INTEGRATED CIRCUITS DATA SHEET TDA6120Q Video output amplifier Preliminary specification Supersedes data of 1997 Jul 17 File under Integrated Circuits, IC02 1997 Aug 27 Philips Semiconductors Preliminary specification Video output amplifier TDA6120Q FEATURES GENERAL DESCRIPTION • High large signal bandwidth of 32 MHz (typ.) at 125 V (p-p) The TDA6120Q is a single 30 MHz, 125 V (p-p) video output amplifier contained in a plastic DIL-bent-SIL power package. The device uses high-voltage DMOS technology and is intended to drive the cathodes of a CRT in High Definition TVs (HDTVs) or monitors. • High small signal bandwidth of 47 MHz (typ.) at 60 V (p-p) • Rise/fall time of 12.5 ns for 125 V (p-p) • High slew rate of 10 V/ns • Low static power dissipation of 2.5 W at 200 V supply voltage • High maximum output voltage • Bandwidth independent of voltage gain • Maximum overall voltage gain over 46 dB • High Power Supply Rejection Ratio (PSRR) • Fast cathode current measurement output for dark current control loop • Differential voltage input. ORDERING INFORMATION TYPE NUMBER TDA6120Q 1997 Aug 27 PACKAGE NAME DBS13P DESCRIPTION plastic DIL-bent-SIL power package; 13 leads (lead length 7.7 mm) 2 VERSION SOT141-8 Philips Semiconductors Preliminary specification Video output amplifier TDA6120Q BLOCK DIAGRAM handbook, full pagewidth VDD IIN 10 5 n.c. 9, 11 MIRROR 4× out CASCODE in TDA6120Q 12 1× VCC 6 1× OUTC OUT 0.7 pF MIRROR in 1× out VIN− 13 7 out 1× out 4× in CURRENT INPUT OUTM 2 + CASCODE 5 mA J 1 3 4 8 RC− RC+ VIN+ GND MGK440 Fig.1 Block diagram. +12 V Vref handbook, full pagewidth CC 22 nF CCC 10 µF Cr 10 nF VIN− 2 +200 V CD 22 nF VCC VIN+ 4 CDD 3.3 µF VDD GND 6 8 Dflash OUTC 10 12 TDA6120Q 1 3 RC− Ri 442 Ω VIN C1 68 pF 5 RC+ 7 IIN 9 OUTM Ria 22 Ω 11 n.c. n.c. 13 OUT Rf Rflash 22 kΩ 147 Ω CRT MGK441 Fig.2 Top view. 1997 Aug 27 3 Philips Semiconductors Preliminary specification Video output amplifier TDA6120Q PINNING SYMBOL PIN DESCRIPTION RC− 1 inverting input pre-emphasis network VIN− 2 inverting voltage input RC+ 3 non-inverting input pre-emphasis network VIN+ 4 non-inverting voltage input IIN 5 feedback current input VCC 6 low supply voltage (12 V) OUTM 7 cathode current measurement output GND 8 power ground and heatsink n.c. 9 not connected VDD 10 high supply voltage (200 V) n.c. 11 not connected OUTC 12 cathode output OUT 13 feedback output handbook, halfpage RC− 1 VIN− 2 RC+ 3 VIN+ 4 IIN 5 VCC 6 OUTM 7 TDA6120Q GND 8 n.c. 9 VDD 10 n.c. 11 OUTC 12 OUT 13 MGK438 Fig.3 Pin configuration. LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134). SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VDD high supply voltage 0 280 V VCC low supply voltage 0 20 V Vi input voltage (pins 2 and 4) 0 VCC V Vi(dif) differential mode input voltage (pins 2 and 4) −VCC VCC V Vi(pe) pre-emphasis input voltage (pins 1 and 3) 0 VCC V Vi(dif)(pe) differential mode pre-emphasis input voltage (pins 1 and 3) −VCC VCC V VIIN input voltage (pin 5) 0 2VBE V VOUTM measurement output voltage 0 20 V Vo output voltage (pins 12 and 13) 0 VDD V Tstg storage temperature −55 +150 °C Tj junction temperature −20 +150 °C VESD voltage peak human body model − 2000 V − 300 V note 1 voltage peak machine model Note 1. 1250 V for IIN (pin 5). 1997 Aug 27 4 Philips Semiconductors Preliminary specification Video output amplifier TDA6120Q MGK442 20 handbook, halfpage Ptot (W) 16 (1) 12 8 4 (2) 0 −20 0 20 40 80 120 160 Tamb (°C) (1) Infinite heatsink. (2) No heatsink. Fig.4 Power derating curve. QUALITY SPECIFICATION Quality specification in accordance with “SNW-FQ-611 part E”. THERMAL CHARACTERISTICS SYMBOL Rth j-c 1997 Aug 27 PARAMETER thermal resistance from junction to case 5 VALUE UNIT 3.0 K/W Philips Semiconductors Preliminary specification Video output amplifier TDA6120Q CHARACTERISTICS Operating range: Tj = −20 to +150 °C; VDD = 180 to 210 V; VCC = 10.8 to 13.2 V; VOUTM = 4 to 20 V; VVIN− = 1.5 to 5 V; VVIN+ = 1.5 to 5 V. Test conditions: Tamb = 25 °C; VDD = 200 V; VCC = 12 V; VVIN+ = 3 V; VOUTM = 6 V; CL = 10 pF (CL consists of parasitic and cathode capacitance); Rth h = 4 K/W; test circuit of Fig.5; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT IDD(q) quiescent high voltage supply current VOUTC = 100 V 8 10 12 mA ICC(q) quiescent low voltage supply current VVIN− = VVIN+ 25 31 39 mA Ibias input bias current (pins 2 and 4) VOUTC = 100 V − 30 − µA VOUTC DC output voltage (pins 12 and 13) VVIN− = VVIN+ 70 100 130 V ∆VOUTC(T) DC output voltage temperature drift (pins 12 and 13) VVIN− = VVIN+ − − 5 V I(offset)OUTM offset current of measurement output note 1 −40 +20 +120 µA ∆IOUTM/∆IOUTC linearity of current transfer −50 µA < IOUTC < +50 µA; note 1 − 1.0 − Ci input capacitance (pins 2 and 4) VOUTC = VOUTC(max) − 3 − pF IOUTC(max) maximum dynamic peak output current (pin 12) 20 V < VOUTC < VDD − 20 V − 100 − mA VOUTC(min) minimum output voltage (pin 12) − 4 10 V VOUTC(max) maximum output voltage (pin 12) VDD − 10 VDD − 6 − V Gint internal gain 1.68 1.87 2.08 Bs small signal bandwidth (pin 12) VOUTC(AC) = 60 V (p-p); VOUTC(DC) = 100 V 40 47 − MHz Bl large signal bandwidth (pin 12) VOUTC(AC) = 125 V (p-p); VOUTC(DC) = 100 V 28 32 − MHz tpd cathode output propagation time 50% input to 50% output (pin 12) VOUTC(AC) = 125 V (p-p); VOUTC(DC) = 100 V; square wave; f < 1 MHz; tf(VIN−) = 10 ns; tr(VIN−) = 10 ns; see Figs 6 and 7 10 − 15 ns to(r) cathode output rise time 10% output to 90% output (pin 12) VOUTC(AC) = 125 V (p-p); VOUTC(DC) = 100 V; square wave; f < 1 MHz; tf(VIN−) = 10 ns; tr(VIN−) = 10 ns; see Fig.6 10 14 18 ns 1997 Aug 27 6 Philips Semiconductors Preliminary specification Video output amplifier SYMBOL PARAMETER TDA6120Q CONDITIONS MIN. TYP. MAX. UNIT to(f) cathode output fall time 90% output to 10% output (pin 12) VOUTC(AC) = 125 V (p-p); VOUTC(DC) = 100 V; square wave; f < 1 MHz; tf(VIN−) = 10 ns; tr(VIN−) = 10 ns; see Fig.7 10 12.5 15 ns tst settling time 50% input to (99% < output < 101%) (pin 12) VOUTC(AC) = 125 V (p-p); VOUTC(DC) = 100 V; square wave f < 1 MHz; tf(VIN−) = 10 ns; tr(VIN−) = 10 ns; see Figs 6 and 7 − − 250 ns SRr slew rate rise between 30 V to (VDD − 30 V) (pin 12) VVIN− = 2 V (p-p) square wave; f < 1 MHz; tf(VIN−) = 10 ns; tr(VIN−) = 10 ns − 8 − V/ns SRf slew rate fall between (VDD − 30 V) to 30 V (pin 12) VVIN− = 2 V (p-p) square wave; f < 1 MHz; tf(VIN−) = 10 ns; tr(VIN−) = 10 ns; − 10 − V/ns OVr cathode output voltage overshoot rise (pin 12) VOUTC(AC) = 125 V (p-p); VOUTC(DC) = 100 V; square wave; f < 1 MHz; tf(VIN−) = 10 ns; tr(VIN−) = 10 ns; see Figs 6 and 7 − 5 − % OVf cathode output voltage overshoot fall (pin 12) VOUTC(AC) = 125 V (p-p); VOUTC(DC) = 100 V; square wave; f < 1 MHz; tf(VIN−) = 10 ns; tr(VIN−) = 10 ns; see Figs 6 and 7 − 20 − % PSRRh high voltage power supply rejection ratio f < 50 kHz; note 2 − 44 − dB PSRRl low voltage power supply rejection ratio f < 50 kHz; note 2 − 48 − dB Notes 1. The operating range of the measurement output OUTM is 4 to 20 V. Below 4 V, OUTM acts as a voltage source with an output resistance such that the maximum current input from OUTM is 2 mA. a) The linearity of the current transfer is guaranteed until a junction temperature of 125 °C. 2. The ratio of the change in supply voltage to the change in input voltage when there is no change in output voltage. 1997 Aug 27 7 Philips Semiconductors Preliminary specification Video output amplifier handbook, full pagewidth VIN C11 Ra 50 Ω RCC +12 V C10 TDA6120Q RDD 47 Ω CCCC CCC CDD CDDD 47 µF 10 nF 10 nF 10 µF 22 nF VIN− Rba 1 kΩ C1 68 pF Vref Rbb 1 kΩ Ria 22 Ω C12 22 nF RC− 6 2 1 Ri 442 Ω 22 kΩ VDD 10 IIN 5 OUT 13 12 TDA6120Q RC+ VIN+ OUTC Rflash 147 Ω C8 7 3 6.8 pF OUTM 4 Im 10 µF VOUT 3.3 pF C9 136 pF MGK443 Rf Overall gain = G int × ----Ri Fig.5 Test circuit with gain of 40 dB. 1997 Aug 27 R3 2 MΩ C7 8 GND C13 +200 V Rf VCC 10 µF 47 Ω 8 R2 100 kΩ Philips Semiconductors Preliminary specification Video output amplifier TDA6120Q x Vi 0 t x tst overshoot (in %) 163.75 162.5 150 161.25 Voc 100 50 37.5 t to(r) MGK444 tpd Fig.6 Output (pins 12 and 13; rising edge) as a function of input signal. 1997 Aug 27 9 Philips Semiconductors Preliminary specification Video output amplifier TDA6120Q x Vi 0 t x tst 162.5 150 Voc 100 overshoot (in %) 38.75 50 37.5 36.25 t to(r) MGK445 tpd Fig.7 Output (pins 12 and 13; falling edge) as a function of input signal. This external network causes an increase in the rise and fall times and a decrease in the overshoot. FLASHOVER PROTECTION The TDA6120Q does NOT include protection diodes that clamp the cathode output pin to the high voltage supply pin during a CRT flashover discharge. Therefore an external high voltage reverse biased diode has to be connected between the OUTC pin and the VDD pin. An external 147 Ω carbon high-voltage resistor in combination with a 2 kV spark gap between the cathode and ground will limit the maximum clamp current (for this resistor value, the CRT has to be connected to the main printed-circuit board). 1997 Aug 27 Pin 10 must be decoupled to pin 8: • By a capacitor >22 nF with good HF behaviour (e.g. foil). This capacitor must be placed as close as possible to pin 10 and pin 8; definitely within 5 mm. • By a capacitor >3.3 µF on the picture tube base printed circuit board (common for three output stages). 10 Philips Semiconductors Preliminary specification Video output amplifier TDA6120Q TEST AND APPLICATION INFORMATION Where: CL = load capacitance Dissipation Cint = effective internal load capacitance (approximately 7 pF) Regarding dissipation, distinction must be made between static dissipation (independent of frequency) and dynamic dissipation (proportional to frequency). The static dissipation of the TDA6120Q is due to supply currents, and currents in the feedback network and CRT. f = frequency VOUTC(p-p) = output voltage (peak-to-peak value) b = non-blanking duty cycle (0.8). The static dissipation is given by the following equation: The IC must be mounted on the picture tube base printed-circuit board to minimize the load capacitance CL. V OUTC P stat = V CC × I CC + V DD × I DD – V OUTC × --------------------------R f – I OUTC Switch-off Where: The voltage at output pins OUT and OUTC will be pulled to ground when the low voltage supply voltage (VCC) is switched off. Rf = feedback resistance IOUTC = DC cathode current. The dynamic dissipation is given by the following equation: P dyn = V DD × ( C L + C int ) × f × V OUTC ( p – p ) × b 1997 Aug 27 11 Philips Semiconductors Preliminary specification Video output amplifier TDA6120Q INTERNAL PIN CONFIGURATION VCC handbook, full pagewidth VDD 6 VIN− 10 2 ESD ESD RC− 12 1 ESD OUTC ESD TDA6120Q VIN+ 4 ESD RC+ 3 ESD ESD IIN ESD 13 OUT 5 ESD 7 OUTM ESD 8 MGK439 GND Fig.8 Internal pin diagram. 1997 Aug 27 12 Philips Semiconductors Preliminary specification Video output amplifier TDA6120Q PACKAGE OUTLINE DBS13P: plastic DIL-bent-SIL power package; 13 leads (lead length 7.7 mm) SOT141-8 non-concave Dh x D Eh view B: mounting base side d A2 B j E A L3 L c Q 1 13 e1 Z e e2 m w M bp 0 5 v M 10 mm scale DIMENSIONS (mm are the original dimensions) UNIT A A2 bp c D (1) d Dh E (1) e e1 e2 Eh j L L3 m Q v w x Z (1) mm 17.0 15.5 4.6 4.2 0.75 0.60 0.48 0.38 24.0 23.6 20.0 19.6 10 12.2 11.8 3.4 1.7 5.08 6 3.4 3.1 8.4 7.0 2.4 1.6 4.3 2.1 1.8 0.6 0.25 0.03 2.00 1.45 Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION REFERENCES IEC JEDEC EIAJ ISSUE DATE 92-11-17 95-03-11 SOT141-8 1997 Aug 27 EUROPEAN PROJECTION 13 Philips Semiconductors Preliminary specification Video output amplifier TDA6120Q The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (Tstg max). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit. SOLDERING Introduction There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. Repairing soldered joints Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “IC Package Databook” (order code 9398 652 90011). Soldering by dipping or by wave The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds. DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 1997 Aug 27 14 Philips Semiconductors Preliminary specification Video output amplifier TDA6120Q NOTES 1997 Aug 27 15 Philips Semiconductors – a worldwide company Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 160 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 0044 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777 For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com © Philips Electronics N.V. 1997 SCA55 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 547047/1200/02/pp16 Date of release: 1997 Aug 27 Document order number: 9397 750 02701