Data Sheet No. PD60227 IRS2117/IRS2118(S)PbF SINGLE CHANNEL DRIVER Features • • • • • • • • Floating channel designed for bootstrap operation Fully operational to +600 V Tolerant to negative transient voltage, dV/dt immune Gate drive supply range from 10 V to 20V Undervoltage lockout CMOS Schmitt-triggered inputs with pull-down Output in phase with input (IRS2117) or out of phase with input (IRS2118) RoHS compliant Product Summary VOFFSET 600 V max. IO+/- 200 mA / 420 mA VOUT 10 V - 20 V ton/off (typ.) 125 ns & 105 ns Packages Description The IRS2117/IRS2118 are a high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS outputs. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side or low-side configuration which operates up to 600 V. 8-Lead PDIP IRS2117/IRS2118 8-Lead SOIC IRS2117S/IRS2118S Typical Connection up to 600 V V CC IN VCC IN COM VB HO TO LOAD VS IRS2117 up to 600 V VCC IN VCC VB IN HO COM (Refer to Lead Assignments for correct pin configuration). These diagrams show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com TO LOAD VS IRS2118 1 IRS2117/IRS2118(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figs. 5 through 8. Symbol Definition Min. Max. VB High-side floating supply voltage -0.3 625 VS High-side floating supply offset voltage VB - 25 VB + 0.3 VHO High-side floating output voltage VS - 0.3 VB + 0.3 VCC Logic supply voltage -0.3 25 VIN Logic input voltage -0.3 VCC + 0.3 — 50 dVs/dt PD RthJA Allowable offset supply voltage transient (Fig. 2) Package power dissipation @ TA ≤ +25 °C Thermal resistance, junction to ambient (8 lead PDIP) — 1.0 (8 lead SOIC) — 0.625 (8 lead PDIP) — 125 (8 lead SOIC) — 200 TJ Junction temperature — 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) — 300 Units V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15 V differential. Symbol Min. Max. VB High-side floating supply absolute voltage Definition VS + 10 VS + 20 VS High-side floating supply offset voltage Note 1 600 VHO High-side floating output voltage VS VB VCC Logic supply voltage 10 20 VIN Logic input voltage 0 VCC TA Ambient temperature -40 125 Units V °C Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details). www.irf.com PDF created with pdfFactory trial version www.pdffactory.com 2 IRS2117/IRS2118(S)PbF Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15 V, CL = 1000 pF and TA = 25 °C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Fig. 3. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay — 125 200 VS = 0 V toff Turn-off propagation delay — 105 180 VS = 600 V tr Turn-on rise time — 75 130 tf Turn-off fall time — 35 65 ns Static Electrical Characteristics VBIAS (VCC, VBS) = 15 V and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Input voltage - logic “1” (IRS2117) logic “0” (IRS2118) 9.5 — — VIL Input voltage - logic “0” (IRS2117) logic “1” (IRS2118) — — 6.0 VOH High level output voltage, VBIAS - VO — 0.05 0.2 VOL Low level output voltage, VO — 0.02 0.1 ILK Offset supply leakage current — — 50 IQBS Quiescent VBS supply current — 50 240 IQCC Quiescent VCC Supply Current — 70 340 IIN+ Logic “1” input bias current — 20 40 — — 5.0 IIN- Logic “0” input bias current (IRS2117) V IO = 2 mA VB = VS = 600 V VIN = 0 V or VCC µA (IRS2118) (IRS2117) VIN = VCC VIN = 0 V (IRS2118) VIN = VCC VBSUV+ VBS supply undervoltage positive going threshold 7.6 8.6 9.6 VBSUV- VBS supply undervoltage negative going threshold 7.2 8.2 9.2 VCCUV+ VCC supply undervoltage positive going threshold 7.6 8.6 9.6 VCCUV- VCC supply undervoltage negative going threshold 7.2 8.2 9.2 V VO = 0V IO+ Output high short circuit pulsed current 200 290 — VIN = Logic “1” mA IO- Output low short circuit pulsed current 420 www.irf.com PDF created with pdfFactory trial version www.pdffactory.com 600 — PW ≤ 10 µs VO = 15V VIN = Logic “0” PW ≤ 10 µs 3 IRS2117/IRS2118(S)PbF Functional Block Diagram (IRS2117) Functional Block Diagram (IRS2118) www.irf.com 4 IRS2117(S)/IRS2118(S) Lead Definitions Symbol Description VCC IN Logic and gate drive supply Logic input for gate driver output (HO), in phase with HO (IRS2117) IN Logic input for gate driver output (HO), out of phase with HO (IRS2118) COM Logic ground VB HO High-side floating supply VS High-side floating supply return High-side gate drive output Lead Assignments 1 2 3 VCC VB IN HO COM VS 4 7 1 2 6 3 5 4 VCC VB 8 IN HO 7 COM VS 6 5 8 Lead PDIP 8 Lead SOIC IRS2117 IRS2117S 1 VCC VB 8 1 VCC VB 8 2 IN HO 7 2 IN HO 7 3 COM VS 6 3 COM VS 6 5 4 4 www.irf.com 8 5 8 Lead PDIP 8 Lead SOIC IRS2118 IRS2118S 5 IRS2117/IRS2118(S)PbF IN (IRS2118) <50 V/ns IN IRS2117 IRS2118 (IRS2117) HO Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit IN (IRS2118) 50% 50% 50% 50% IN (IRS2117) IRS2117 IRS2118 www.irf.com tr toff 90% HO Figure 3. Switching Time Test Circuit ton 10% tf 90% 10% Figure 4. Switching Time Waveform Definition 6 IRS2117/IRS2118(S)PbF 500 Turn-On Delay Time (ns) Turn-On Delay Time (ns) 500 400 300 200 M ax. 100 Typ. 0 -50 400 300 M ax. 200 Typ. 100 0 -25 0 25 50 75 100 10 125 12 Temperature ( C) 500 400 400 Turn-Off Time (ns) Turn-Off Time (ns) 500 300 200 M ax. 100 Typ. 18 20 18 20 300 M ax. 200 Typ. 100 0 -25 0 25 50 75 Temperature ( oC) Figure 6A. Turn-Off Time vs. Tem perature www.irf.com 16 Figure 5B. Turn-On Time vs. Supply Voltage Figure 5A. Turn-On Tim e vs. Tem perature 0 -50 14 V BIAS Supply Voltage (V) o 100 125 10 12 14 16 V BIAS Supply Voltage (V) Figure 6B. Turn-Off Tim e vs. Supply Voltage 7 IRS2117/IRS2118(S)PbF 500 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 500 400 300 200 M ax. 100 400 300 200 M ax. 100 T yp. Typ. 0 -50 0 -25 0 25 50 75 100 125 10 12 Temperature (oC) 18 20 Figure 7B. Turn-On Rise Tim e vs. Supply Voltage 250 250 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) 16 V BIAS Supply Voltage (V) Figure 7A. Turn-On Rise Time vs.Temperature 200 150 100 M ax. 50 0 14 Typ. -50 150 100 M ax. 50 Typ. 0 -25 0 25 50 75 Temperature ( oC) Figure 8A. Turn-Off Fall Tim e vs. Tem perature www.irf.com 200 100 125 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 8B. Turn-Off Fall Tim e vs. Supply Voltage 8 13 18 12 15 Input Voltage (V) Input Voltage (V) IRS2117/IRS2118(S)PbF 11 10 9 M in. 8 -50 12 9 6 3 -25 0 25 50 75 100 125 10 12 o Temperature ( C) 15 8 12 Input Voltage (V) Input Voltage (V) 18 20 Figure 9B. Logic "1" (IRS2118 "0") Input Voltage vs. Supply Voltage 9 7 M ax. 6 5 9 6 3 0 -25 0 25 50 75 100 125 o Temperatre ( C) Figure 10A. Logic "0" (IRS2118 "1") Input Voltage vs. Tem perature www.irf.com 16 V cc Supply Voltage (V) Figure 9A. Logic "1" (IRS2118 "0") Input Voltage vs. Tem perature 4 -50 14 10 12 14 16 18 20 V cc Supply Voltage (V) Figure 10B. Logic "0" (IRS2118 "1") Input Voltage vs. Supply Voltage 9 0.5 High Level Output Voltage (V) High Level Output Voltage (V) IRS2117/IRS2118(S)PbF 0.4 0.3 0.2 M ax. 0.1 Typ 0.0 -50 -25 0 25 50 75 100 0.5 0.4 0.3 M ax. 0.2 0.1 Typ 0 10 125 12 o Temperature ( C) Low Level Output Voltage (V) Low Level Output Voltage (V) 0.4 0.3 0.2 M ax. 0.1 0 25 50 75 100 Temperature (oC) Figure 12A. Low Level Output vs.Temperature www.irf.com 18 20 Figure 11B. High Level Output vs. Supply Voltage (Io = 2 m A) 0.5 -25 16 V cc Supply Voltage (V) Figure 11A. High Level Output vs. Tem perature (Io = 2 m A) 0 -50 14 125 0.5 0.4 0.3 0.2 MAX. 0.1 0 10 12 14 16 18 20 V cc Supply Voltage (V) Figure 12B. Low Level Output vs. Supply Voltage 10 500 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 125 Offset Supply Leakage Current (µA) Offset Supply Leakage Current (µA) IRS2117/IRS2118(S)PbF 500 400 300 200 100 M ax. 0 0 100 o Temperature ( C) 300 400 500 600 VB Boost Voltage (V) Figure 13A. Offset Supply Leakage Current vs. Temperature Figure 13B. Offset Supply Leakage Current vs. V B Boost Voltage 1000 VBS Supply Current (µA) 1000 VBS Supply Current (µA) 200 800 600 400 M ax. 200 Typ. 0 -50 600 400 200 M ax. Typ. 0 -25 0 25 50 75 100 Temperature ( oC) Figure 14A. V BS Supply Current vs. Tem perature www.irf.com 800 125 10 12 14 16 18 20 V BS Supply Voltage (V) Figure 14B. V BS Supply Current vs. Supply Voltage 11 IRS2117/IRS2118(S)PbF 1000 V cc Supply Current (µA) V cc Supply Current (µA) 1000 800 600 400 M ax. 200 Typ. 0 -50 800 600 400 M ax. 200 Typ. 0 -25 0 25 50 75 100 125 10 12 o Temperature ( C) 16 18 20 V cc Supply Voltage (V) Figure 15B. V CC Supply Curre nt vs . Supply Voltage Figure 15A. V CC Supply Current vs. Tem perature 120 Logic "1" Input Current (µA) 120 Logic "1" Input Current (µA) 14 100 80 60 40 M ax. 20 Typ. 0 -50 100 80 60 M ax. 40 Typ. 20 0 -25 0 25 50 75 100 125 10 12 14 16 18 20 Temperature (oC) V CC Supply Voltage (V) Figure 16A. Logic "1" (IRS2118 Logic"0") Input Current vs. Temperature Figure 16B. Logic "1" (IRS2118 Logic "0") Input Current vs. Supply Voltage www.irf.com 12 6 5 Logic "0" Input Bias Current (µA) Lo gic "0" Input Bias Current (µA) IRS2117/IRS2118(S)PbF Max 4 3 2 1 0 -50 -25 0 25 50 75 100 125 6 5 Max 4 3 2 1 0 10 Temperature (°C) 12 14 20 vs. Voltage vs. Temperature 16 V cc Supply Current (µA) 16 V cc Supply Current (µA) 18 Supply Voltage (V) Figure 17B. Logic "0" Input Bias Current Figure 17A. Logic "0" Input Bias Current 14 12 10 16 Max. Typ. 8 Min. 14 12 10 Max . Typ. 8 Min. 6 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 18. V cc Undervoltage Threshold (+) vs. Tem perature www.irf.com 6 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 19. V cc Undervoltage Threshold (-) vs. Tem perature 13 IRS2117/IRS2118(S)PbF V BS Supply Current (µA) V BS Supply Current (µA) 16 14 12 10 M ax. Typ. 8 16 14 12 M ax. 10 Typ. 8 M in. 6 -50 M in. -25 0 25 50 75 100 6 -50 125 -25 0 5000 2000 Typ. Typ. M in. M in. 1000 00 -50 -25 0 25 50 75 100 o Temperature ( C) Figure 22A. Output Source Current vs. Tem perature www.irf.com 75 100 125 Figure 21. V BS Undervoltage Threshold (-) vs. Tem perature Output Source Current (mA) Output Source Current (mA ) Figure 20. VBS Undervoltage Threshold (+) vs. Tem perature 3000 50 Temperature ( oC) Temperature ( oC) 4000 25 125 500 400 300 200 Typ. Typ . 100 M M in. in. 0 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 22B. Output Source Current vs. Supply Voltage 14 IRS2117/IRS2118(S)PbF Output Sink Current ( Output Sink Current ( ) 1000 ) 1000 800 600 400 Typ. Typ. Min. M in. 200 0 -50 800 600 400 Typ. Ty p. 200 Min. Mi n. 0 -25 0 25 50 75 100 10 10 125 12 12 o 16 18 20 20 V BIAS Supply Voltage (V) Temperature ( C) Figure 23B. Output Sink Current vs. Supply Voltage Figure 23A. Output Sink Current vs.Tem perature vs Offset Supply Voltage (V) 14 0 -2 Typ. -4 -6 -8 -10 -12 10 12 14 16 18 20 V BS Floting Supply Voltage (V) Figure 24. Maxim um VS Negative Offset vs. Supply Voltage www.irf.com 15 IRS2117/IRS2118(S)PbF 320 V 140 V 320 V 140 V 150 125 125 o Junction Temperature ( C) o Junction Temperature ( C) 150 100 75 10 V 50 100 10 V 75 50 25 25 0 0 1E+2 1E+3 1E+4 1E+5 1E+2 1E+6 1E+3 Figure 24. IRS2117/IRS2118 TJ vs. Frequency (IRFBC20) RGATE = 33 Ω, VCC = 15 V 1E+5 1E+6 Figure 25. IRS2117/IRS2118 TJ vs. Frequency (IRFBC30) RGATE = 22 Ω, VCC = 15 V 320 V 140 V 10 V 150 1E+4 Frequency (Hz) Frequency (Hz) 320 V 140 V 150 125 o Junction Temperature ( C) o Junction Temperature ( C) 10 V 125 100 75 50 25 100 75 50 25 0 0 1E+2 1E+3 1E+4 1E+5 Frequency (Hz) Figure 26. IRS2117/IRS2118 TJ vs. Frequency (IRFBC40) RGATE = 15 Ω, VCC = 15 V www.irf.com 1E+6 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Figure 27. IRS2117/IRS2118 TJ vs. Frequency (IRFPE50) RGATE = 10 Ω, VCC = 15 V 16 IRS2117/IRS2118(S)PbF Case outlines 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 2 3 0.25 [.010] 4 A 6.46 [.255] MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC e1 6X e 3X 1.27 [.050] e1 0.25 [.010] A1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INC HES MIN y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 5 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 8-Lead SOIC www.irf.com 17 IRS2117/IRS2118(S)PbF Tape & Reel 8-Lead SOIC LOAD ED TA PE FEED DIRECTIO N A B H D F C NO TE : CON TROLLING DIMEN SION IN MM E G C A R R IE R T A P E D I M E N S I O N F O R 8 S O IC N M e tri c Im p e r i a l Co de M in M ax M in M ax A 7 .9 0 8. 10 0. 3 1 1 0 .3 1 8 B 3 .9 0 4. 10 0. 1 5 3 0 .1 6 1 C 1 1. 7 0 1 2 .3 0 0 .4 6 0 .4 8 4 D 5 .4 5 5. 55 0. 2 1 4 0 .2 1 8 E 6 .3 0 6. 50 0. 2 4 8 0 .2 5 5 F 5 .1 0 5. 30 0. 2 0 0 0 .2 0 8 G 1 .5 0 n /a 0. 0 5 9 n /a H 1 .5 0 1. 60 0. 0 5 9 0 .0 6 2 F D C B A E G H R E E L DI M E NS I ON S FO R 8S O ICN M et ric I m pe rial C o de M in Max M in M ax A 3 2 9. 60 3 30 .2 5 1 2. 97 6 13 .0 0 1 B 20 .9 5 2 1 .4 5 0 .8 24 0 .8 44 C 12 .8 0 1 3 .2 0 0 .5 03 0 .5 19 D 1 .9 5 2. 45 0 .7 67 0 .0 96 E 98 .0 0 1 02 .0 0 3 .8 58 4 .0 15 F n /a 1 8 .4 0 n /a 0 .7 24 G 14 .5 0 1 7 .1 0 0 .5 70 0 .6 73 H 12 .4 0 1 4 .4 0 0 .4 88 0 .5 66 www.irf.com 18 IRS2117/IRS2118(S)PbF LEADFREE PART MARKING INFORMATION IRSxxxxx Part number YWW? Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION 8-LeadPDIP IRS2117PbF 8-Lead PDIP IRS2118PbF 8-Lead SOIC IRS2117SPbF 8-Lead SOIC IRS2118SPbF 8-Lead SOIC Tape & Reel IRS2117STRPbF 8-Lead SOIC Tape & Reel IRS2118STRPbF The SOIC-8 is MSL2 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 11/20/2006 www.irf.com 19