trigger inputs, transforms slowly
changing input signals into sharply
defined jitter-free output signals and
provides the circuit with excellent
noise immunity.
The OSC CON input is used to select
the oscillator mode, either
continuously running (OSC CON =
HIGH) or triggered start mode (OSC
CON = LOW). The continuously
running mode is selected where a
start-up delay is an undesirable
feature and the triggered start mode
is selected where very low power
consumption is the primary concern.
The start of the programmed time
delay occurs when output Q goes
HIGH (in the triggered start mode, the
previously disabled oscillator will
start-up). After the programmed time
delay, the flip-flop stages are reset
and the output returns to its original
state.
4
An internal power-on reset is used to
reset all flip-flop stages.
The output pulse can be terminated
by the asynchronous overriding
master reset (MR), this results in all
flip-flop stages being reset. The
output signal is capable of driving a
power transistor. The output time
delay is calculated using the following
formula (minimum time delay is
100 ns):
1
--- × division ratio (s).
fi
Once triggered, the output width may
be extended by retriggering the
gated, active HIGH-going input A or
the active LOW-going input B. By
repeating this process, the output
pulse period (Q = HIGH, Q = LOW)
can be made as long as desired. This
mode is selected by RTR/RTR =
HIGH. A LOW on RTR/RTR makes,
once triggered, the outputs (Q, Q)
independent of further transitions of
inputs A and B.
September 1993
S0
S1
S2
S3
OSC
CON
RS
R TC
C TC
5
B
A
ndbook, full pagewidth
CP
CD
Fig.4 Logic diagram.
Q
CD
CP Q
CD
CP Q
CP Q
CD
CD
CP Q
CD
CP Q
CP Q
CD
CD
CP Q
CD
CP Q
CP Q
CD
CD
CP Q
CD
CP Q
CP Q
CD
Q
Q
CD
CP Q
CD
CP Q
CP Q
CD
CD
CP Q
CD
CP Q
CP Q
CD
MGA655
CD
CP Q
CD
CP Q
CP Q
CD
Programmable delay timer with oscillator
RTR/RTR
MR
VCC
CD
CP Q
CD
CP Q
CP Q
CD
Philips Semiconductors
Product specification
74HC/HCT5555
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
TEST MODE
Set S3 to a logic LOW level, this will divide the 24 stage counter into three, parallel clocking, 8-stage counters. Set S0,
S1 and S2 to a logic HIGH level, this programs the counter to divide-by 28 (256). Apply a trigger pulse and clock in 255
pulses, this sets all flip-flop stages to a logic HIGH level. Set S3 to a logic HIGH level, this causes the counter to divide-by
224. Clock one more pulse into the RS input, this causes a logic 0 to ripple through the counter and output Q/Q goes from
HIGH-to-LOW level. This method of testing the delay counter is faster than clocking in 224 (16 777 216) clock pulses.
FUNCTION TABLE
INPUTS
OUTPUTS
B
Q
Q
MR
A
H
X
X
L
H
L
↑
X
one HIGH level
output pulse
one LOW level
output pulse
L
X
↓
one HIGH level
output pulse
one LOW level
output pulse
Notes
1. H = HIGH voltage level
L = LOW voltage level
X = don't care
↑ = LOW-to-HIGH transition
↓ = HIGH-to-LOW transition.
September 1993
6
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
DELAY TIME SELECTION
SELECT INPUTS
S3
S2
L
OUTPUT Q/Q (FREQUENCY DIVIDING)
S1
L
S0
L
BINARY
DECIMAL
L
21
2
4
L
L
L
H
22
L
L
H
L
23
8
H
24
16
32
L
L
H
L
H
L
L
25
L
H
L
H
26
64
L
27
128
256
L
H
H
L
H
H
H
28
.
.
.
.
.
.
L
217
131 072
H
218
262 144
524 288
H
L
H
L
L
L
H
L
H
L
219
H
L
H
H
220
1 048 576
L
221
2 097 152
4 194 304
H
H
L
H
H
L
H
222
H
H
H
L
223
8 388 608
H
224
16 777 216
H
H
H
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
handbook, full
pagewidth
RS
MR
A
Q
MGA649
Timing example shown for S3, S2, S1, S0 = 0011 (binary 24, decimal 16).
Fig.5 Timing diagram.
September 1993
7
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
DC CHARACTERISTICS FOR 74HC
For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”.
Output capability: parallel outputs, bus driver; serial output, standard ICC category: MSI.
DC CHARACTERISTICS FOR 74HC
Tamb (°C)
SYMBOL
TEST CONDITION
+25
−40 to +85
−40 to +125
MIN TYP MAX
MIN MAX
MIN
PARAMETER
−
−
−
UNIT
MAX
VCC
(V)
VI
OTHER
−
−
−
1.9
4.4
5.9
−
−
−
V
V
V
2.0
4.5
6.0
Io = −20 µA
3.84 −
5.34 −
3.7
5.2
−
−
V
V
4.5
6.0
Io = −6.0 mA
Io = −7.8 mA
3
4.5
−
−
2.7
4.2
−
−
V
V
4.5
6.0
Io = −20 mA
Io = −20 mA
−
−
−
0.1
0.1
0.1
−
−
−
0.1
0.1
0.1
V
V
V
2.0
4.5
6.0
Io = 20 µA
0.15 0.26
0.15 0.26
−
−
0.33
0.33
−
−
0.40
0.40
V
V
4.5
6.0
Io = 6.0 mA
Io = 7.8 mA
−
−
−
−
0.9
0.9
−
−
1.14
1.14
−
−
1.34
1.34
V
V
4.5
6.0
Io = 20 mA
Io = 25 mA
HIGH level
input voltage
RS input
1.7
3.6
4.8
−
−
−
−
−
−
1.7
3.6
4.8
−
−
−
1.7
3.6
4.8
−
−
−
V
V
V
2
4.5
6.0
LOW level
input voltage
RS input
−
−
−
−
−
−
0.3
0.9
1.2
−
−
−
0.3
0.9
1.2
−
−
−
0.3
0.9
1.2
V
V
V
2.0
4.5
6.0
VOH
HIGH level
output voltage
Q and Q
outputs
1.9
4.4
5.9
VOH
HIGH level
output voltage
Q and Q
outputs
3.98 4.32 −
5.48 5.81 −
VOH
HIGH level
output voltage
Q and Q
outputs
3.3
4.8
−
−
−
−
VOL
LOW level
output voltage
Q and Q
outputs
−
−
−
0
0
0
0.1
0.1
0.1
VOL
LOW level
output voltage
Q and Q
outputs
−
−
VOL
LOW level
output voltage
Q and Q
outputs
VIH
VIL
September 1993
2
4.5
6.0
1.9
4.4
5.9
8
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
Tamb (°C)
SYMBOL
VOH
+25
−40 to +85
−40 to +125
MIN TYP MAX
MIN MAX
MIN
3.98 −
5.48 −
−
−
3.84 −
5.34 −
3.7
5.2
−
−
V
V
4.5
6.0
RS = GND;
OSC CON
= VCC
Io = −2.6 mA
Io = −3.3 mA
3.98 −
5.48 −
−
−
3.84 −
5.34 −
3.7
5.2
−
−
V
V
4.5
6.0
RS = VCC;
OSC CON
= GND;
untriggered
Io = −0.65 mA
Io = −0.85 mA
1.9
4.4
5.9
2.0
4.5
6
−
−
−
1.9
4.4
5.9
−
−
−
1.9
4.4
5.9
−
−
−
V
V
V
2.0
4.5
6.0
RS = VCC;
OSC CON
= VCC
Io = −20 µA
1.9
4.4
5.9
2.0
4.5
6.0
−
−
−
1.9
4.4
5.9
−
−
−
1.9
4.4
5.9
−
−
−
V
V
V
2
4.5
6.0
RS = VCC;
OSC CON
= GND;
untriggered
Io = −20 µA
PARAMETER
HIGH level
output voltage
RTC output
TEST CONDITION
UNIT
MAX
VCC
(V)
VI
OTHER
VOH
HIGH level
output voltage
CTC output
3.98 −
5.48 −
−
−
3.84 −
5.34 −
3.7
5.2
−
−
V
V
4.5
6.0
RS = VIH;
OSC CON
= VIH
Io = −3.2 mA
Io = −4.2 mA
VOL
LOW level
output voltage
RTC output
−
−
−
−
0.26
0.26
−
−
0.33
0.33
−
−
0.4
0.4
V
V
4.5
6
RS = VCC;
OSC CON
= VCC
Io = 2.6 mA Io
= 3.3 mA
−
−
−
0
0
0
0.1
0.1
0.1
−
−
−
0.1
0.1
0.1
−
−
−
0.1
0.1
0.1
V
V
V
2.0
4.5
6
RS = VCC;
OSC CON
= VCC
Io = 20 µA
−
−
−
−
0.26
0.26
−
−
0.33
0.33
−
−
0.4
0.4
V
V
4.5
6.0
RS = VIL;
OSC CON
= VIL;
untriggered
Io = 3.2 mA Io
= 4.2 mA
VOL
LOW level
output voltage
CTC output
September 1993
9
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
AC CHARACTERISTICS FOR 74HC
GND = 0 V; tr = tf = 6 ns; CL = 50 pF.
Tamb (°C)
SYMBOL
+25
PARAMETER
MIN
TYP
MAX
TEST CONDITION
−40 to +85
−40 to +125
MIN
MIN
MAX
UNIT
MAX
VCC
(V)
WAVEFORMS
tPLH/tPHL
propagation
delay A, B to
Q, Q
−
−
−
77
28
22
240
48
41
−
−
−
300
60
51
−
−
−
360
72
61
ns
ns
ns
2.0
4.5
6.0
Fig.6
tPLH/tPHL
propagation
delay MR to Q,
Q
−
−
−
61
22
18
185
37
31
−
−
−
230
46
39
−
−
−
280
56
48
ns
ns
ns
2.0
4.5
6.0
Fig.7
tPLH/tPHL
propagation
delay RS to Q,
Q
−
−
−
83
30
24
250
50
43
−
−
−
315
63
54
−
−
−
375
75
64
ns
ns
ns
2.0
4.5
6.0
Fig.8; note 1
tTHL/tTLH
output
transition time
−
−
−
19
7
6
75
15
13
−
−
−
95
19
16
−
−
−
110
22
19
ns
ns
ns
2.0
4.5
6.0
Fig.6
tW
trigger pulse
width
A = HIGH
70
14
12
17
6
5
−
−
−
90
18
15
−
−
−
105
21
18
−
−
−
ns
ns
ns
2.0
4.5
6.0
Fig.6
B = LOW
tW
master reset
pulse width
HIGH
70
14
12
19
7
6
−
−
−
90
18
15
−
105
21
18
−
−
−
ns
ns
ns
2.0
4.5
6.0
Fig.7
tW
clock pulse
width RS;
HIGH or LOW
80
16
14
25
9
7
−
−
−
100
20
17
−
−
−
120
24
20
−
−
−
ns
ns
ns
2.0
4.5
6.0
Fig.8
tW
minimum
output pulse
width
Q = HIGH,
Q = LOW
−
−
−
275
100
80
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
ns
ns
ns
2.0
4.5
6.0
Fig.6; note 1
trt
retrigger time
A, B
−
−
−
0
0
0
−
−
−
−
−
−
−
−
−
−
−
−
−
−
−
ns
ns
ns
2.0
4.5
6.0
Fig.10; note 2
REXT
external timing
resistor
5
1
−
−
1000
1000
−
−
−
−
−
−
−
−
−
−
kΩ
kΩ
2.0
5.0
Fig.13
CEXT
external timing
capacitor
50
50
pF
pF
2.0
5.0
Fig.13
trem
removal time
MR to A, B
120
24
20
ns
ns
ns
2.0
4.5
6.0
Fig.7
September 1993
no limits
39
14
11
−
−
−
−
−
−
150
30
26
10
180
36
31
−
−
−
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
Tamb (°C)
SYMBOL
+25
PARAMETER
MIN
TYP
MAX
TEST CONDITION
−40 to +85
−40 to +125
MIN
MIN
MAX
UNIT
MAX
VCC
(V)
WAVEFORMS
fmax
maximum
clock pulse
frequency
2
10
12
5.9
18
21
−
−
−
1.8
8
10
−
−
−
1.3
6.6
8
−
−
−
MHz
MHz
MHz
2.0
4.5
6.0
Fig.8; note 3
fmax
maximum
clock pulse
frequency
6
30
35
24.8
75
89
−
−
−
4.8
24
28
−
−
−
4
20
24
−
−
−
MHz
MHz
MHz
2.0
4.5
6.0
Fig.9; note 4
Notes
1. One stage selected.
2. It is possible to retrigger directly after the trigger pulse, however the pulse will only be extended, if the time period
exceeds the clock input cycle time divided by 2.
3. One stage selected. The termination of the output pulse remains synchronized with respect to the falling edge of the
RS clock input.
4. One stage selected. The termination of the output pulse is no longer synchronized with respect to the falling edge of
the RS clock input.
September 1993
11
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
DC CHARACTERISTICS FOR 74HCT
For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”.
Output capability: non-standard; bus driver with extended specification on VOH and VOL
ICC category: MSI.
Tamb (°C)
+25
SYMBOL PARAMETER
TEST CONDITION
−40 to +85
MIN
UNIT V
CC
(V)
MAX
−
4.4
−
V
4.5
Io = −20 µA
3.84 −
3.7
−
V
4.5
Io = −6 mA
MIN TYP MAX MIN MAX
−
OTHER
HIGH level
output voltage
Q and Q
outputs
4.4
VOH
HIGH level
output voltage
Q and Q
outputs
3.98 4.32 −
VOH
HIGH level
output voltage
Q and Q
outputs
3.3
−
−
3
−
2.7
−
V
4.5
Io = −20 mA
VOL
LOW level
output voltage
Q and Q
outputs
−
0
0.1
−
0.1
−
0.1
V
4.5
Io = 20 µA
VOL
LOW level
output voltage
Q and Q
outputs
−
0.15 0.26
−
0.33
−
0.40
V
4.5
Io = 6 mA
VOL
LOW level
output voltage
Q and Q
outputs
−
−
−
1.14
−
1.34
V
4.5
0.9
4.4
VI
VOH
September 1993
4.5
−0 to +125
12
−
Io = 20 mA
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
Tamb (°C)
+25
SYMBOL PARAMETER
VOH
HIGH level
output
voltage RTC
output
VOH
HIGH level
output
voltage CTC
output
VOL
LOW level
output
voltage RTC
output
VOL
LOW level
output
voltage CTC
output
TEST CONDITION
−40 to +85
−0 to +125
MIN TYP MAX MIN MAX
MIN
UNIT V
CC
(V)
MAX
3.98 −
−
3.84 −
3.7
−
V
3.98 −
−
3.84 −
3.7
−
4.4
4.5
−
4.4
−
4.4
4.4
4.5
−
4.4
−
3.98 −
−
−
−
−
0
−
−
VI
OTHER
4.5
RS = GND;
OSC CON
= VCC
Io = −2.6 mA
V
4.5
RS = VCC;
OSC CON
= GND;
untriggered
Io =
−0.65 mA
−
V
4.5
RS = VCC;
OSC CON
= VCC
Io = −20 µA
4.4
−
V
4.5
RS = VCC;
OSC CON
= GND;
untriggered
Io = −20 µA
3.84 −
3.7
−
V
4.5
RS = VIH;
OSC CON
= VIH
Io = −3.2 mA
0.26
−
0.33
−
0.4
V
4.5
RS = VCC;
OSC CON
= VCC
Io = 2.6 mA
0.1
−
0.1
−
0.1
V
4.5
RS = VCC;
OSC CON
= VCC
Io = 20 µA
4.5
RS = VIL;
OSC CON
= VIL;
untriggered
Io = 3.2 mA
0.26
−
0.33
−
0.4
V
Notes
1. The RS input has CMOS input switching levels.
2. The value of additional quiescent supply current (∆ICC) for a unit load of 1 is given in the family specifications. To
determine ∆ICC per input, multiply this value by the unit load coefficient shown in the following table.
UNIT LOAD COEFFICIENT
September 1993
INPUT
UNIT LOAD COEFFICIENT
MR
0.35
A
0.69
B
0.50
RTR/RTR
0.35
OSC CON
1.20
S0 - S2
0.65
S3
0.40
13
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
AC CHARACTERISTICS FOR 74HCT
GND = 0 V; tr = tf = 6 ns; CL = 50 pF.
Tamb (°C)
SYMBOL
+25
PARAMETER
MIN
TYP
MAX
TEST CONDITION
−40 to +85
−40 to +125
MIN
MIN
MAX
UNIT
MAX
VCC
(V)
WAVEFORMS
tPLH/tPHL
propagation
delay A, B to
Q, Q
−
28
48
−
60
−
72
ns
4.5
Fig.6
tPHL/tPLH
propagation
delay MR to Q,
Q
−
24
41
−
51
−
62
ns
4.5
Fig.7
tPHL/tPLH
propagation
delay RS to Q,
Q
−
32
54
−
68
−
81
ns
4.5
Fig.8; note 1
tTHL/tTLH
output
transition time
−
7
15
−
19
−
22
ns
4.5
Fig.6
tW
trigger pulse
width
A = HIGH
B = LOW
21
12
−
26
−
32
−
ns
4.5
Fig.6
tW
master reset
pulse width
HIGH
14
5
−
18
−
21
−
ns
4.5
Fig.7
tW
clock pulse
width RS;
HIGH or LOW
16
9
−
20
−
24
−
ns
4.5
Fig.8
tW
minimum
output pulse
width
Q = HIGH,
Q = LOW
−
100
−
−
−
−
−
ns
4.5
Fig.6
trt
retrigger time
A, B
−
0
−
−
−
−
−
ns
4.5
Fig.10; note 2
REXT
external timing
resistor
1
−
1000
−
−
−
−
kΩ
4.5
Fig.13
CEXT
external timing
capacitor
50
pF
4.5
Fig.13
trem
removal time
MR to A, B
24
14
−
30
−
36
−
ns
4.5
Fig.7
fmax
maximum
clock pulse
frequency
10
18
−
8
−
6.6
−
MHz
4.5
Fig.8; note 3
fmax
maximum
clock pulse
frequency
30
75
−
24
−
20
−
MHz
4.5
Fig.9; note 4
September 1993
no limits
14
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
Notes
1. One stage selected.
2. It is possible to retrigger directly after the trigger pulse, however the pulse will only be extended, if the time period
exceeds the clock input cycle time divided by 2.
3. One stage selected. The termination of the output pulse remains synchronized with respect to the falling edge of the
RS clock input.
4. One stage selected. The termination of the output pulse is no longer synchronized with respect to the falling edge of
the RS clock input.
September 1993
15
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
AC WAVEFORMS
tW
handbook, full pagewidth
90%
VM (1)
B INPUT
10%
90%
VM (1)
A INPUT
GND
10%
tW
t THL
t TLH
90%
VM (1)
Q OUTPUT
10%
t PHL
t PLH
tW
90%
Q OUTPUT
VM (1)
10%
t TLH
t THL
MGA653
(1) HC : VM = 50%; VI = GND to VCC.
HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.6
Waveforms showing the triggering of the delay timer by input A or B, the minimum pulse widths of the
trigger inputs A and B, the output pulse width and output transition times.
September 1993
16
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
handbook, full pagewidth
MR INPUT
VM (1)
tW
t rem
A INPUT
VM
(1)
t rem
VM (1)
B INPUT
t PLH
VM (1)
Q OUTPUT
t PHL
Q OUTPUT
VM (1)
MGA652-1
(1) HC : VM = 50%; VI = GND to VCC.
HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.7
Waveforms showing the master reset (MR) pulse width, the master reset to outputs (Q and Q) propagation
delays and the master reset to trigger inputs (A and B) removal time.
September 1993
17
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
handbook, full pagewidth
74HC/HCT5555
1/f max
RS INPUT
1
2 VCC
tW
t PHL
VM (1)
Q OUTPUT
t PLH
VM (1)
Q OUTPUT
MGA651
(1) HC : VM = 50%; VI = GND to VCC.
HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.8
Waveforms showing the clock (RS) to outputs (Q and Q) propagation delays, the clock pulse width and
the maximum clock frequency.
1/f max
handbook, full pagewidth
RS INPUT
VM (1)
t PHL
Q OUTPUT
VM (1)
t PLH
Q OUTPUT
VM (1)
MGA654
(1) HC : VM = 50%; VI = GND to VCC.
HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.9
Waveforms showing the clock (RS) to outputs (Q and Q) propagation delays, the clock pulse width and
the maximum clock frequency (Output waveforms are not synchronized with respect to the RS waveform).
September 1993
18
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
handbook, full pagewidth
74HC/HCT5555
A INPUT
tW
B INPUT
t rt
tW
Q OUTPUT
tW
tW
tW
MGA650
(1) HC : VM = 50%; VI = GND to VCC.
HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.10 Output pulse control using retrigger pulse (RTR/RTR = HIGH).
September 1993
19
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
APPLICATION INFORMATION
MBA333
14
handbook,
g halfpage
fs
(mA/V)
max.
12
R bias = 560 kΩ
handbook, halfpage
typ.
10
VCC
8
0.47 µ F
min.
output 100 µF
input
6
vi
A io
(f = 1 kHz)
4
GND
MGA645
2
0
1
2
3
4
5
VCC (V)
6
Fig.12 Typical forward transconductance gfs as a
function of the supply voltage at VCC at
Tamb = 25 °C.
Fig.11 Test set-up for measuring forward
transconductance gfs = dio/dvi at vo is
constant (see Fig.12) and MR = LOW.
MGA647
5
10halfpage
handbook,
f osc
(Hz)
handbook, halfpage
Rt
10 4
MR (from logic)
Ct
1 RS
103
C2
102
R2
R TC
C TC
2
3
Rt
Ct
MGA646
10
103
10 – 4
104
10 – 3
R t (Ω ) 106
105
10 – 2 C t ( µ F) 10 – 1
Typical formula for oscillator frequency:
1
f osc = -------------------------------2.5 × R t × C t
Ct curve at Rt = 100 kΩ; R2 = 200 kΩ.
Rt curve at Ct = 1 nF; R2 = 2 x Rt.
RC oscillator frequency as a function of Rt and Ct
at VCC = 2 to 6 V; Tamb = 25 °C.
Fig.13 Application information.
September 1993
Fig.14 Example of an RC oscillator.
20
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
74HC/HCT5555
Timing Component Limitations
Start-up Using External Clock
Termination of the Timing Pulse
The oscillator frequency is mainly
determined by RtCt, provided R2 ≈
2Rt and R2C2 << RtCt. The function
of R2 is to minimize the influence of
the forward voltage across the input
protection diodes on the frequency.
The stray capacitance C2 should be
kept as small as possible. In
consideration of accuracy, Ct must be
larger than the inherent stray
capacitance. Rt must be larger than
the “ON” resistance in series with it,
which typically is 280 Ω at
VCC = 2 V, 130 Ω at VCC = 4.5 V and
100 Ω at VCC = 6 V. The
recommended values for these
components to maintain agreement
with the typical oscillation formula are:
The start of the timing pulse is
initiated directly by the trigger pulse
(asynchronously with respect to the
oscillator clock). Triggering on a clock
HIGH or clock LOW results in the
following:
The end of the timing pulse is
synchronized with the falling edge of
the oscillator clock. The timing pulse
may lose synchronization under the
following conditions:
Ct > 50 pF, up to any practical value,
10 kΩ < Rt < 1 MΩ.
In order to avoid start-up problems,
Rt >> 1 kΩ.
Typical Crystal Oscillator
In Fig.15, R2 is the power limiting
resistor. For starting and maintaining
oscillation a minimum
transconductance is necessary, so
R2 should not be too large. A practical
value for R2 is 2.2 kΩ. Above 14 MHz
it is recommended replacement of R2
by a capacitor with a typical value of
35 pF.
Accuracy
Device accuracy is very precise for
long time delays and has an accuracy
of better than 1% for short time delays
(1% applies to values ≥ 400 ns).
Tolerances are dependent on the
external components used, either RC
network or crystal oscillator.
September 1993
• clock = HIGH; the timing pulse may
be lengthened by a maximum of
tW/2 (tW = clock pulse width)
• clock = LOW; the timing pulse may
be shortened by a maximum of tW/2
(tW = clock pulse width).
This effect can be minimized by
selecting more delay stages. When
using only one or two delay stages, it
is recommended to use an external
time base that is synchronized with
the negative-edge of the clock.
Start-up Using RC Oscillator
The first clock cycle is ≈35% of a time
period too long. This effect can also
be minimized by selecting more delay
stages.
Start-up Using Crystal Oscillator
A crystal oscillator requires at least
two clock cycles to start-up plus an
unspecified period (ms) before the
amplitude of the clock signal
increases to its expected level.
Although this device also operates at
lower clock amplitudes, it is
recommended to select the
continuously running mode
(OSC CON = HIGH) to prevent
start-up delays.
21
• high clock frequency and large
number of stages are selected.
This depends on the dynamic
relationship that exists between the
clock frequency and the ripple
through delay of the subsequent
stages.
Synchronization
When frequencies higher than those
specified in the Table
'Synchronization limits' are used, the
termination of timing pulse will lose
synchronization with the falling edge
of the oscillator. The unsynchronized
timing pulse introduces errors, which
can be minimized by increasing the
number of stages used e.g. a 20 MHz
clock frequency using all 24 stages
will result in a frequency division of
16 777 225 instead of 16 777 216, an
error of 0.0005%.
The amount of error increases at high
clock frequencies as the number of
stages decrease. A clock frequency
of 40 MHz and 4 stages selected
results in a division of 18 instead of
16, a 12.5% error. Application
example:
• If a 400 ns timing pulse was
required it would be more accurate
to utilize a 5 MHz clock frequency
using 1 stage or a 10 MHz clock
frequency using 2 stages (due to
synchronization with falling edge of
the oscillator) than a 40 MHz clock
frequency and 4 stages
(synchronization is lost).
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
Minimum Output Pulse Width
The minimum output pulse width is
determined by the minimum clock
pulse width, plus the maximum
propagation delay of A, B to Q. The
rising edge of Q is dominated by the
A, B to Q propagation delay, while the
falling edge of Q is dominated by RS
to Q propagation delay. These
propagation delays are not equal. The
74HC/HCT5555
RS to Q propagation delay is some
what longer, resulting in inaccurate
outputs for extremely short pulses.
The propagation delays are listed in
the section 'AC Characteristics'. With
these numbers it is possible to
calculate the maximum deviation (an
example is shown in Fig.16).
Figure 16 is valid for an external clock
where the trigger is synchronized to
the falling edge of the clock only. The
graph shows that the minimum
programmed pulse width of 100 ns is:
• minimum of 4% too long
• typically 7% too long
• maximum of 10% too long.
SYNCHRONIZATION LIMITS
NUMBER OF STAGES SELECTED
CLOCK FREQUENCY (TYPICAL)
1
18 MHz
2
14 MHz
3
11 MHz
4
9.6 MHz
5
8.3 MHz
6
7.3 MHz
7
6.6 MHz
8
6 MHz
.
.
17
3.2 MHz
18
3.0 MHz
19
2.9 MHz
20
2.8 MHz
21
2.7 MHz
22
2.6 MHz
23
2.5 MHz
24
2.4 MHz
September 1993
22
Philips Semiconductors
Product specification
Programmable delay timer with oscillator
handbook, halfpage
74HC/HCT5555
MR (from logic)
1
RS
R TC
2
R bias
100 kΩ to 1 MΩ
C3
22 to
37 pF
C2
R2
2.2 kΩ
100 pF
MLB336
Fig.15 External components configuration for a crystal oscillator.
MGA648
40
deviation (%)
handbook, full pagewidth
36
32
28
max. expected
typ. expected
min. expected
24
20
16
12
8
4
0
0
100
200
300
400
500
programmed time (ns)
Fig.16 Graphic representation of short time delay accuracy; one stage selected; VCC = 4.5 V.
PACKAGE OUTLINES
See “74HC/HCT/HCU/HCMOS Logic Package Outlines”.
September 1993
23
600