PHILIPS BGA2801

BGA2801
MMIC wideband amplifier
Rev. 1 — 17 August 2010
Product data sheet
1. Product profile
1.1 General description
Silicon Monolithic Microwave Integrated Circuit (MMIC) wideband amplifier with internal
matching circuit in a 6-pin SOT363 plastic SMD package.
1.2 Features and benefits
„
„
„
„
„
„
„
Internally matched to 50 Ω
A gain of 22.2 dB at 250 MHz increasing to 23.0 dB at 2150 MHz
Output power at 1 dB gain compression = 2 dBm
Supply current = 14.3 mA at a supply voltage of 3.3 V
Reverse isolation > 29 dB up to 2 GHz
Good linearity with low second order and third order products
Noise figure = 4 dB at 950 MHz
1.3 Applications
„ LNB IF amplifiers
„ General purpose low noise wideband amplifier for frequencies between
DC and 2.2 GHz
2. Pinning information
Table 1.
Pinning
Pin
Description
1
VCC
2, 5
GND2
3
RF_OUT
4
GND1
6
RF_IN
Simplified outline
6
5
Graphic symbol
1
4
6
1
2
3
3
4
2, 5
sym052
3. Ordering information
Table 2.
Ordering information
Type number
BGA2801
Package
Name
Description
Version
-
plastic surface-mounted package; 6 leads
SOT363
BGA2801
NXP Semiconductors
MMIC wideband amplifier
4. Marking
Table 3.
Marking
Type number
Marking code
Description
BGA2801
*E8
* = - : made in Hong Kong
* = p : made in Hong Kong
* = W : made in China
* = t : made in Malaysia
5. Limiting values
Table 4.
Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Conditions
VCC
supply voltage
RF input AC coupled
ICC
supply current
Ptot
total power dissipation
Tstg
Min
Max
Unit
3.0
3.6
V
-
55
mA
-
200
mW
storage temperature
−40
+125
°C
Tj
junction temperature
-
125
°C
Pdrive
drive power
-
−16.5
dBm
Tsp = 90 °C
6. Thermal characteristics
Table 5.
Thermal characteristics
Symbol
Parameter
Rth(j-sp)
thermal resistance from junction to Ptot = 200 mW; Tsp = 90 °C
solder point
Conditions
Typ
Unit
300
K/W
7. Characteristics
Table 6.
Characteristics
VCC = 3.3 V; ZS = ZL = 50 Ω; Pi = −30 dBm; Tamb = 25 °C; measured on demo board; unless otherwise specified.
Symbol Parameter
VCC
supply voltage
ICC
supply current
Gp
power gain
RLin
RLout
input return loss
output return loss
BGA2801
Product data sheet
Conditions
Min
Typ
Max
Unit
3.0
3.3
3.6
V
12.2
14.3
16.3
mA
f = 250 MHz
21.6
22.2
22.8
dB
f = 950 MHz
21.7
22.4
23.1
dB
f = 2150 MHz
21.5
23.0
24.4
dB
f = 250 MHz
15
17
19
dB
f = 950 MHz
15
17
19
dB
f = 2150 MHz
10
12
19
dB
f = 250 MHz
13
17
22
dB
f = 950 MHz
14
15
16
dB
f = 2150 MHz
10
12
15
dB
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
2 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
Table 6.
Characteristics …continued
VCC = 3.3 V; ZS = ZL = 50 Ω; Pi = −30 dBm; Tamb = 25 °C; measured on demo board; unless otherwise specified.
Symbol Parameter
Conditions
Min
Typ
Max
Unit
ISL
f = 250 MHz
58
78
99
dB
f = 950 MHz
46
47
49
dB
f = 2150 MHz
29
32
34
dB
f = 250 MHz
3.4
3.8
4.3
dB
f = 950 MHz
3.4
3.8
4.3
dB
f = 2150 MHz
3.5
3.9
4.4
dB
GHz
NF
isolation
noise figure
B−3dB
−3 dB bandwidth
3 dB below gain at 1 GHz
2.5
2.8
3.1
K
Rollett stability factor
f = 250 MHz
252
308
363
f = 950 MHz
7
8
10
f = 2150 MHz
0.7
1.3
1.9
PL(sat)
PL(1dB)
IP3I
IP3O
saturated output power
f = 250 MHz
4
4
5
dBm
f = 950 MHz
2
4
5
dBm
f = 2150 MHz
1
2
3
dBm
output power at 1 dB gain compression f = 250 MHz
1
2
3
dBm
f = 950 MHz
0
2
3
dBm
f = 2150 MHz
−1
0
1
dBm
f1 = 250 MHz; f2 = 251 MHz
−10
−8
−6
dBm
f1 = 950 MHz; f2 = 951 MHz
−11
−8
−6
dBm
f1 = 2150 MHz; f2 = 2151 MHz
−17
−14
−10
dBm
12
14
16
dBm
Pdrive = −34 dBm (for each tone)
input third-order intercept point
output third-order intercept point
Pdrive = −34 dBm (for each tone)
f1 = 250 MHz; f2 = 251 MHz
PL(2H)
ΔIM2
f1 = 950 MHz; f2 = 951 MHz
12
14
16
dBm
f1 = 2150 MHz; f2 = 2151 MHz
6
9
13
dBm
f1H = 250 MHz; f2H = 500 MHz
−62
−60
−58
dBm
f1H = 950 MHz; f2H = 1900 MHz
−51
−50
−48
dBm
f1 = 250 MHz; f2 = 251 MHz
34
45
56
dBc
f1 = 950 MHz; f2 = 951 MHz
27
39
50
dBc
Pdrive = −31 dBm
second harmonic output power
second-order intermodulation distance
Pdrive = −34 dBm (for each tone)
8. Application information
Figure 1 shows a typical application circuit for the BGA2801 MMIC. The device is
internally matched to 50 Ω, and therefore does not need any external matching. The value
of the input and output DC blocking capacitors C2 and C3 should not be more than 100 pF
for applications above 100 MHz. However, when the device is operated below 100 MHz,
the capacitor value should be increased.
The 22 nF supply decoupling capacitor C1 should be located as close as possible to the
MMIC.
BGA2801
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
3 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
The PCB top ground plane, connected to pins 2, 4 and 5 must be as close as possible to
the MMIC, preferably also below the MMIC. When using via holes, use multiple via holes
as close as possible to the MMIC.
VS
C1
C2
RF input
VS
RF_OUT C3
RF_IN
GND1
RF output
GND2
001aaf761
Fig 1.
Typical application circuit
8.1 Application examples
mixer
wideband
amplifier
from RF
circuit
LNA
to IF circuit
or demodulator
oscillator
Application as IF amplifier
BGA2801
Product data sheet
mixer
to IF circuit
or demodulator
antenna
oscillator
001aaf762
001aaf763
As second amplifier after an LNA, the MMIC offers an
easy matching, low noise solution.
The MMIC is very suitable as IF amplifier in e.g. LNB’s.
The excellent wideband characteristics make it an easy
building block.
Fig 2.
wideband
amplifier
Fig 3.
Application as RF amplifier
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
4 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
8.2 Graphs
90°
1.0
+1
135°
+0.5
0.8
45°
+2
0.6
+0.2
0.4
+5
0.2
180°
0
0.2
1
0.5
2
5
10
(1)
0°
0
(3)
(2)
−5
−0.2
−135°
−2
−0.5
−45°
−1
−90°
1.0
001aam281
Tamb = 25 °C; ICC = 14.1 mA; VCC = 3.3 V; Z0 = 50 Ω.
(1) f = 250 MHz
(2) f = 950 MHz
(3) f = 2150 MHz
Fig 4.
BGA2801
Product data sheet
Input reflection coefficient (S11); typical values
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
5 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
90°
1.0
+1
135°
+0.5
0.8
45°
+2
0.6
+0.2
0.4
+5
(3)
0.2
180°
0
0.2
0.5
(1)
1
2
5
10
(2)
0
−5
−0.2
−135°
0°
−2
−0.5
−45°
−1
−90°
1.0
001aam282
Tamb = 25 °C; ICC = 14.1 mA; VCC = 3.3 V; Z0 = 50 Ω.
(1) f = 250 MHz
(2) f = 950 MHz
(3) f = 2150 MHz
Fig 5.
BGA2801
Product data sheet
Output reflection coefficient (S22); typical values
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
6 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
001aam283
103
001aam284
0
K
RLin
(dB)
102
(1)
(2)
(3)
(4)
(5)
(1)
(2)
(3)
(4)
(5)
−10
10
−20
1
10−1
0
1
2
3
−30
0
1
2
3
f (GHz)
f (GHz)
Pdrive = −40 dBm; Z0 = 50 Ω.
Pdrive = −40 dBm; Z0 = 50 Ω.
(1) VCC = 3.0 V; Tamb = 85 °C; ICC = 12.52 mA
(1) VCC = 3.0 V; Tamb = 85 °C; ICC = 12.52 mA
(2) VCC = 3.0 V; Tamb = −40 °C; ICC = 12.67 mA
(2) VCC = 3.0 V; Tamb = −40 °C; ICC = 12.67 mA
(3) VCC = 3.3 V; Tamb = 25 °C; ICC = 14.08 mA
(3) VCC = 3.3 V; Tamb = 25 °C; ICC = 14.08 mA
(4) VCC = 3.6 V; Tamb = 85 °C; ICC = 15.30 mA
(4) VCC = 3.6 V; Tamb = 85 °C; ICC = 15.30 mA
(5) VCC = 3.6 V; Tamb = −40 °C; ICC = 16.51 mA
(5) VCC = 3.6 V; Tamb = −40 °C; ICC = 16.51 mA
Fig 6. Rollett stability factor as function of frequency;
typical values
BGA2801
Product data sheet
Fig 7.
Input return loss as function of frequency;
typical values
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
7 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
001aam285
0
001aam286
30
Gp
(dB)
RLout
(dB)
(1)
(2)
(3)
(4)
(5)
−10
(1)
(2)
(3)
(4)
(5)
25
−20
−30
20
0
1
2
3
0
1
f (GHz)
2
3
f (GHz)
Pdrive = −40 dBm; Z0 = 50 Ω.
Pdrive = −40 dBm; Z0 = 50 Ω.
(1) VCC = 3.0 V; Tamb = 85 °C; ICC = 12.52 mA
(1) VCC = 3.0 V; Tamb = 85 °C; ICC = 12.52 mA
(2) VCC = 3.0 V; Tamb = −40 °C; ICC = 12.67 mA
(2) VCC = 3.0 V; Tamb = −40 °C; ICC = 12.67 mA
(3) VCC = 3.3 V; Tamb = 25 °C; ICC = 14.08 mA
(3) VCC = 3.3 V; Tamb = 25 °C; ICC = 14.08 mA
(4) VCC = 3.6 V; Tamb = 85 °C; ICC = 15.30 mA
(4) VCC = 3.6 V; Tamb = 85 °C; ICC = 15.30 mA
(5) VCC = 3.6 V; Tamb = −40 °C; ICC = 16.51 mA
(5) VCC = 3.6 V; Tamb = −40 °C; ICC = 16.51 mA
Fig 8.
Output return loss as function of frequency;
typical values
BGA2801
Product data sheet
Fig 9. Insertion power gain as function of frequency;
typical values
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
8 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
001aam287
0
(5)
(4)
(3)
(2)
(1)
ISL
(dB)
−20
001aam288
6
NF
(dB)
−40
5
(1)
(4)
4
(3)
(2)
(5)
−60
3
−80
2
1
2
3
0
1
2
f (GHz)
3
f (GHz)
Pdrive = −40 dBm; Z0 = 50 Ω.
Z0 = 50 Ω.
(1) VCC = 3.0 V; Tamb = 85 °C; ICC = 12.52 mA
(1) VCC = 3.0 V; Tamb = 85 °C; ICC = 12.52 mA
(2) VCC = 3.0 V; Tamb = −40 °C; ICC = 12.67 mA
(2) VCC = 3.0 V; Tamb = −40 °C; ICC = 12.67 mA
(3) VCC = 3.3 V; Tamb = 25 °C; ICC = 14.08 mA
(3) VCC = 3.3 V; Tamb = 25 °C; ICC = 14.08 mA
(4) VCC = 3.6 V; Tamb = 85 °C; ICC = 15.30 mA
(4) VCC = 3.6 V; Tamb = 85 °C; ICC = 15.30 mA
(5) VCC = 3.6 V; Tamb = −40 °C; ICC = 16.51 mA
(5) VCC = 3.6 V; Tamb = −40 °C; ICC = 16.51 mA
Fig 10. Isolation as function of frequency;
typical values
Fig 11. Noise figure as function of frequency;
typical values
8.3 Tables
Table 7.
Supply current over temperature and supply voltages
Typical values.
Symbol
ICC
Parameter
supply current
Conditions
Tamb (°C)
Unit
−40
25
85
VCC = 3.0 V
12.67
12.24
12.52
mA
VCC = 3.3 V
14.85
14.08
14.27
mA
VCC = 3.6 V
16.51
15.65
15.30
mA
Table 8.
Second harmonic output power over temperature and supply voltages
Typical values.
Symbol Parameter
Conditions
Tamb (°C)
−40 25
PL(2H)
Unit
85
second harmonic output power f = 250 MHz; Pdrive = −33 dBm
VCC = 3.0 V
−53 −58 −59 dBm
VCC = 3.3 V
−56 −60 −59 dBm
VCC = 3.6 V
−58 −60 −59 dBm
f = 950 MHz; Pdrive = −33 dBm
BGA2801
Product data sheet
VCC = 3.0 V
−46 −50 −54 dBm
VCC = 3.3 V
−47 −50 −53 dBm
VCC = 3.6 V
−47 −49 −52 dBm
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
9 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
Table 9.
Input power at 1 dB gain compression over temperature and supply voltages
Typical values.
Symbol Parameter
Conditions
Pi(1dB)
f = 250 MHz
input power at 1 dB gain compression
Tamb (°C)
Unit
−40
25
85
VCC = 3.0 V
−20
−20
−20
dBm
VCC = 3.3 V
−20
−19
−19
dBm
VCC = 3.6 V
−19
−19
−19
dBm
VCC = 3.0 V
−20
−20
−20
dBm
VCC = 3.3 V
−20
−20
−20
dBm
VCC = 3.6 V
−19
−19
−19
dBm
VCC = 3.0 V
−22
−22
−22
dBm
VCC = 3.3 V
−21
−21
−22
dBm
VCC = 3.6 V
−21
−21
−22
dBm
f = 950 MHz
f = 2150 MHz
Table 10. Output power at 1 dB gain compression over temperature and supply voltages
Typical values.
Symbol
Parameter
Conditions
PL(1dB)
output power at 1 dB gain compression
f = 250 MHz
Tamb (°C)
Unit
−40
25
85
VCC = 3.0 V
1
1
0
dBm
VCC = 3.3 V
2
2
1
dBm
VCC = 3.6 V
3
3
2
dBm
VCC = 3.0 V
1
0
0
dBm
VCC = 3.3 V
2
2
1
dBm
VCC = 3.6 V
3
3
2
dBm
VCC = 3.0 V
0
−1
−2
dBm
VCC = 3.3 V
1
0
−1
dBm
VCC = 3.6 V
2
1
0
dBm
f = 950 MHz
f = 2150 MHz
BGA2801
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
10 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
Table 11. Saturated output power over temperature and supply voltages
Typical values.
Symbol
Parameter
Conditions
PL(sat)
saturated output power
f = 250 MHz
Tamb (°C)
Unit
−40
25
85
VCC = 3.0 V
3
3
3
dBm
VCC = 3.3 V
4
4
4
dBm
VCC = 3.6 V
5
5
5
dBm
VCC = 3.0 V
3
3
2
dBm
VCC = 3.3 V
4
4
3
dBm
VCC = 3.6 V
5
5
4
dBm
VCC = 3.0 V
2
1
0
dBm
VCC = 3.3 V
3
2
1
dBm
VCC = 3.6 V
4
3
1
dBm
f = 950 MHz
f = 2150 MHz
Table 12. Second-order intermodulation distance over temperature and supply voltages
Typical values.
Symbol
Parameter
Conditions
ΔIM2
second-order intermodulation distance
f1 = 250 MHz;
f2 = 251 MHz;
Pdrive = −36 dBm
Tamb (°C)
Unit
−40 25 85
VCC = 3.0 V
48
48 42 dBc
VCC = 3.3 V
52
45 41 dBc
VCC = 3.6 V
49
44 41 dBc
VCC = 3.0 V
38
38 36 dBc
VCC = 3.3 V
40
39 37 dBc
VCC = 3.6 V
41
39 37 dBc
f1 = 950 MHz;
f2 = 951 MHz;
Pdrive = −36 dBm
BGA2801
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
11 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
Table 13. Output third-order intercept point over temperature and supply voltages
Typical values.
Symbol
Parameter
Conditions
IP3O
output third-order intercept point
f1 = 250 MHz;
f2 = 251 MHz;
Pdrive = −36 dBm
Tamb (°C)
Unit
−40
25
85
VCC = 3.0 V
13
13
12
dBm
VCC = 3.3 V
15
14
14
dBm
VCC = 3.6 V
16
15
14
dBm
VCC = 3.0 V
13
12
12
dBm
VCC = 3.3 V
15
14
13
dBm
VCC = 3.6 V
16
15
14
dBm
f1 = 950 MHz;
f2 = 951 MHz;
Pdrive = −36 dBm
f1 = 2150 MHz;
f2 = 2151 MHz;
Pdrive = −36 dBm
VCC = 3.0 V
9
8
7
dBm
VCC = 3.3 V
11
9
8
dBm
VCC = 3.6 V
12
10
8
dBm
Table 14. −3 dB bandwidth over temperature and supply voltages
Typical values.
Symbol
B−3dB
BGA2801
Product data sheet
Parameter
Conditions
−3 dB bandwidth
Tamb (°C)
Unit
−40
25
85
VCC = 3.0 V
2.875
2.832
2.745
GHz
VCC = 3.3 V
2.902
2.849
2.763
GHz
VCC = 3.6 V
2.920
2.866
2.775
GHz
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
12 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
9. Test information
30 mm
IC1
30
mm
C2
C1
C3
001aal226
True size = 30 mm × 30 mm.
Fig 12. PCB layout and demo board with components
Table 15.
BGA2801
Product data sheet
List of components used for the typical application
Component
Description
Value
Dimensions
C1, C2
multilayer ceramic chip capacitor
100 pF
0603
C3
multilayer ceramic chip capacitor
22 nF
0603
IC1
BGA2801 MMIC
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
SOT363
© NXP B.V. 2010. All rights reserved.
13 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
10. Package outline
Plastic surface-mounted package; 6 leads
SOT363
D
E
B
y
X
A
HE
6
5
v M A
4
Q
pin 1
index
A
A1
1
2
e1
3
bp
c
Lp
w M B
e
detail X
0
1
2 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
A1
max
bp
c
D
E
e
e1
HE
Lp
Q
v
w
y
mm
1.1
0.8
0.1
0.30
0.20
0.25
0.10
2.2
1.8
1.35
1.15
1.3
0.65
2.2
2.0
0.45
0.15
0.25
0.15
0.2
0.2
0.1
OUTLINE
VERSION
REFERENCES
IEC
SOT363
JEDEC
JEITA
SC-88
EUROPEAN
PROJECTION
ISSUE DATE
04-11-08
06-03-16
Fig 13. Package outline SOT363
BGA2801
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
14 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
11. Abbreviations
Table 16.
Abbreviations
Acronym
Description
DC
Direct Current
IF
Intermediate Frequency
LNA
Low-Noise Amplifier
LNB
Low-Noise Block converter
PCB
Printed-Circuit Board
RF
Radio Frequency
SMD
Surface Mounted Device
12. Revision history
Table 17.
Revision history
Document ID
Release date
Data sheet status
Change notice
Supersedes
BGA2801 v.1
20100817
Product data sheet
-
-
BGA2801
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
15 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
13. Legal information
13.1 Data sheet status
Document status[1][2]
Product status[3]
Definition
Objective [short] data sheet
Development
This document contains data from the objective specification for product development.
Preliminary [short] data sheet
Qualification
This document contains data from the preliminary specification.
Product [short] data sheet
Production
This document contains the product specification.
[1]
Please consult the most recently issued document before initiating or completing a design.
[2]
The term ‘short data sheet’ is explained in section “Definitions”.
[3]
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status
information is available on the Internet at URL http://www.nxp.com.
13.2 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences of
use of such information.
Short data sheet — A short data sheet is an extract from a full data sheet
with the same product type number(s) and title. A short data sheet is intended
for quick reference only and should not be relied upon to contain detailed and
full information. For detailed and full information see the relevant full data
sheet, which is available on request via the local NXP Semiconductors sales
office. In case of any inconsistency or conflict with the short data sheet, the
full data sheet shall prevail.
Product specification — The information and data provided in a Product
data sheet shall define the specification of the product as agreed between
NXP Semiconductors and its customer, unless NXP Semiconductors and
customer have explicitly agreed otherwise in writing. In no event however,
shall an agreement be valid in which the NXP Semiconductors product is
deemed to offer functions and qualities beyond those described in the
Product data sheet.
13.3 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information.
In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation - lost
profits, lost savings, business interruption, costs related to the removal or
replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.
Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards
customer for the products described herein shall be limited in accordance
with the Terms and conditions of commercial sale of NXP Semiconductors.
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors accepts no liability for inclusion and/or use of
NXP Semiconductors products in such equipment or applications and
therefore such inclusion and/or use is at the customer’s own risk.
Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.
Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP Semiconductors
accepts no liability for any assistance with applications or customer product
design. It is customer’s sole responsibility to determine whether the NXP
Semiconductors product is suitable and fit for the customer’s applications and
products planned, as well as for the planned application and use of
customer’s third party customer(s). Customers should provide appropriate
design and operating safeguards to minimize the risks associated with their
applications and products.
NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.
Limiting values — Stress above one or more limiting values (as defined in
the Absolute Maximum Ratings System of IEC 60134) will cause permanent
damage to the device. Limiting values are stress ratings only and (proper)
operation of the device at these or any other conditions above those given in
the Recommended operating conditions section (if present) or the
Characteristics sections of this document is not warranted. Constant or
repeated exposure to limiting values will permanently and irreversibly affect
the quality and reliability of the device.
Terms and conditions of commercial sale — NXP Semiconductors
products are sold subject to the general terms and conditions of commercial
sale, as published at http://www.nxp.com/profile/terms, unless otherwise
agreed in a valid written individual agreement. In case an individual
agreement is concluded only the terms and conditions of the respective
agreement shall apply. NXP Semiconductors hereby expressly objects to
applying the customer’s general terms and conditions with regard to the
purchase of NXP Semiconductors products by customer.
Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.
No offer to sell or license — Nothing in this document may be interpreted or
construed as an offer to sell products that is open for acceptance or the grant,
conveyance or implication of any license under any copyrights, patents or
other industrial or intellectual property rights.
Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from national authorities.
BGA2801
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
16 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
Non-automotive qualified products — Unless this data sheet expressly
states that this specific NXP Semiconductors product is automotive qualified,
the product is not suitable for automotive use. It is neither qualified nor tested
in accordance with automotive testing or application requirements. NXP
Semiconductors accepts no liability for inclusion and/or use of
non-automotive qualified products in automotive equipment or applications.
NXP Semiconductors’ specifications such use shall be solely at customer’s
own risk, and (c) customer fully indemnifies NXP Semiconductors for any
liability, damages or failed product claims resulting from customer design and
use of the product for automotive applications beyond NXP Semiconductors’
standard warranty and NXP Semiconductors’ product specifications.
In the event that customer uses the product for design-in and use in
automotive applications to automotive specifications and standards, customer
(a) shall use the product without NXP Semiconductors’ warranty of the
product for such automotive applications, use and specifications, and (b)
whenever customer uses the product for automotive applications beyond
13.4 Trademarks
Notice: All referenced brands, product names, service names and trademarks
are the property of their respective owners.
14. Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
BGA2801
Product data sheet
All information provided in this document is subject to legal disclaimers.
Rev. 1 — 17 August 2010
© NXP B.V. 2010. All rights reserved.
17 of 18
BGA2801
NXP Semiconductors
MMIC wideband amplifier
15. Contents
1
1.1
1.2
1.3
2
3
4
5
6
7
8
8.1
8.2
8.3
9
10
11
12
13
13.1
13.2
13.3
13.4
14
15
Product profile . . . . . . . . . . . . . . . . . . . . . . . . . . 1
General description . . . . . . . . . . . . . . . . . . . . . 1
Features and benefits . . . . . . . . . . . . . . . . . . . . 1
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pinning information . . . . . . . . . . . . . . . . . . . . . . 1
Ordering information . . . . . . . . . . . . . . . . . . . . . 1
Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 2
Thermal characteristics . . . . . . . . . . . . . . . . . . 2
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Application information. . . . . . . . . . . . . . . . . . . 3
Application examples . . . . . . . . . . . . . . . . . . . . 4
Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Test information . . . . . . . . . . . . . . . . . . . . . . . . 13
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 14
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Revision history . . . . . . . . . . . . . . . . . . . . . . . . 15
Legal information. . . . . . . . . . . . . . . . . . . . . . . 16
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 16
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Contact information. . . . . . . . . . . . . . . . . . . . . 17
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Please be aware that important notices concerning this document and the product(s)
described herein, have been included in section ‘Legal information’.
© NXP B.V. 2010.
All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: [email protected]
Date of release: 17 August 2010
Document identifier: BGA2801