PHILIPS 74AHC1G06

INTEGRATED CIRCUITS
DATA SHEET
74AHC1G06; 74AHCT1G06
Inverter with open-drain output
Product specification
File under Integrated Circuits, IC06
2000 May 01
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
FEATURES
DESCRIPTION
• High noise immunity
The 74AHC1G/AHCT1G06 is a high-speed Si-gate CMOS
device.
• ESD protection:
HBM EIA/JESD22-A114-A exceeds 2000 V
MM EIA/JESD22-A115-A exceeds 200 V
The 74AHC1G/AHCT1G06 provides the inverting buffer.
The output of the 74AHC1G/AHCT1G06 devices is an
open drain and can be connected to other open-drain
outputs to implement active-LOW, wired-OR or
active-HIGH wired-AND functions. For digital operation
this device must have a pull-up resistor to establish a logic
HIGH-level.
• Low power dissipation
• SOT353 package
• Output capability standard (open drain).
QUICK REFERENCE DATA
GND = 0 V; Tamb = 25 °C; tr = tf ≤ 3.0 ns.
TYPICAL
SYMBOL
PARAMETER
CONDITIONS
UNIT
AHC1G
AHCT1G
tPZL
propagation delay inA to outY
CL = 15 pF; VCC = 5 V
2.7
3.0
ns
tPLZ
propagation delay inA to outY
CL = 15 pF; VCC = 5 V
3.0
3.2
ns
CI
input capacitance
CPD
power dissipation capacitance
1.5
CL = 50 pF; f = 1 MHz; 3
notes 1 and 2
1.5
pF
4.5
pF
Notes
1. CPD is used to determine the dynamic power dissipation (PD in µW).
PD = CPD × VCC2 × fi + (CL × VCC2 × fo) where:
fi = input frequency in MHz;
fo = output frequency in MHz;
CL = output load capacitance in pF;
VCC = supply voltage in Volts.
2. The condition is VI = GND to VCC.
FUNCTION TABLE
See note 1.
INPUT
OUTPUT
inA
outY
L
Z
H
L
Note
1. H = HIGH voltage level;
L = LOW voltage level;
Z = high impedance OFF-state.
2000 May 01
2
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
ORDERING AND PACKAGE INFORMATION
PACKAGES
TYPE NUMBER
TEMPERATURE
RANGE
PINS
PACKAGE
MATERIAL
CODE
MARKING
−40 to +125 °C
5
SC-88A
plastic
SOT353
AR
5
SC-88A
plastic
SOT353
CR
74AHC1G06GW
74AHCT1G06GW
PINNING
PIN
SYMBOL
DESCRIPTION
1
n.c.
not connected
2
inA
data input
3
GND
ground (0 V)
4
outY
data output
5
VCC
DC supply voltage
handbook, halfpage
n.c. 1
inA
2
GND
3
5 VCC
handbook, halfpage
2
06
4
inA
outY
4
outY
MNA584
MNA583
Fig.1 Pin configuration.
2000 May 01
Fig.2 Logic symbol.
3
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
outY
handbook, halfpage
handbook, halfpage
inA
2
4
outY
inA
MNA585
GND
Fig.3 IEC logic symbol.
MNA586
Fig.4 Logic diagram.
RECOMMENDED OPERATING CONDITIONS
74AHC
SYMBOL
PARAMETER
74AHCT
CONDITIONS
UNIT
MIN.
TYP.
MAX.
MIN.
TYP.
MAX.
VCC
DC supply voltage
2.0
5.0
5.5
4.5
5.0
5.5
V
VI
input voltage
0
−
5.5
0
−
5.5
V
VO
output voltage
active mode
0
−
VCC
0
−
VCC
V
high-impedance mode
0
−
6.0
0
−
6.0
V
−40
+25
+85
−40
+25
+85
°C
Tamb
operating ambient
temperature
see DC and AC
characteristics per device
−40
+25
+125
−40
+25
+125
°C
tr, tf (∆t/∆f)
input rise and fall
time ratios (except
for Schmitt-trigger
inputs)
VCC = 3.3 ±0.3 V
−
−
100
−
−
−
ns/V
VCC = 5 ±0.5 V
−
−
20
−
−
20
ns/V
2000 May 01
4
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VCC
DC supply voltage
−0.5
+7.0
V
VI
input voltage
−0.5
+7.0
V
IIK
DC input diode current
−
−20
mA
IOK
DC output clamping diode VO < −0.5 V; note 1
current
VI < −0.5 V; note 1
−
±20
mA
VO
output voltage
active mode; note 1
−0.5
VCC + 0.5
V
high-impedance mode; note 1
−0.5
7.0
V
IO
DC output sink current
VO > −0.5 V
−
±25
mA
ICC
DC VCC or GND current
−
±75
mA
Tstg
storage temperature
−65
+150
°C
PD
power dissipation per
package
−
200
mW
for temperature range: −40 to +125 °C;
note 2
Notes
1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. Above 55 °C the value of PD derates linearly with 2.5 mW/K.
2000 May 01
5
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
DC CHARACTERISTICS
74AHC1G family
Over recommended operating conditions; voltages are referenced to GND (ground = 0 V).
Tamb (°C)
TEST CONDITIONS
SYMBOL
OTHER
VIH
VIL
VOL
VCC (V)
−40 to +125 UNIT
MIN.
TYP.
MAX. MIN. MAX. MIN. MAX.
2.0
1.5
−
−
1.5
−
1.5
−
V
3.0
2.1
−
−
2.1
−
2.1
−
V
5.5
3.85 −
−
3.85 −
3.85 −
V
2.0
−
−
0.5
−
0.5
−
0.5
V
3.0
−
−
0.9
−
0.9
−
0.9
V
5.5
−
−
1.65
−
1.65
−
1.65
V
2.0
−
0
0.1
−
0.1
−
0.1
V
3.0
−
0
0.1
−
0.1
−
0.1
V
4.5
−
0
0.1
−
0.1
−
0.1
V
VI = VIH or VIL;
IO = 4 mA
3.0
−
−
0.36
−
0.44
−
0.55
V
VI = VIH or VIL;
IO = 8 mA
4.5
−
−
0.36
−
0.44
−
0.55
V
−
1.0
−
2.0
µA
±2.5
−
±10.0 µA
HIGH-level input
voltage
LOW-level input
voltage
LOW-level output
voltage
−40 to +85
25
PARAMETER
VI = VIH or VIL;
IO = 50 µA
II
input leakage
current
VI = VCC or GND
5.5
−
−
0.1
IOZ
3-state output
OFF-state current
5.5
VI = VIH or VIL;
VO = VCC or GND
−
−
±0.25 −
ICC
quiescent supply
current
VI = VCC or GND;
IO = 0
5.5
−
−
1.0
−
10
−
20
µA
CI
input capacitance
−
−
1.5
10
−
10
−
10
pF
2000 May 01
6
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
74AHCT1G family
Over recommended operating conditions; voltages are referenced to GND (ground = 0 V).
TEST CONDITIONS
SYMBOL
Tamb (°C)
PARAMETER
−40 to +85
25
OTHER
VCC (V)
−40 to +125 UNIT
MIN. TYP. MAX. MIN. MAX. MIN. MAX.
VIH
HIGH-level input
voltage
4.5 to 5.5 2.0
−
−
2.0
−
2.0
−
V
VIL
LOW-level input
voltage
4.5 to 5.5 −
−
0.8
−
0.8
−
0.8
V
VOL
LOW-level output
voltage
VI = VIH or VIL;
IO = 50 µA
4.5
−
0
0.1
−
0.1
−
0.1
V
VI = VIH or VIL;
IO = 8 mA
4.5
−
−
0.36
−
0.44
−
0.55
V
−
1.0
−
2.0
µA
±2.5
−
±10.0 µA
II
input leakage
current
VI = VCC or GND
5.5
−
−
0.1
IOZ
3-state output
OFF-state current
VI = VIH or VIL;
5.5
VO = VCC or GND
−
−
±0.25 −
ICC
quiescent supply
current
VI = VCC or GND; 5.5
IO = 0
−
−
1.0
−
10
−
20
µA
∆ICC
additional
quiescent supply
current per input
pin
VI = 3.4 V;
other inputs at
VCC or GND;
IO = 0
4.5 to 5.5 −
−
1.35
−
1.5
−
1.5
mA
CI
input capacitance
−
1.5
10
−
10
−
10
pF
2000 May 01
−
7
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
AC CHARACTERISTICS
Type 74AHC1G06
GND = 0 V; tr = tf ≤ 3.0 ns.
TEST CONDITIONS
SYMBOL
Tamb (°C)
PARAMETER
−40 to +85
25
WAVEFORMS
CL
MIN.
TYP.
MAX.
MIN.
MAX.
−40 to +125
MIN.
UNIT
MAX.
VCC = 3.0 to 3.6 V; note 1
tPZL
tPLZ
tPZL
tPLZ
propagation delay
inA to outY
see Figs 5 and 6 15 pF −
3.7
7.0
1.0
7.7
1.0
8.1
ns
−
4.8
6.4
1.0
6.9
1.0
7.4
ns
propagation delay
inA to outY
see Figs 5 and 6 50 pF −
5.2
10.0
1.0
11.0
1.0
11.5
ns
−
6.9
10.0
1.0
10.5
1.0
11.0
ns
propagation delay
inA to outY
see Figs 5 and 6 15 pF −
2.7
4.9
1.0
5.3
1.0
5.6
ns
−
3.0
4.1
1.0
4.6
1.0
5.1
ns
propagation delay
inA to outY
see Figs 5 and 6 50 pF −
3.8
7.0
1.0
7.5
1.0
8.0
ns
−
4.3
6.5
1.0
7.0
1.0
7.5
ns
VCC = 4.5 to 5.5 V; note 2
tPZL
tPLZ
tPZL
tPLZ
Notes
1. Typical values at VCC = 3.3 V.
2. Typical values at VCC = 5.0 V.
Type 74AHCT1G06
GND = 0 V; tr = tf ≤ 3.0 ns.
Tamb (°C)
TEST CONDITIONS
SYMBOL
−40 to +85
25
PARAMETER
WAVEFORMS
CL
MIN.
−40 to +125
TYP.
MAX. MIN.
MAX.
MIN. MAX.
UNIT
VCC = 4.5 to 5.5 V; note 1
tPZL
tPLZ
tPZL
tPLZ
propagation delay
inA to outY
see Figs 5 and 6 15 pF −
3.0
5.3
1.0
6.0
1.0
6.3
ns
−
3.2
4.6
1.0
5.1
1.0
5.6
ns
propagation delay
inA to outY
see Figs 5 and 6 50 pF −
4.2
7.5
1.0
8.5
1.0
9.0
ns
−
4.5
7.0
1.0
7.5
1.0
8.0
ns
Note
1. Typical values at VCC = 5.0 V.
2000 May 01
8
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
AC WAVEFORMS
VI
handbook, full pagewidth
VM(1)
inA input
GND
t PZL
t PLZ
VCC
outY output
VM(2)
VOL + 0.3 V
VOL
MNA587
FAMILY
VI INPUT
REQUIREMENTS
VM(1)
INPUT
VM(2)
OUTPUT
AHC1G
GND to VCC
50% VCC 50% VCC
AHCT1G
GND to 3.0 V
1.5 V
50% VCC
Fig.5 The input inA to output outY propagation delays.
S1
handbook, full pagewidth
VCC
PULSE
GENERATOR
VI
RL =
1000 Ω
VO
VCC
open
GND
D.U.T.
CL
RT
MNA232
TEST
S1
tPLH/tPHL
open
tPLZ/tPZL
VCC
tPHZ/tPZH
GND
Definitions for test circuit:
CL = Load capacitance including jig and probe capacitance (see Chapter “AC characteristics”).
RT = Termination resistance should be equal to the output impedance Zo of the pulse generator.
Fig.6 Load circuitry for switching times.
2000 May 01
9
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
PACKAGE OUTLINE
Plastic surface mounted package; 5 leads
SOT353
D
E
B
y
X
A
HE
5
v M A
4
Q
A
A1
1
2
e1
3
bp
c
Lp
w M B
e
detail X
0
1
2 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
A1
max
bp
c
D
E (2)
e
e1
HE
Lp
Q
v
w
y
mm
1.1
0.8
0.1
0.30
0.20
0.25
0.10
2.2
1.8
1.35
1.15
1.3
0.65
2.2
2.0
0.45
0.15
0.25
0.15
0.2
0.2
0.1
OUTLINE
VERSION
SOT353
2000 May 01
REFERENCES
IEC
JEDEC
EIAJ
SC-88A
10
EUROPEAN
PROJECTION
ISSUE DATE
97-02-28
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
SOLDERING
If wave soldering is used the following conditions must be
observed for optimal results:
Introduction to soldering surface mount packages
• Use a double-wave soldering method comprising a
turbulent wave with high upward pressure followed by a
smooth laminar wave.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011).
• For packages with leads on two sides and a pitch (e):
– larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the
transport direction of the printed-circuit board;
There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable
for surface mount ICs, or for printed-circuit boards with
high population densities. In these situations reflow
soldering is often used.
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the
printed-circuit board.
Reflow soldering
The footprint must incorporate solder thieves at the
downstream end.
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
• For packages with leads on four sides, the footprint must
be placed at a 45° angle to the transport direction of the
printed-circuit board. The footprint must incorporate
solder thieves downstream and at the side corners.
Several methods exist for reflowing; for example,
infrared/convection heating in a conveyor type oven.
Throughput times (preheating, soldering and cooling) vary
between 100 and 200 seconds depending on heating
method.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Typical reflow peak temperatures range from
215 to 250 °C. The top-surface temperature of the
packages should preferable be kept below 230 °C.
Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Wave soldering
Manual soldering
Conventional single wave soldering is not recommended
for surface mount devices (SMDs) or printed-circuit boards
with a high component density, as solder bridging and
non-wetting can present major problems.
Fix the component by first soldering two
diagonally-opposite end leads. Use a low voltage (24 V or
less) soldering iron applied to the flat part of the lead.
Contact time must be limited to 10 seconds at up to
300 °C.
To overcome these problems the double-wave soldering
method was specifically developed.
When using a dedicated tool, all other leads can be
soldered in one operation within 2 to 5 seconds between
270 and 320 °C.
2000 May 01
11
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
Suitability of surface mount IC packages for wave and reflow soldering methods
SOLDERING METHOD
PACKAGE
WAVE
BGA, LFBGA, SQFP, TFBGA
not suitable
suitable(2)
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, SMS
not
PLCC(3), SO, SOJ
suitable
LQFP, QFP, TQFP
SSOP, TSSOP, VSO
REFLOW(1)
suitable
suitable
suitable
not
recommended(3)(4)
suitable
not
recommended(5)
suitable
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum
temperature (with respect to time) and body size of the package, there is a risk that internal or external package
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.
The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
2000 May 01
12
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
DATA SHEET STATUS
DATA SHEET STATUS
PRODUCT
STATUS
DEFINITIONS (1)
Objective specification
Development
This data sheet contains the design target or goal specifications for
product development. Specification may change in any manner without
notice.
Preliminary specification
Qualification
This data sheet contains preliminary data, and supplementary data will be
published at a later date. Philips Semiconductors reserves the right to
make changes at any time without notice in order to improve design and
supply the best possible product.
Product specification
Production
This data sheet contains final specifications. Philips Semiconductors
reserves the right to make changes at any time without notice in order to
improve design and supply the best possible product.
Note
1. Please consult the most recently issued data sheet before initiating or completing a design.
DEFINITIONS
DISCLAIMERS
Short-form specification  The data in a short-form
specification is extracted from a full data sheet with the
same type number and title. For detailed information see
the relevant data sheet or data handbook.
Life support applications  These products are not
designed for use in life support appliances, devices, or
systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips
Semiconductors customers using or selling these products
for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Limiting values definition  Limiting values given are in
accordance with the Absolute Maximum Rating System
(IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device.
These are stress ratings only and operation of the device
at these or at any other conditions above those given in the
Characteristics sections of the specification is not implied.
Exposure to limiting values for extended periods may
affect device reliability.
Right to make changes  Philips Semiconductors
reserves the right to make changes, without notice, in the
products, including circuits, standard cells, and/or
software, described or contained herein in order to
improve design and/or performance. Philips
Semiconductors assumes no responsibility or liability for
the use of any of these products, conveys no licence or title
under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that
these products are free from patent, copyright, or mask
work right infringement, unless otherwise specified.
Application information  Applications that are
described herein for any of these products are for
illustrative purposes only. Philips Semiconductors make
no representation or warranty that such applications will be
suitable for the specified use without further testing or
modification.
2000 May 01
13
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
NOTES
2000 May 01
14
Philips Semiconductors
Product specification
74AHC1G06;
74AHCT1G06
Inverter with open-drain output
NOTES
2000 May 01
15
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),
Tel. +39 039 203 6838, Fax +39 039 203 6800
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,
Tel. +48 22 5710 000, Fax. +48 22 5710 001
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,
Tel. +27 11 471 5401, Fax. +27 11 471 5398
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 3341 299, Fax.+381 11 3342 553
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
SCA 69
© Philips Electronics N.V. 2000
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
613507/01/pp16
Date of release: 2000
May 01
Document order number:
9397 750 07039