PHILIPS 74LVT16374A

INTEGRATED CIRCUITS
74LVT16374A
3.3V LVT 16-bit edge-triggered D-type
flip-flop (3-State)
Product specification
Supersedes data of 1998 Feb 19
IC23 Data Handbook
1999 Oct 18
Philips Semiconductors
Product specification
3.3V 16-bit edge-triggered D-type flip-flop
(3-State)
FEATURES
74LVT16374A
DESCRIPTION
• 16-bit edge-triggered flip-flop
• 3-State buffers
• Output capability: +64mA/-32mA
• TTL input and output switching levels
• Input and output interface capability to systems at 5V supply
• Bus-hold data inputs eliminate the need for external pull-up
The 74LVT16374A is a high-performance BiCMOS product
designed for VCC operation at 3.3V.
This device is a 16-bit edge-triggered D-type flip-flop featuring
non-inverting 3-State outputs. The device can be used as two 8-bit
flip-flops or one 16-bit flip-flop. On the positive transition of the clock
(CP), the Q outputs of the flip-flop take on the logic levels set up at
the D inputs.
resistors to hold unused inputs
• Live insertion/extraction permitted
• Power-up reset
• Power-up 3-State
• No bus current loading when output is tied to 5V bus
• Latch-up protection exceeds 500mA per JEDEC Std 17
• ESD protection exceeds 2000V per MIL STD 883 Method 3015
and 200V per Machine Model
QUICK REFERENCE DATA
SYMBOL
CONDITIONS
Tamb = 25°C
PARAMETER
tPLH
tPHL
Propagation delay
nCP to nQx
CL = 50pF;
VCC = 3.3V
CIN
TYPICAL
UNIT
2.9
ns
Input capacitance
VI = 0V or 3.0V
3
pF
COUT
Output pin capacitance
Outputs disabled; VO = 0V or 3.0V
9
pF
ICCZ
Total supply current
Outputs disabled; VCC = 3.6V
70
µA
ORDERING INFORMATION
PACKAGES
TEMPERATURE RANGE
OUTSIDE NORTH AMERICA
NORTH AMERICA
DWG NUMBER
48-Pin Plastic SSOP Type III
–40°C to +85°C
74LVT16374A DL
VT16374A DL
SOT370-1
48-Pin Plastic TSSOP Type II
–40°C to +85°C
74LVT16374A DGG
VT16374A DGG
SOT362-1
LOGIC SYMBOL
47
46
44
43
41
40
38
37
1D0 1D1 1D2 1D3 1D4 1D5 1D6 1D7
48
1CP
1
1OE
1Q0 1Q1 1Q2 1Q3 1Q4 1Q5 1Q6 1Q7
2
3
5
6
8
9
11
12
36
35
33
32
30
29
27
26
2D0 2D21 2D2 2D3 2D4 2D5 2D6 2D7
25
2CP
24
2OE
2Q0 2Q1 2Q2 2Q3 2Q4 2Q5 2Q6 2Q7
13
14
16
17
19
20
22
23
SW00018
1999 Oct 18
2
853-1781 22535
Philips Semiconductors
Product specification
3.3V 16-bit edge-triggered D-type flip-flop
(3-State)
LOGIC SYMBOL (IEEE/IEC)
1OE
1CP
2OE
2CP
1D1
1D2
1D3
1D4
1D5
1D6
1D7
1D8
2D1
2D2
2D3
2D4
2D5
2D6
2D7
2D8
1
PIN DESCRIPTION
1EN
48
C1
24
2EN
25
C2
47
1D
2
1∇
46
3
44
5
43
6
41
8
40
9
38
11
37
12
36
2D
13
2∇
35
14
33
16
32
17
30
19
29
20
27
22
26
23
1Q1
1Q3
1
48
1CP
1Q0
2
47
1D0
!Q1
3
46
1D1
GND
4
45
GND
1Q2
5
44
1D2
1Q3
6
43
1D3
VCC
7
42
VCC
1Q4
8
41
1D4
1Q5
9
40
1D5
GND
10
39
GND
1Q6
11
38
1D6
1Q7
12
37
1D7
2Q0
13
36
2D0
2Q1
14
35
2D1
GND
15
34
GND
2Q2
16
33
2D2
2Q3
17
32
2D3
VCC
18
31
VCC
2Q4
19
30
2D4
2Q5
20
29
2D5
GND
21
28
GND
2Q6
22
27
2D6
2Q7
23
26
2D7
2OE
24
25
2CP
SYMBOL
1D0 - 1D7
2D0 - 2D7
Data inputs
2, 3, 5, 6, 8, 9, 11, 12
13, 14, 16, 17, 19, 20,
22, 23
1Q0 - 1Q7
2Q0 - 2Q7
Data outputs
1, 24
1OE, 2OE
Output enable inputs
(active-Low)
48, 25
1CP, 2CP
Clock pulse inputs (active
rising edge)
4, 10, 15, 21, 28, 34,
39, 45
GND
Ground (0V)
7, 18, 31, 42
VCC
Positive supply voltage
1Q4
1Q5
1Q6
1Q7
1Q8
2Q1
2Q2
2Q3
2Q4
2Q5
2Q6
2Q7
2Q8
PIN CONFIGURATION
1OE
PIN NUMBER
47, 46, 44, 43, 41, 40,
38, 37 36, 35, 33, 32,
30, 29, 27, 26
1Q2
SW00016
SW00017
1999 Oct 18
74LVT16374A
3
FUNCTION
Philips Semiconductors
Product specification
3.3V 16-bit edge-triggered D-type flip-flop
(3-State)
74LVT16374A
FUNCTION TABLE
INTERNAL
OUTPUTS
nOE
INPUTS
nCP
nDx
REGISTER
nQ0 - nQ7
L
L
↑
↑
l
h
L
H
L
H
L
↑
X
NC
NC
H
H
↑
↑
X
nDx
NC
nDx
Z
Z
OPERATING MODE
H =
h =
L =
l =
NC=
X =
Z =
↑ =
↑ =
Load and read register
Hold
Disable outputs
High voltage level
High voltage level one set-up time prior to the High-to-Low E transition
Low voltage level
Low voltage level one set-up time prior to the High-to-Low E transition
No change
Don’t care
High impedance “off” state
Low-to-High clock transition
Not a Low-to-High clock transition
LOGIC DIAGRAM
nD0
nD1
nD2
nD3
nD4
nD5
nD6
nD7
D
D
D
D
D
D
D
D
CP Q
CP Q
CP Q
CP Q
CP Q
CP Q
CP Q
CP Q
nCP
nOE
nQ0
nQ1
nQ2
nQ3
nQ4
nQ5
nQ6
nQ7
SW00019
ABSOLUTE MAXIMUM RATINGS1, 2
SYMBOL
VCC
PARAMETER
IIK
DC input diode current
VI
DC input voltage3
IOK
DC output diode current
VOUT
IOUT
CONDITIONS
DC supply voltage
DC output voltage3
DC output
out ut current
VI < 0
RATING
UNIT
-0.5 to +4.6
V
-50
mA
-0.5 to +7.0
V
VO < 0
-50
mA
Output in Off or High state
-0.5 to +7.0
V
Output in Low state
128
Output in High state
-64
mA
Tstg
Storage temperature range
-65 to +150
°C
NOTES:
1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the
device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction
temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
1999 Oct 18
4
Philips Semiconductors
Product specification
3.3V 16-bit edge-triggered D-type flip-flop
(3-State)
74LVT16374A
RECOMMENDED OPERATING CONDITIONS
SYMBOL
VCC
LIMITS
PARAMETER
DC supply voltage
UNIT
MIN
MAX
2.7
3.6
V
0
5.5
V
VI
Input voltage
VIH
High-level input voltage
VIL
Input voltage
0.8
V
IOH
High-level output current
-32
mA
Low-level output current
32
Low-level output current; current duty cycle ≤ 50%; f ≥ 1kHz
64
IOL
2.0
∆t/∆v
Input transition rise or fall rate; Outputs enabled
Tamb
Operating free-air temperature range
V
-40
mA
10
ns/V
+85
°C
DC ELECTRICAL CHARACTERISTICS
LIMITS
SYMBOL
PARAMETER
TEST CONDITIONS
Temp = -40°C to +85°C
MIN
VIK
Input clamp voltage
VCC = 2.7V; IIK = -18mA
VCC = 2.7 to 3.6V; IOH = -100µA
VOH
VOL
VRST
High-level output voltage
Low-level output voltage
Power-up output Low voltage5
Input
In
ut leakage current
Output off current
–.85
-1.2
VCC
VCC = 2.7V; IOH = -8mA
2.4
2.5
VCC = 3.0V; IOH = -32mA
2.0
2.3
0.07
0.2
VCC = 2.7V; IOL = 24mA
0.3
0.5
VCC = 3.0V; IOL = 16mA
0.25
0.4
VCC = 3.0V; IOL = 32mA
0.3
0.5
VCC = 3.0V; IOL = 64mA
0.4
0.55
VCC = 3.6V; IO = 1mA; VI = GND or VCC
0.1
0.55
0.1
±1
VCC = 0 or 3.6V; VI = 5.5V
0.4
10
VCC = 3.6V; VI = VCC
0.1
1
Control pins
Data
pins
ins4
VCC = 0V; VI or VO = 0 to 4.5V
-0.4
-5
0.1
±100
VCC = 3V; VI = 0.8V
75
135
VCC = 3V; VI = 2.0V
-75
-135
UNIT
V
V
VCC = 2.7V; IOL = 100µA
VCC = 3.6V; VI = 0
IOFF
MAX
VCC-0.2
VCC = 3.6V; VI = VCC or GND
II
TYP1
V
V
µA
µA
µA
IHOLD
Bus Hold current D inputs7
IEX
Current into an output in the
High state when VO > VCC
VO = 5.5V; VCC = 3.0V
50
125
µA
Power up/down 3-State output
current3
VCC ≤ 1.2V; VO = 0.5V to VCC; VI = GND or VCC;
OE/OE = Don’t care
1
±100
µA
IOZH
3-State output High current
VCC = 3.6V; VO = 3.0V; VI = VIH or VIL
0.5
5
IOZL
3-State output Low current
VCC = 3.6V; VO = 0.5V; VI = VIH or VIL
0.5
-5
VCC = 3.6V; Outputs High, VI = GND or VCC, IO = 0
0.07
0.12
VCC = 3.6V; Outputs Low, VI = GND or VCC, IO = 0
4
6
0.07
0.12
0.1
0.2
±500
VCC = 0V to 3.6V; VCC = 3.6V
IPU/PD
ICCH
ICCL
Quiescent supply current
ICCZ
∆ICC
VCC = 3.6V; Outputs Disabled; VI = GND or VCC, IO =
Additional supply current per
input pin2
VCC = 3V to 3.6V; One input at VCC-0.6V,
Other inputs at VCC or GND
06
µA
mA
mA
NOTES:
1. All typical values are at VCC = 3.3V and Tamb = 25°C.
2. This is the increase in supply current for each input at the specified voltage level other than VCC or GND
3. This parameter is valid for any VCC between 0V and 1.2V with a transition time of up to 10msec. From VCC = 1.2V to VCC = 3.3V ± 0.3V a
transition time of 100µsec is permitted. This parameter is valid for Tamb = 25°C only.
4. Unused pins at VCC or GND.
5. For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.
6. ICCZ is measured with outputs pulled to VCC or GND.
7. This is the bus hold overdrive current required to force the input to the opposite logic state.
1999 Oct 18
5
Philips Semiconductors
Product specification
3.3V 16-bit edge-triggered D-type flip-flop
(3-State)
74LVT16374A
AC CHARACTERISTICS
GND = 0V; tR = tF = 2.5ns; CL = 50pF; RL = 500Ω; Tamb = -40°C to +85°C.
LIMITS
SYMBOL
PARAMETER
WAVEFORM
VCC = 3.3V ±0.3V
VCC = 2.7V
TYP1
MAX
MAX
MIN
UNIT
fmax
Maximum clock frequency
1
150
tPLH
tPHL
Propagation delay
nCP to nQx
1
1.5
1.5
2.9
3.0
5.0
5.0
5.6
5.6
MHz
ns
tPZH
tPZL
Output enable time
to High and Low level
3
4
1.5
1.5
3.2
3.0
4.8
4.6
6.0
5.2
ns
tPHZ
tPLZ
Output disable time
from High and Low Level
3
4
1.5
1.5
3.9
3.4
5.4
4.6
6.0
5.0
ns
NOTE:
1. All typical values are at VCC = 3.3V and Tamb = 25°C.
AC SETUP REQUIREMENTS
GND = 0V; tR = tF = 2.5ns; CL = 50pF; RL = 500Ω; Tamb = -40°C to +85°C.
LIMITS
SYMBOL
PARAMETER
VCC = 3.3V ±0.3V
WAVEFORM
VCC = 2.7V
MIN
TYP
MIN
UNIT
tS(H)
tS(L)
Setup time
nDx to nCP
2
2.5
2.5
0.7
0.7
2.5
2.5
ns
th(H)
th(L)
Hold time
nDx to nCP
2
0.5
0.5
0
0
0
0
ns
tW(H)
tw(L)
nCP pulse width
High or Low
1
1.5
3.0
0.6
1.6
1.5
3.0
ns
AC WAVEFORMS
VM = 1.5V, VIN = GND to 3.0V
1/fMAX
2.7V
2.7V
nCP
VM
VM
nOE
VM
VM
VM
0V
0V
tw(H)
tW(L)
tPZH
tPHZ
tPLH
tPHL
VOH
VOH
nQx
VM
nQx
VOH -0.3V
VM
VM
0V
VOL
SW00020
SW00014
Waveform 1. Propagation Delay, Clock Input to Output, Clock
Pulse Width, and Maximum Clock Frequency
nDx
ÉÉÉ ÉÉÉÉÉÉÉ
ÉÉÉ
ÉÉÉ ÉÉÉÉÉÉÉ
ÉÉÉ
ÉÉÉ ÉÉÉÉÉÉÉ
ÉÉÉ
VM
VM
ts(H)
VM
th(H)
Waveform 3. 3-State Output Enable Time to High Level and
Output Disable Time from High Level
2.7V
2.7V
VM
ts(L)
nOE
0V
VM
VM
th(L)
0V
tPZL
2.7V
tPLZ
3V
nCP
VM
VM
nQx
0V
NOTE: The shaded areas indicate when the input is permitted to change for predictable output performance.
VOL +0.3V
VOL
SW00021
SW00015
Waveform 2. Data Setup and Hold Times
1999 Oct 18
VM
Waveform 4. 3-State Output Enable Time to Low Level and
Output Disable Time from Low Level
6
Philips Semiconductors
Product specification
3.3V 16-bit edge-triggered D-type flip-flop
(3-State)
74LVT16374A
TEST CIRCUIT AND WAVEFORMS
6V
VCC
OPEN
VIN
VOUT
PULSE
GENERATOR
tW
90%
RL
GND
VM
NEGATIVE
PULSE
CL
10%
0V
RL
tTHL (tF)
tTLH (tR)
tTLH (tR)
tTHL (tF)
90%
POSITIVE
PULSE
Test Circuit for 3-State Outputs
SWITCH
tPHZ/tPZH
GND
tPLZ/tPZL
6V
tPLH/tPHL
open
VM
VM
10%
tW
0V
VM = 1.5V
Input Pulse Definition
INPUT PULSE REQUIREMENTS
DEFINITIONS
FAMILY
RL = Load resistor; see AC CHARACTERISTICS for value.
CL = Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
AMP (V)
90%
10%
SWITCH POSITION
TEST
AMP (V)
VM
10%
D.U.T.
RT
90%
74LVT16
Amplitude
Rep. Rate
tW
tR
2.7V
≤10MHz
500ns
≤2.5ns
tF
≤2.5ns
RT = Termination resistance should be equal to ZOUT of
pulse generators.
SW00003
1999 Oct 18
7
Philips Semiconductors Low Voltage Products
Product specification
3.3V LVT 16-bit edge-triggered D-type flip-flop
(3-State)
SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm
1998 Oct 18
8
74LVT16374A
SOT370-1
Philips Semiconductors Low Voltage Products
Product specification
3.3V LVT 16-bit edge-triggered D-type flip-flop
(3-State)
TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1mm
1998 Oct 18
9
74LVT16374A
SOT362-1
Philips Semiconductors Low Voltage Products
Product specification
3.3V LVT 16-bit edge-triggered D-type flip-flop
(3-State)
74LVT16374A
Data sheet status
Data sheet
status
Product
status
Definition [1]
Objective
specification
Development
This data sheet contains the design target or goal specifications for product development.
Specification may change in any manner without notice.
Preliminary
specification
Qualification
This data sheet contains preliminary data, and supplementary data will be published at a later date.
Philips Semiconductors reserves the right to make chages at any time without notice in order to
improve design and supply the best possible product.
Product
specification
Production
This data sheet contains final specifications. Philips Semiconductors reserves the right to make
changes at any time without notice in order to improve design and supply the best possible product.
[1] Please consult the most recently issued datasheet before initiating or completing a design.
Definitions
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.
Disclaimers
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.
 Copyright Philips Electronics North America Corporation 1999
All rights reserved. Printed in U.S.A.
Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381
print code
Document order number:
1998 Oct 18
10
Date of release: 10-99
9397-750-06514