Data Sheet No. PD60162 Rev. V IR2106(4)(S) HIGH AND LOW SIDE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • Packages Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V (IR2106(4)) Undervoltage lockout for both channels 3.3V, 5V and 15V input logic compatible Matched propagation delay for both channels Logic and power ground +/- 5V offset. Lower di/dt gate driver for better noise immunity Outputs in phase with inputs (IR2106) Description 8-Lead SOIC 8-Lead PDIP 14-Lead SOIC 14-Lead PDIP 2106/2301//2108//2109/2302/2304Feature Comparison The IR2106(4)(S) are high voltage, Crosshigh speed power MOSFET and Input conduction Dead-Time Ground Pins Ton/Toff Part IGBT drivers with independent high prevention logic logic and low side referenced output chan2106/2301 COM HIN/LIN no none 220/200 nels. Proprietary HVIC and latch 21064 VSS/COM immune CMOS technologies enable 2108 Internal 540ns COM HIN/LIN yes 220/200 Programmable 0.54~5µs 21084 VSS/COM ruggedized monolithic construction. 2109/2302 Internal 540ns COM The logic input is compatible with IN/SD yes 750/200 Programmable 0.54~5µs 21094 VSS/COM standard CMOS or LSTTL output, yes 160/140 Internal 100ns HIN/LIN COM 2304 down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection up to 600V VCC VCC VB HIN HIN HO LIN LIN VS COM LO TO LOAD IR2106 up to 600V HO (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com VCC V CC VB HIN HIN VS LIN LIN V SS V SS IR21064 TO LOAD COM LO 1 IR2106(4) (S) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition VB High side floating absolute voltage VS Max. -0.3 625 Units High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 VIN Logic input voltage VSS - 0.3 VCC + 0.3 Logic ground (IR21064 only) VCC - 25 VCC + 0.3 VSS dVS/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient — 50 — 1.0 (8 lead SOIC) — 0.625 (14 lead PDIP) — 1.6 (8 lead PDIP) (14 lead SOIC) — 1.0 (8 lead PDIP) — 125 (8 lead SOIC) — 200 (14 lead PDIP) — 75 (14 lead SOIC) 2 Min. — 120 TJ Junction temperature — 150 TS Storage temperature -50 150 TL Lead temperature (soldering, 10 seconds) — 300 V V/ns W °C/W °C www.irf.com IR2106(4) (S) Recommended Operating Conditions The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential. Symbol Definition VB High side floating supply absolute voltage IR2106(4) VS High side floating supply offset voltage Min. Max. VS + 10 VS + 20 Note 1 600 VHO High side floating output voltage VS VB VCC Low side and logic fixed supply voltage IR2106(4) 10 20 VLO Low side output voltage 0 VCC VIN Logic input voltage VSS VCC VSS Logic ground (IR21064 only) -5 5 Ambient temperature -40 125 TA Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C. Symbol Definition Min. Typ. — 220 300 VS = 0V Turn-off propagation delay — 200 280 VS = 0V or 600V Delay matching, HS & LS turn-on/off — 0 30 tr Turn-on rise time — 150 220 VS = 0V tf Turn-off fall time — 50 80 VS = 0V ton Turn-on propagation delay toff MT www.irf.com Max. Units Test Conditions nsec 3 IR2106(4) (S) Static Electrical Characteristics VBIAS (V CC , VBS ) = 15V, V SS = COM and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to VSS/COM and are applicable to the respective input leads. The VO, I O and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol Definition VIH Logic “1” input voltage (IR2106(4)) VIL Min. Typ. Max. Units Test Conditions 2.9 — — VCC = 10V to 20V VCC = 10V to 20V Logic “0” input voltage (IR2106(4)) — — 0.8 VOH High level output voltage, VBIAS - VO — 0.8 1.4 VOL Low level output voltage, VO — 0.3 0.6 IO = 20 mA ILK Offset supply leakage current — — 50 VB = VS = 600V IQBS 20 75 130 VIN = 0V or 5V IQCC Quiescent VBS supply current Quiescent VCC supply current 60 120 180 IIN+ Logic “1” input bias current VIN = 5V (IR2106(4)) IIN- IO = 20 mA VIN = 0V or 5V µA — 5 20 Logic “0” input bias current VIN = 0V (IR2106(4)) — — 2 8.0 8.9 9.8 VBSUV+ VCC and VBS supply undervoltage positive going threshold VCCUV- VCC and VBS supply undervoltage negative going 7.4 8.2 9.0 VCCUV+ V VBSUV- threshold VCCUVH Hysteresis 0.3 0.7 — Output high short circuit pulsed current 120 200 — V VBSUVH IO+ mA IO- 4 Output low short circuit pulsed current 250 350 — VO = 0V, PW ≤ 10 µs VO = 15V, PW ≤ 10 µs www.irf.com IR2106(4) (S) Functional Block Diagrams VB IR2106 UV DETECT HO R HIN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER R PULSE FILTER Q S VS PULSE GENERATOR VCC UV DETECT LIN VSS/COM LEVEL SHIFT LO DELAY COM VB IR21064 UV DETECT HO R HIN VSS/COM LEVEL SHIFT HV LEVEL SHIFTER R PULSE FILTER Q S VS PULSE GENERATOR VCC UV DETECT LIN VSS/COM LEVEL SHIFT DELAY LO COM VSS www.irf.com 5 IR2106(4) (S) Lead Definitions Symbol Description HIN Logic input for high side gate driver output (HO), in phase LIN Logic input for low side gate driver output (LO), in phase VSS Logic Ground (IR21064 only) VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side and logic fixed supply LO Low side gate drive output COM Low side return Lead Assignments VB 8 1 HIN HO 7 2 3 LIN VS 6 4 COM LO 5 1 VCC 2 1 4 8 HIN HO 7 LIN VS 6 COM LO 5 8 Lead PDIP 8 Lead SOIC IR2106 IR2106S VCC 14 1 14 VCC 2 HIN VB 13 2 HIN VB 13 3 LIN HO 12 3 LIN HO 12 VS 11 4 VS 11 4 6 3 VB VCC 5 VSS 10 5 VSS 10 6 COM 9 6 COM 9 7 LO 8 7 LO 8 14 Lead PDIP 14 Lead SOIC IR21064 IR21064S www.irf.com IR2106(4) (S) HIN LIN HO LO Figure 1. Input/Output Timing Diagram 50% 50% HIN LIN ton toff tr 90% HO LO tf 90% 10% 10% Figure 2. Switching Time Waveform Definitions HIN LIN 50% 50% LO HO 10% MT MT 90% LO HO Figure 3. Delay Matching Waveform Definitions www.irf.com 7 IR2106(4) (S) 500 Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) 500 400 300 M ax 200 Typ. 100 400 M ax. 300 Typ. 200 100 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature ( oC) Figure 4A. Turn-on Propagation Delay vs. Temperature 18 20 500 Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns) 16 Figure 4B. Turn-on Propagation Delay vs. Supply Voltage 500 400 300 M ax. 200 Typ. 100 0 400 M ax. 300 Typ. 200 100 0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 5A. Turn-off Propagation Delay vs. Temperature 8 14 V BIAS Supply Voltage (V) 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 5B. Turn-off Propagation Delay vs. Supply Voltage www.irf.com IR2106(4) (S) 500 400 Turn-on Rise Time (ns) Turn-on Rise Time (ns) 500 300 200 M ax. Typ. 100 400 300 M ax. Typ. 200 100 0 0 -50 -25 0 25 50 75 100 10 125 12 Temperature ( oC) 16 18 20 V BIAS Supply Voltage (V) Figure 6A. Turn-on Rise Time vs. Temperature Figure 6B. Turn-on Rise Time vs. Supply Voltage 200 Turn-off Fall Time (ns) 200 Turn-off Fall Time (ns) 14 150 100 M ax. 50 Typ. 0 150 100 M ax. Typ. 50 0 -50 -25 0 25 50 75 100 Temperature ( oC) Figure 7A. Turn-off Fall Time vs. Temperature www.irf.com 125 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 7B. Turn-off Fall Time vs. Supply Voltage 9 8 8 7 7 6 6 Input Voltage (V) Input Voltage (V) IR2106(4) (S) 5 4 M ax. 3 2 1 5 4 M ax. 3 2 1 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (oC) 14 16 18 20 V CC Supply Voltage (V) Figure 8A. Logic “1” Input Voltage vs. Temperature Figure 8B. Logic “1” Input Voltage vs. Supply Voltage 4.0 4.0 3.2 Input Voltage (V) Input Voltage (V) 3.2 2.4 1.6 M in. 0.8 1.6 M in. 0.8 0.0 0.0 -50 -25 0 25 50 75 100 Temperature ( oC) Figure 9A. Logic “0” Input Voltage vs. Temperature 10 2.4 125 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 9B. Logic “0” Input Voltage vs. Supply Voltage www.irf.com IR2106(4) (S) 4 High Level Output Voltage (V) High Level Output Voltage (V) 4 3 2 M ax. 1 Typ. 0 3 M ax. 2 Typ. 1 0 -50 -25 0 25 50 75 100 125 10 12 Temperature ( oC) Figure 10A. High Level Output Voltage vs. Temperature 16 18 20 Figure 10B. High Level Output Voltage vs. Supply Voltage 1.5 1.5 Low Level Output Voltage (V) Low Level Output Voltage (V) 14 V BIAS Supply Voltage (V) 1.2 0.9 0.6 M ax. 0.3 Typ. 0 1.2 0.9 M ax. 0.6 Typ. 0.3 0 -50 -25 0 25 50 75 100 125 Temperature ( oC) Fi 11A L L lO t t Figure 11A. Low Level Output Voltage vs. Temperature www.irf.com 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 11B. Low Level Output Voltage vs. Supply Voltage 11 500 Offset Supply Leakage Current ( A) Offset Supply Leakage Current ( A) IR2106(4) (S) 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 500 400 300 200 100 M ax. 0 125 0 100 o Temperature ( C) 400 500 600 Figure 12B. Offset Supply Leakage Current vs. Supply Voltage 400 V BS Supply Current ( A) 400 V BS Supply Current ( A) 300 V B Boost Voltage (V) Figure 12A. Offset Supply Leakage Current vs. Temperature 300 200 M ax. 100 Typ. 300 200 M ax. 100 Typ. M in. M in. 0 0 -50 -25 0 25 50 75 100 Temperature (oC) Figure 13A. VBS Supply Current vs. Temperature 12 200 125 10 12 14 16 18 20 V BS Supply Voltage (V) Figure 13B. VBS Supply Current vs. Supply Voltage www.irf.com IR2106(4) (S) 400 V CC Supply Current ( A) V c c S u p p ly C u rre n t ( A ) 400 300 200 M ax. Typ. 100 M in. 300 M ax. 200 Typ. M in. 100 0 0 -50 -25 0 25 50 75 100 125 10 12 T e m p e ra tu re (oC ) 18 20 Figure 14B. Quiescent VCC Supply Current vs. VCC Supply Voltage 60 60 Logic "1" Input Current ( A) Logic "1" Input Current ( A) 16 V CC Supply Voltage (V) Figure 14A. Quiescent VCC Supply Current vs. Temperature 50 40 30 20 10 14 M ax. 50 40 30 M ax. 20 10 Typ. Typ. 0 0 -50 -25 0 25 50 75 100 Temperature (oC) Figure 15A. Logic “1” Input Current vs. Temperature www.irf.com 125 10 12 14 16 18 20 V CC Supply Voltage (V) Figure 15B. Logic “1” Bias Current vs. Supply Voltage 13 IR2106(4) (S) 5 Logic "0" Input Current ( A) Logic "0" Input Current ( A) 5 4 3 M ax. 2 1 -50 -25 0 25 50 75 100 125 M ax. 2 1 10 12 14 Fi 16B L 16 18 20 V CC Supply Voltage (V) Temperature (oC) Figure 16A. Logic “0” Input Current vs. Temperature 12 i "0" I C Figure 16B. Logic “0” Input Currentt vs. Supply Voltage 11 V CC UVLO Threshold (-) (V) V CC UVLO Threshold (+) (V) 3 0 0 11 10 M ax. Typ. 9 M in. 8 7 10 M ax. 9 Typ. 8 M in. 7 6 -50 -25 0 25 50 75 100 Temperature ( oC) Figure 17. VCC Undervoltage Threshold (+) vs. Temperature 14 4 125 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 18. VCC Undervoltage Threshold (-) vs. Temperature www.irf.com IR2106(4) (S) 11 V BS UVLO Threshold (-) (V) V BS UVLO Threshold (+) (V) 12 11 M ax. 10 Typ. 9 M in. 8 10 M ax. 9 Typ. 8 M in. 7 6 7 -50 -25 0 25 50 75 100 -50 125 -25 0 50 75 100 125 Temperature ( C) Temperature ( C) Figure 19. VBS Undervoltage Threshold (+) vs. Temperature Figure 20. VBS Undervoltage Threshold (-) vs. Temperature 500 Output Source Current ( A) 500 Output Source Current ( A) 25 o o 400 300 Typ. 200 M in. 100 400 300 200 Typ. 100 M in. 0 0 -50 -25 0 25 50 75 100 o Temperature ( C) Figure 21A. Output Source Current vs. Temperature www.irf.com 125 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 21B. Output Source Current vs. Supply Voltage 15 IR2106(4) (S) 600 500 Output Sink Current ( A) Output Sink Current ( A) 600 Typ. 400 M in. 300 200 100 0 500 400 300 Typ. 200 M in. 100 0 -50 -25 0 25 50 75 100 125 10 o Temperature ( C) 16 18 20 Figure 22B. Output Sink Currentt vs. Supply Voltage 140 0 120 -2 Temprature (oC) V S Offset Supply Voltage (V) 14 V BIAS Supply Voltage (V) Figure 22A. Output Sink Current vs. Temperature Typ. -4 -6 100 80 140V 70V 60 0V 40 -8 20 -10 10 12 14 16 18 V BS Floating Supply Voltage (V) Figure 23. Maximum VS Negative Offset vs. Supply Voltage 16 12 20 1 10 100 1000 Frequency (KHz) Figure 24. IR2106 vs. Frequency (IRFBC20), Ω, VCC=15V Rgate=33Ω www.irf.com 140 140 120 120 100 140V 80 70V 60 0V Temperature (oC) Temperature (oC) IR2106(4) (S) 100 40 70V 60 0V 40 20 20 1 10 100 1 1000 10 100 1000 Frequency (KHz) Frequency (KHz) Figure 25. IR2106 vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V Figure 26. IR2106 vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V 140 140V 70V 140 0V 120 Temperature (oC) 120 Temperature (oC) 140V 80 100 80 60 40 100 80 60 140V 70V 40 0V 20 20 1 10 100 1000 Frequency (KHz) Figure 27. IR2106 vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V www.irf.com 1 10 100 1000 Frequency (KHz) Figure 28. IR21064 vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V 17 140 140 120 120 100 80 140V 60 70V 40 Temperature (oC) Temperature (oC) IR2106(4) (S) 0V 100 140V 80 70V 60 0V 40 20 20 1 10 100 1 1000 Figure 29. IR21064 vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V 0V 80 60 40 20 100 80 140V 70V 60 0V 40 20 1 10 100 1000 Frequency (KHz) Figure 31. IR21064 vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V 18 120 Temperature (o C) Temperature (oC) 140 70V 100 1000 Figure 30. IR21064 vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V 140V 120 100 Frequency (KHz) Frequency (KHz) 140 10 1 10 100 1000 Frequency (KHz) Figure 32. IR2106S vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V www.irf.com IR2106(4) (S) 140 120 120 140V 100 70V 80 0V 60 40 Temperature (oC) Temperature (oC) 140V 70V 140 0V 100 80 60 40 20 20 1 10 100 1 1000 1000 Figure 34. IR2106S vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V Figure 33. IR2106S vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V 140V 70V 0V 140 120 Temperature (oC) 120 Tempreture (oC) 100 Frequency (KHz) Frequency (KHz) 140 10 100 80 60 40 100 80 60 140V 70V 0V 40 20 1 10 100 Frequency (KHz) Figure 35. IR2106S vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V www.irf.com 1000 20 1 10 100 1000 Frequency (KHz) Figure 36. IR21064S vs. Frequency (IRFBC20), Rgate=33Ω , V CC=15V 19 140 140 120 120 Temperature (oC) Temperature (oC) IR2106(4) (S) 100 80 140V 70V 60 0V 100 80 40 20 20 10 100 1000 70V 0V 60 40 1 140V 1 10 100 1000 Frequency (KHz) Frequency (KHz) Figure 37. IR21064S vs. Frequency (IRFBC30), Rgate=22Ω , V CC=15V Figure 38. IR21064S vs. Frequency (IRFBC40), Rgate=15Ω , V CC=15V 140 140V 70V 0V Temperature (oC) 120 100 80 60 40 20 1 10 100 1000 Frequency (KHz) Figure 39. IR21064S vs. Frequency (IRFPE50), Rgate=10Ω , V CC=15V 20 www.irf.com IR2106(4) (S) Case Outlines 01-6014 01-3003 01 (MS-001AB) 8 Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 2 3 0.25 [.010] 4 A 6.46 [.255] MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC e 3X 1.27 [.050] e1 0.25 [.010] A1 .025 BASIC 0.635 BASIC .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 2. CONTROLLING DIMENSION: MILLIMETER 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. 8 Lead SOIC www.irf.com 1.27 BASIC K x 45° A C 8X b 8X 1.78 [.070] MAX H e1 6X MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 7 DIMENSION IS THE LENG TH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) 21 IR2106(4) (S) 14 Lead PDIP 14 Lead SOIC (narrow body) 01-6010 01-3002 03 (MS-001AC) 01-6019 01-3063 00 (MS-012AB) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 1/27/2004 22 www.irf.com