PHILIPS 74HCT6323AD

INTEGRATED CIRCUITS
DATA SHEET
For a complete data sheet, please also download:
• The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
• The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
• The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
74HC/HCT6323A
Programmable ripple counter with
oscillator; 3-state
Product specification
Supersedes data of December 1990
File under Integrated Circuits, IC06
September 1993
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
FEATURES
• 8-pin space saving package
• Programmable 3-stage ripple
counter
74HC/HCT6323A
capacitors minimize external
component count for third overtone
crystal applications.
and sets the output buffer in the
3-state condition. MR can be left
floating since an internal pull-up
resistor will make the MR inactive. In
the HCT version, the MR input and
the two mode select pins S1 and S2
are TTL compatible, but the X1 input
has CMOS input switching levels and
may be driven by a TTL output using
a pull-up resistor connected to VCC.
• Two internal capacitors
The oscillator may be replaced by an
external clock signal at input X1. In
this event the other oscillator pin (X2)
must be floating. The counter
advances on the negative-going
transition of X1. A LOW level on MR
resets the counter, stops the oscillator
• Recommended operating range for
use with third overtone crystals
3 to 6 V
QUICK REFERENCE DATA
GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns.
• Suitable for over-tone crystal
application up to 50 MHz
(VCC = 5 V ± 10%)
• 3-state output buffer
• Oscillator stop function (MR)
TYP.
• Output capability:
bus driver → (15 LSTTL)
SYMBOL
• ICC category: MSI.
tPHL/tPLH
propagation delay
X1 to OUT
(S1 = S2 = LOW)
fmax
APPLICATIONS
• Control counters
• Timers
CONDITIONS
UNIT
HC
17
ns
maximum clock
frequency
90
90
MHz
CI
input capacitance
except X1 and X2
3.5
3.5
pF
CPD
power dissipation
capacitance per
package
+1; notes 1 and 2
54
54
pF
+2; notes 1 and 2
42
42
pF
+4; notes 1 and 2
36
36
pF
+8; notes 1 and 2
33
33
pF
• CIO (Compact Integrated
Oscillator)
• Third-overtone crystal operation.
CL = 15 pF;
VCC = 5 V
HCT
17
• Frequency dividers
• Time-delay circuits
PARAMETER
Notes
GENERAL DESCRIPTION
The HC/HCT6323A are high-speed
Si-gate CMOS devices.
1. CPD is used to determine the dynamic power dissipation (PD in µW):
PD = (CPD x VCC2 x fi) + (CL + VCC2 x fo) + (Ipull-up x VCC)
where:
They are specified in compliance with
JEDEC standard no. 7A.
fi = input frequency in MHz; fo = output frequency in MHz.
The HC/HCT6323A are oscillators
designed for quartz crystal combined
with a programmable 3-state counter,
a 3-state output buffer and an
overriding asynchronous master
reset (MR). With the two select inputs
S1 and S2 the counter can be
switched in the divide-by-1, 2, 4 or 8
mode. If left floating the clock is
divided by 8. The oscillator is
designed to operate either in the
fundamental or third overtone mode
depending on the crystal and external
components applied. On-chip
Ipull-up = pull-up currents in µA.
September 1993
VCC = supply voltage in V; CL = output load capacitance in pF.
2. For HC and HCT an external clock is applied to X1 with:
tr = tf ≤ 6 ns, Vi is GND to VCC, MR = HIGH
Ipull-up is the summation of −II (µA) of S1 and S2 inputs at the LOW state.
ORDERING INFORMATION
PACKAGE
EXTENDED TYPE
NUMBER
PINS
PIN POSITION
MATERIAL
CODE
74HC/HCT6323AD
8
SO
plastic
SOT96
2
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
74HC/HCT6323A
PINNING
FUNCTION TABLE
SYMBOL
PIN
OUT
1
S1 - S2
DESCRIPTION
INPUTS
counter output
3, 2
OUTPUTS
S1
S2
OUT
mode select inputs for divide
by 1, 2, 4 or 8
0
0
fi
0
1
fi/2
GND
4
ground (0 V)
1
0
fi/4
MR
5
master reset (active LOW)
1
1
fi/8
X2
6
oscillator pin
X1
7
clock input/oscillator pin
VCC
8
positive supply
6
handbook, halfpage
handbook, halfpage
OUT
S2
1
8
2
VCC
7
X1
6323A
S1
3
6
X2
GND
4
5
MR
7
5
X2
X1
CP
MR
CD
MBA343
3
S1
2
S2
OUT
1
MBA344
Fig.1 Pin configuration.
Fig.2 IEC logic symbol.
6
handbook, full pagewidth
X2
7
X1
5
MR
3 - STAGE BINARY COUNTER
AND DECODER
CP
CD
S1
MBA350
3
S2
2
Fig.3 Functional diagram.
September 1993
3
OUT
1
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
handbook, full pagewidth
74HC/HCT6323A
X2
X1
7 pF
(1)
VCC
7 pF
CP Q
CP Q
CP Q
FF
FF
FF
R
R
R
(1)
V CC
DECODER
VCC
MBA349
VCC
VCC
OUT
MR
S1
S2
Internal capacitors typical 7 pF each. Including
stray capacitors on pin X1 and X2, total capacitance
will be typical 12 pF per pin.
Fig.4 Logic diagram.
September 1993
4
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
74HC/HCT6323A
DC CHARACTERISTICS FOR 74HC
For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”.
Output capability: non-standard; bus driver (except for X2)
ICC category: MSI.
Voltages are referenced to GND (ground = 0 V).
DC CHARACTERISTICS FOR 74HC
Tamb(°C)
SYMBOL
−40 to 85
MIN
−40 to 125 UNIT V
CC
(V)
MAX MIN MAX
25
PARAMETER
TEST CONDITION
MIN
TYP MAX
VI
OTHER
VIH
HIGH level
input voltage
MR, X1 input
1.5
3.15
4.2
1.2
2.4
3.2
−
−
−
1.5
3.15
4.2
−
−
−
1.50 −
3.15 −
4.20 −
V
V
V
2.0
4.5
6.0
VIL
LOW level
input voltage
MR, X1 input
−
−
−
0.8
2.1
2.8
0.5
1.35
1.80
−
−
−
0.5
1.35
1.8
−
−
−
0.5
1.35
1.8
V
V
V
2.0
4.5
6.0
VOH
HIGH level
output voltage
X2 output
3.98
5.48
−
−
−
−
3.84
5.34
−
−
3.7
5.2
−
−
V
V
4.5
6.0
X1 = GND
and
MR = VCC
IO = −2.6 mA
IO = −3.3 mA
3.98
5.48
−
−
−
−
3.84
5.34
−
−
3.7
5.2
−
−
V
V
4.5
6.0
X1 = VCC
and
MR = GND
IO = −2.6 mA
IO = −3.3 mA
1.9
4.4
5.9
2.0
4.5
6.0
−
−
−
1.9
4.4
5.9
−
−
−
1.9
4.4
5.9
−
−
−
V
V
V
2.0
4.5
6.0
X1 = GND
and
MR = VCC
−IO = 20 µA
IO = −20 µA
IO = −20 µA
1.9
4.4
5.9
2.0
4.5
6.0
−
−
−
1.9
4.4
5.9
−
−
−
1.9
4.4
5.9
−
−
−
V
V
V
2.0
4.5
6.0
X1 = VCC
and
MR = GND
IO = −20 µA
IO = −20 µA
IO = −20 µA
VOH
HIGH level
output voltage
OUT
1.9
4.4
5.9
2.0
4.5
6.0
−
−
−
1.9
4.4
5.9
−
−
−
1.9
4.4
5.9
−
−
−
V
V
V
2.0
4.5
6.0
VIH or VIL
IO = −20 µA
IO = −20 µA
IO = −20 µA
VOH
HIGH level
output voltage
OUT
3.98
5.48
−
−
−
−
3.84
5.34
−
−
3.7
5.2
−
−
V
V
4.5
6.0
VIH or VIL
IO = −6 mA
IO = −7.8 mA
VOL
LOW level
output voltage
X2 output
−
−
−
−
0.26
0.26
−
−
0.33
0.33
−
−
0.4
0.4
V
V
4.5
6.0
X1 = VCC
and
MR = VCC
IO = 2.6 mA
IO = 3.3 mA
−
−
−
0
0
0
0.1
0.1
0.1
−
−
−
0.1
0.1
0.1
−
−
−
0.1
0.1
0.1
V
V
V
2.0
4.5
6.0
X1 = VCC
and
MR = VCC
IO = 20 µA
IO = 20 µA
IO = 20 µA
−
−
−
0
0
0
0.1
0.1
0.1
−
−
−
0.1
0.1
0.1
−
−
−
0.1
0.1
0.1
V
V
V
2.0
4.5
6.0
VIH or VIL
IO = 20 µA
IO = 20 µA
IO = 20 µA
VOL
LOW level
output voltage
OUT
September 1993
5
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
74HC/HCT6323A
Tamb(°C)
SYMBOL
TEST CONDITION
MIN
TYP MAX
MIN
−40 to 125 UNIT V
CC
(V)
MAX MIN MAX
PARAMETER
−40 to 85
25
VI
OTHER
VOL
LOW level
output voltage
OUT
−
−
−
−
0.26
0.26
−
−
0.33
0.33
−
−
0.4
0.4
V
V
4.5
6.0
VIH or VIL
±ILI
input leakage
current X1
−
−
0.1
−
1
−
1
µA
6.0
MR = VCC
S1 = VCC
S2 = VCC
−II
input pull-up
current S1, S2
and MR
5
30
100
−
−
−
−
µA
6.0
GND
see Fig.11
and Fig.12
ICC
quiescent
supply current
−
−
8
−
80
−
160
µA
6.0
VCC or
GND
IO = 0
September 1993
6
IO = 6 mA
IO = 7.8 mA
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
74HC/HCT6323A
AC CHARACTERISTICS FOR 74HC
GND = 0 V; tr = tf = 6 ns; CL = 50 pF.
Tamb (°C)
SYMBOL
PARAMETER
−40 to 85
25
MIN
TEST CONDITION
−40 to 125
TYP
MAX
MIN
MAX
MIN
MAX
UNIT
VCC
(V)
VI
OTHER
tPHL/tPLH
propagation
−
delay X1 to
−
OUT divide by 1 −
61
22
19
185
37
31
−
−
−
230
46
39
−
−
−
275
55
47
ns
ns
ns
2.0
4.5
6.0
Fig.7
S1 = GND
S2 = GND
tPHL/tPLH
propagation
−
delay X1 to
−
OUT divide by 2 −
74
27
23
235
47
40
−
−
−
290
58
49
−
−
−
350
70
60
ns
ns
ns
2.0
4.5
6.0
Fig.7
S1 = GND
S2 = VCC
tPHL/tPLH
propagation
−
delay X1 to
−
OUT divide by 4 −
91
33
28
285
57
48
−
−
−
355
71
60
−
−
−
425
85
72
ns
ns
ns
2.0
4.5
6.0
Fig.7
S1 = VCC
S2 = GND
tPHL/tPLH
propagation
−
delay X1 to
−
OUT divide by 8 −
105
38
32
335
67
57
−
−
−
415
83
71
−
−
−
500
100
85
ns
ns
ns
2.0
4.5
6.0
Fig.7
S1 = VCC
S2 = VCC
tPLZ/tPHZ
3-state output
disable time
MR to OUT
−
−
−
75
15
13
150
30
26
−
−
−
185
37
31
−
−
−
225
45
38
ns
ns
ns
2.0
4.5
6.0
Fig.8
tPZL
3-state output
enable time
MR to OUT
−
−
−
36
13
11
150
30
26
−
−
−
185
37
31
−
−
−
225
45
38
ns
ns
ns
2.0
4.5
6.0
Fig.8
tPZH
3-state output
enable time
MR to OUT
−
−
−
61
22
19
200
40
34
−
−
−
250
50
43
−
−
−
300
60
51
ns
ns
ns
2.0
4.5
6.0
Fig.8
tTHL/tTLH
output
transition time
−
−
−
14
5
4
60
12
10
−
−
−
75
15
13
−
−
−
90
19
15
ns
ns
ns
2.0
4.5
6.0
Fig.7
tW
clock pulse
width X1,
HIGH or LOW
50
10
9
17
6.0
5
−
−
−
60
12
10
−
−
−
75
15
13
−
−
−
ns
ns
ns
2.0
4.5
6.0
Fig.7
tW
master reset
pulse width
MR; LOW
80
16
14
22
8
7
−
−
−
100
20
17
−
−
−
120
24
20
−
−
−
ns
ns
ns
2.0
4.5
6.0
Fig.9
trem
removal time
MR to X1
100
20
17
19
7
6.0
−
−
−
125
25
21
−
−
−
150
30
26
−
−
−
ns
ns
ns
2.0
4.5
6.0
Fig.9
fmax
maximum clock 10
pulse frequency 50
59
17
85
100
−
−
−
8
40
47
−
−
−
6.6
33
39
−
−
−
MHz
MHz
MHz
2.0
4.5
6.0
Fig.7
Note to the 74HC AC Characteristics
1. tPZH only applicable in the divide-by-1 mode and X1 must be HIGH.
September 1993
7
note 1
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
74HC/HCT6323A
DC CHARACTERISTICS FOR 74HCT
For the DC characteristics see “74HC/HCT/HCU/HCMOS Logic Family Specifications”.
Output capability: bus driver (except for X2).
ICC category: MSI.
Voltages are referenced to GND (ground = 0 V).
Tamb (°C)
SYMBOL
TEST CONDITION
−40 to 85
25
−40 to 125
MIN
TYP
MAX
MIN
MAX
MIN
UNIT V
CC
(V)
MAX
PARAMETER
VI
OTHER
IO = −2.6 mA
VIH
HIGH level
input voltage
MR, S1 and
S2 inputs
2.0
−
−
2.0
−
2.0
−
V
4.5
to
5.5
VIL
LOW level
input voltage
MR, S1 and
S2 inputs
−
−
0.8
−
0.8
−
0.8
V
4.5
to
5.5
VIH
HIGH level
input voltage
X1 input
3.15
3.85
−
−
−
−
3.15
3.85
−
−
3.15
3.85
−
−
V
V
4.5
5.5
VIL
LOW level
input voltage
X1 input
−
−
−
−
1.35
1.65
−
−
1.35
1.65
−
−
1.35
1.65
V
V
4.5
5.5
VOH
HIGH level
output voltage
X2 output
3.98
−
−
3.84
−
3.7
−
V
4.5
X1 = GND
and
MR = VCC
3.98
−
−
3.84
−
3.7
−
V
4.5
IO = −2.6 mA
X1 = VCC
and
MR = GND
4.4
4.5
−
4.4
−
4.4
−
V
4.5
X1 = GND
and
MR = VCC
4.4
4.5
−
4.4
−
4.4
−
V
4.5
IO = −20 mA
X1 = VCC
and
MR = GND
IO = −20 µA
VOH
HIGH level
output voltage
OUT
4.4
4.5
−
4.4
−
4.4
−
V
4.5
VIH or VIL
IO = −20 µA
VOH
HIGH level
output voltage
OUT
3.98
−
−
3.84
−
3.7
−
V
4.5
VIH or VIL
IO = −6 mA
September 1993
8
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
74HC/HCT6323A
Tamb (°C)
SYMBOL
PARAMETER
TEST CONDITION
−40 to 85
−40 to 125
MIN
TYP
MAX
MIN
MAX
MIN
UNIT V
CC
(V)
MAX
LOW level
output
voltage X2
output
−
−
0.26
−
0.33
−
0.4
V
−
0
0.1
−
0.1
−
0.1
VOL
LOW level
output voltage
OUT
−
0
0.1
−
0.1
−
VOL
LOW level
output voltage
OUT
−
−
0.26
−
0.33
±ILI
input leakage
current
−
−
0.1
−
−II
input pull-up
current S1, S2
and MR
5
25
100
ICC
quiescent
supply current
−
−
∆ICC
additional
quiescent
supply current
per input pin
for unit load
coefficient is 1
−
100
VOL
25
VI
OTHER
4.5
X1 = VCC
and
MR = VCC
IO = 2.6 mA
V
4.5
X1 = VCC
and
MR = VCC
IO = 20 µA
0.1
V
4.5
VIH or VIL
IO = 20 µA
−
0.4
V
4.5
VIH or VIL
IO = 6 mA
1.0
−
1.0
µA
5.5
MR = VCC;
S1 = VCC;
S2 = VCC
−
−
−
−
µA
5.5
GND
see Fig.11
and Fig.12
8
−
80
−
160
µA
5.5
VCC or
GND
Io = 0
360
−
450
−
490
µA
5.5
VCC or
GND
other inputs
at VCC or
GND; Io = 0;
(note 1)
Note to the HCT DC Characteristics
1. The value of additional quiescent supply current (∆ICC) for unit load of 1 is given in the family specifications.
To determine ∆ICC per input, multiply this value by the unit load coefficient shown in the table below.
UNIT LOAD COEFFICIENT
September 1993
INPUT
UNIT LOAD COEFFICIENT
MR, S1, S2
0.40
9
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
74HC/HCT6323A
AC CHARACTERISTICS FOR 74HCT
GND = 0 V; tr = tf = 6 ns; CL = 50 pF
Tamb (°C)
SYMBOL
PARAMETER
−40 to 85
25
TEST CONDITION
−40 to 125
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNIT
VCC
(V)
VI
OTHER
tPHL/tPLH
propagation
delay X1 to
OUT
divide-by-1
−
24
40
−
50
−
60
ns
4.5
Fig.7
S1 = GND
S2 = GND
tPHL/tPLH
propagation
delay X1 to
OUT
divide-by-2
−
29
50
−
62
−
75
ns
4.5
Fig.7
S1 = GND
S2 = VCC
tPHL/tPLH
propagation
delay X1 to
OUT
divide-by-4
−
35
60
−
75
−
90
ns
4.5
Fig.7
S1 = VCC
S2 = GND
tPHL/tPLH
propagation
delay X1 to
OUT
divide-by-8
−
40
70
−
87
−
105
ns
4.5
Fig.7
S1 = VCC
S2 = VCC
tPLZ/tPHZ
3-state output
disable time
MR to OUT
−
21
35
−
43
−
52
ns
4.5
Fig.8
tPZ
3-state output
enable time
MR to OUT
−
16
30
−
37
−
45
ns
4.5
Fig.8
tPZH
3-state output
enable time
MR to OUT
−
22
38
−
47
−
57
ns
4.5
Fig.8
tTHL/tTLH
output
transition time
−
5
12
−
15
−
19
ns
4.5
Fig.7
tW
clock pulse
width X1,
HIGH or LOW
10
6
−
12
−
15
−
ns
4.5
Fig.7
tW
master reset
pulse width
MR; LOW
16
8
−
20
−
24
−
ns
4.5
Fig.9
trem
removal time
MR to X1
24
12
−
30
−
36
−
ns
4.5
Fig.9
fmax
maximum clock 50
pulse frequency
85
−
40
−
33
−
MHz
4.5
Fig.7
Note to the 74HCT AC Characteristics
1. tPZH only applicable in the divide-by-1 mode and X1 must be HIGH.
September 1993
10
see note 1
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
74HC/HCT6323A
MBA331
24
handbook, halfpage
gfs
(mA/V)
20
R bias = 560 kΩ
handbook, halfpage
16
VCC
12
0.47 µ F
input
output 100 µF
8
vi
A io
(f = 1 kHz)
4
GND
MGA645
0
Fig.5
Fig.6
Test set-up for measuring forward
transconductance gfs = dio/dvi at
vo is constant (see also Fig.6); MR = HIGH.
0
1
2
3
4
5
6
VCC (V)
Typical forward transconductance gfs as a
function of the supply voltage Vcc at
Tamb = 25 °C.
1/f max
handbook, full pagewidth
X1 INPUT
V M (1)
tW
t PHL
OUT OUTPUT
t PLH
V M (1)
t THL
t TLH
MBA318
(1) HC : VM = 50%; VI = GND to VCC.
HCT : VM = 1.3 V; VI = GND to 3 V.
Fig.7
Waveforms showing the clock (X1) to output (OUT) propagation delays, the clock pulse width,
the output transition times and the maximum clock frequency.
September 1993
11
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
74HC/HCT6323A
tf
handbook, full pagewidth
tr
90 %
MR INPUT
V M (1)
10 %
t PZL
t PLZ
OUTPUT
LOW - to - OFF
OFF - to - LOW
V M (1)
t PHZ
t PZH
90 %
OUTPUT
HIGH - to - OFF
OFF - to - HIGH
MBA319
V M (1)
outputs
enabled
outputs
disabled
outputs
enabled
(1) HC : VM = 50%; VI = GND to VCC.
HCT : VM = 1.3 V; VI = GND to 3 V.
Fig.8 Waveforms showing the input MR to output OUT, 3-state enable and disable times.
handbook, halfpage
tW
VM (1)
MR INPUT
t rem
V M (1)
X1 INPUT
MBA323
(1) HC : VM = 50%; VI = GND to VCC.
HCT : VM = 1.3 V; VI = GND to 3 V.
Fig.9 Waveforms showing the MR minimum pulse width and MR to X1 removal time.
September 1993
12
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
74HC/HCT6323A
APPLICATION INFORMATION
MBA347
40
handbook, halfpage
−II
(µA)
VCC = 6 V
30
handbook, halfpage
5
6323A
20
MR
4.3 V
10
MBA348
2V
0
0
1
2
3
4
5
6
VI (V)
The input pull-up current is used to create a
power-on delay time at MR.
Fig.11 Typical input pull-up current as a function
of the input voltage (VI).
Fig.10 Power-on reset.
Table 1
Typical application values
f (MHz)
R2 (kΩ)
1
4.7
10
2.2
25
1
C1 (pF)
C2 (pF)
47 to 68
MBA346
50
handbook, halfpage
−II
(µA)
40
Table 2
30
20
VI = 0 V
10
0
1
2
3
4
5
6
VCC (V)
Fig.12 Typical input pull-up current as a function of
the supply voltage (VCC).
September 1993
13
47 to 68
33
33
Typical Application Values
f (MHz)
Rbias (kΩ)
C1 (pF)
50
3.0
4.7
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
handbook, halfpage
74HC/HCT6323A
handbook, halfpage
MR (from logic)
7
MR (from logic)
X1
7
X1
X2
R bias
22 to
37 pF
6
R bias
100 kΩ to 1
MΩ
C1
X2
6
3 kΩ
R2
2.2
kΩ
C2
100 pF
C1
1 to 10 pF
(optional)
MBA329 - 1
MBA328 - 1
Above 5 MHz replace R2 by a capacitor of
half the value of C2.
CL at which a crystal is specified (or adjusted)
equals for this application C1 . C2/C1 + C2.
Applicable for third overtone crystals (lower
damping resistance at the third harmonic
frequency) at typical 50 MHz. For lower
frequencies extra load capacitors must be
supplied, or increase bias resistor.
Fig.13 Typical setup for a crystal oscillator
operating in the fundamental mode
(1 MHz to 25 MHz).
Fig.14 Typical set-up for a crystal oscillator
operating in the third overtone mode without
the use of an inductor.
September 1993
14
Philips Semiconductors
Product specification
Programmable ripple counter with
oscillator; 3-state
Typical Crystal Oscillator
In Fig.13, R2 is the power limiting
resistor. For starting and maintaining
oscillation a minimum
transconductance is necessary, so
R2 should not be too large. A practical
value for R2 is 2.2 kΩ.
The oscillator has been designed to
operate over a wide frequency
spectrum, for quartz crystals
operating in the fundamental mode
and in the overtone mode. The circuit
is a Pierce type oscillator and requires
a minimum of external components.
There are two on-chip capacitors, X1
and X2, of approximately 7 pF.
Together with the stray and input
capacitance the value becomes 12 pF
for 8-pin SO packages. These values
are convenient and make it possible
to run the oscillator in the third
overtone without external capacitors
applied. If a certain frequency is
chosen, the IC parameters, as
forward transconductance, and the
crystal parameters such as the
motional resistances R1
(fundamental), R3 (third overtone)
and R5 (fifth overtone), are of
paramount importance. Also the
values of the external components as
Rs (series resistance) and the crystal
load capacitances play an important
role. Especially in overtone mode
oscillations, Rb (bias resistance) and
the load capacitance values are very
important.
September 1993
74HC/HCT6323A
Considerations for Fundamental
Oscillator:
Considerations for Third-overtone
Oscillator:
In the fundamental oscillator mode,
the Rb has only the function of biasing
the inverter stage, so that it operates
as an amplifier with a phase shift of
approximately 180°. The value must
be high, i.e. 100 kΩ up to 10 MΩ. The
load capacitors C1 and C2, must
have a value that is suitable for the
crystal being used. The crystal is
designed for a certain frequency
having a specific load capacitance.
C1 can be used to trim the oscillation
frequency. The series resistance
reduces the total loop gain. One
function of it is therefore to reduce the
power dissipation in the crystal. Rs
also suppresses overtone oscillations
and introduces a phase shift over a
broad frequency range. This is of less
concern provided Rs is not too high a
value.
In the overtone configuration, series
resistance is no longer applied. This
is essential otherwise the gain for
third overtone can be too small for
oscillation. A simple solution to
suppress the fundamental oscillation,
is to spoil the crystal fundamental
activity. By dramatically reducing the
value of the bias resistor of the
inverting stage, and applying small
load capacitors, it is possible to have
an insufficient phase in the total loop
for fundamental oscillation. However
the phase for third overtone is good. It
can be explained by the Rb × Cl time
constant. During oscillation the
crystal with the load capacitors cause
a phase shift of 180°. Because Rb is
parallel with the crystal (no Rs), Rb
spoils the phase for fundamental.
Rb × Cl must be of a value, that it is
not spoiling the phase for third
overtone too much. Because third
overtone is a 3 times higher
frequency than the fundamental, the
Rb × Cl cannot 'maintain' the higher
third overtone frequency, which
results in a less spoiled overtone
phase.
Note
A combination of a small load
capacitor value and a small series
resistance, may cause a third
overtone oscillation.
PACKAGE OUTLINES
See “74HC/HCT/HCU/HCMOS Logic
Package Outlines”.
15