PHILIPS TDA6120

INTEGRATED CIRCUITS
DATA SHEET
TDA6120Q
Video output amplifier
Preliminary specification
Supersedes data of 1997 Jul 17
File under Integrated Circuits, IC02
1997 Aug 27
Philips Semiconductors
Preliminary specification
Video output amplifier
TDA6120Q
FEATURES
GENERAL DESCRIPTION
• High large signal bandwidth of 32 MHz (typ.) at
125 V (p-p)
The TDA6120Q is a single 30 MHz, 125 V (p-p) video
output amplifier contained in a plastic DIL-bent-SIL power
package. The device uses high-voltage DMOS technology
and is intended to drive the cathodes of a CRT in High
Definition TVs (HDTVs) or monitors.
• High small signal bandwidth of 47 MHz (typ.) at
60 V (p-p)
• Rise/fall time of 12.5 ns for 125 V (p-p)
• High slew rate of 10 V/ns
• Low static power dissipation of 2.5 W at 200 V supply
voltage
• High maximum output voltage
• Bandwidth independent of voltage gain
• Maximum overall voltage gain over 46 dB
• High Power Supply Rejection Ratio (PSRR)
• Fast cathode current measurement output for dark
current control loop
• Differential voltage input.
ORDERING INFORMATION
TYPE
NUMBER
TDA6120Q
1997 Aug 27
PACKAGE
NAME
DBS13P
DESCRIPTION
plastic DIL-bent-SIL power package; 13 leads (lead length 7.7 mm)
2
VERSION
SOT141-8
Philips Semiconductors
Preliminary specification
Video output amplifier
TDA6120Q
BLOCK DIAGRAM
handbook, full pagewidth
VDD
IIN
10
5
n.c.
9, 11
MIRROR
4× out
CASCODE
in
TDA6120Q
12
1×
VCC
6
1×
OUTC
OUT
0.7 pF
MIRROR
in 1× out
VIN−
13
7
out 1×
out 4×
in
CURRENT
INPUT
OUTM
2
+
CASCODE
5 mA
J
1
3
4
8
RC−
RC+
VIN+
GND
MGK440
Fig.1 Block diagram.
+12 V
Vref
handbook, full pagewidth
CC
22
nF
CCC
10
µF
Cr
10 nF
VIN−
2
+200 V
CD
22
nF
VCC
VIN+
4
CDD
3.3
µF
VDD
GND
6
8
Dflash
OUTC
10
12
TDA6120Q
1
3
RC−
Ri
442 Ω
VIN
C1
68 pF
5
RC+
7
IIN
9
OUTM
Ria
22 Ω
11
n.c.
n.c.
13
OUT
Rf
Rflash
22 kΩ
147 Ω
CRT
MGK441
Fig.2 Top view.
1997 Aug 27
3
Philips Semiconductors
Preliminary specification
Video output amplifier
TDA6120Q
PINNING
SYMBOL
PIN
DESCRIPTION
RC−
1
inverting input pre-emphasis
network
VIN−
2
inverting voltage input
RC+
3
non-inverting input pre-emphasis
network
VIN+
4
non-inverting voltage input
IIN
5
feedback current input
VCC
6
low supply voltage (12 V)
OUTM
7
cathode current measurement
output
GND
8
power ground and heatsink
n.c.
9
not connected
VDD
10
high supply voltage (200 V)
n.c.
11
not connected
OUTC
12
cathode output
OUT
13
feedback output
handbook, halfpage
RC− 1
VIN− 2
RC+ 3
VIN+ 4
IIN 5
VCC 6
OUTM 7
TDA6120Q
GND 8
n.c. 9
VDD 10
n.c. 11
OUTC 12
OUT 13
MGK438
Fig.3 Pin configuration.
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VDD
high supply voltage
0
280
V
VCC
low supply voltage
0
20
V
Vi
input voltage (pins 2 and 4)
0
VCC
V
Vi(dif)
differential mode input voltage (pins 2 and 4)
−VCC
VCC
V
Vi(pe)
pre-emphasis input voltage (pins 1 and 3)
0
VCC
V
Vi(dif)(pe)
differential mode pre-emphasis input voltage
(pins 1 and 3)
−VCC
VCC
V
VIIN
input voltage (pin 5)
0
2VBE
V
VOUTM
measurement output voltage
0
20
V
Vo
output voltage (pins 12 and 13)
0
VDD
V
Tstg
storage temperature
−55
+150
°C
Tj
junction temperature
−20
+150
°C
VESD
voltage peak human body model
−
2000
V
−
300
V
note 1
voltage peak machine model
Note
1. 1250 V for IIN (pin 5).
1997 Aug 27
4
Philips Semiconductors
Preliminary specification
Video output amplifier
TDA6120Q
MGK442
20
handbook, halfpage
Ptot
(W)
16
(1)
12
8
4
(2)
0
−20
0
20
40
80
120
160
Tamb (°C)
(1) Infinite heatsink.
(2) No heatsink.
Fig.4 Power derating curve.
QUALITY SPECIFICATION
Quality specification in accordance with “SNW-FQ-611 part E”.
THERMAL CHARACTERISTICS
SYMBOL
Rth j-c
1997 Aug 27
PARAMETER
thermal resistance from junction to case
5
VALUE
UNIT
3.0
K/W
Philips Semiconductors
Preliminary specification
Video output amplifier
TDA6120Q
CHARACTERISTICS
Operating range: Tj = −20 to +150 °C; VDD = 180 to 210 V; VCC = 10.8 to 13.2 V; VOUTM = 4 to 20 V; VVIN− = 1.5 to 5 V;
VVIN+ = 1.5 to 5 V.
Test conditions: Tamb = 25 °C; VDD = 200 V; VCC = 12 V; VVIN+ = 3 V; VOUTM = 6 V; CL = 10 pF (CL consists of parasitic
and cathode capacitance); Rth h = 4 K/W; test circuit of Fig.5; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX. UNIT
IDD(q)
quiescent high voltage supply
current
VOUTC = 100 V
8
10
12
mA
ICC(q)
quiescent low voltage supply
current
VVIN− = VVIN+
25
31
39
mA
Ibias
input bias current
(pins 2 and 4)
VOUTC = 100 V
−
30
−
µA
VOUTC
DC output voltage
(pins 12 and 13)
VVIN− = VVIN+
70
100
130
V
∆VOUTC(T)
DC output voltage
temperature drift
(pins 12 and 13)
VVIN− = VVIN+
−
−
5
V
I(offset)OUTM
offset current of measurement
output
note 1
−40
+20
+120
µA
∆IOUTM/∆IOUTC
linearity of current transfer
−50 µA < IOUTC < +50 µA;
note 1
−
1.0
−
Ci
input capacitance
(pins 2 and 4)
VOUTC = VOUTC(max)
−
3
−
pF
IOUTC(max)
maximum dynamic peak
output current (pin 12)
20 V < VOUTC < VDD − 20 V
−
100
−
mA
VOUTC(min)
minimum output voltage
(pin 12)
−
4
10
V
VOUTC(max)
maximum output voltage
(pin 12)
VDD − 10
VDD − 6
−
V
Gint
internal gain
1.68
1.87
2.08
Bs
small signal bandwidth
(pin 12)
VOUTC(AC) = 60 V (p-p);
VOUTC(DC) = 100 V
40
47
−
MHz
Bl
large signal bandwidth
(pin 12)
VOUTC(AC) = 125 V (p-p);
VOUTC(DC) = 100 V
28
32
−
MHz
tpd
cathode output propagation
time 50% input to 50% output
(pin 12)
VOUTC(AC) = 125 V (p-p);
VOUTC(DC) = 100 V;
square wave; f < 1 MHz;
tf(VIN−) = 10 ns;
tr(VIN−) = 10 ns;
see Figs 6 and 7
10
−
15
ns
to(r)
cathode output rise time
10% output to 90% output
(pin 12)
VOUTC(AC) = 125 V (p-p);
VOUTC(DC) = 100 V;
square wave; f < 1 MHz;
tf(VIN−) = 10 ns;
tr(VIN−) = 10 ns;
see Fig.6
10
14
18
ns
1997 Aug 27
6
Philips Semiconductors
Preliminary specification
Video output amplifier
SYMBOL
PARAMETER
TDA6120Q
CONDITIONS
MIN.
TYP.
MAX. UNIT
to(f)
cathode output fall time
90% output to 10% output
(pin 12)
VOUTC(AC) = 125 V (p-p);
VOUTC(DC) = 100 V;
square wave; f < 1 MHz;
tf(VIN−) = 10 ns;
tr(VIN−) = 10 ns;
see Fig.7
10
12.5
15
ns
tst
settling time 50% input to
(99% < output < 101%)
(pin 12)
VOUTC(AC) = 125 V (p-p);
VOUTC(DC) = 100 V;
square wave f < 1 MHz;
tf(VIN−) = 10 ns;
tr(VIN−) = 10 ns;
see Figs 6 and 7
−
−
250
ns
SRr
slew rate rise between
30 V to (VDD − 30 V) (pin 12)
VVIN− = 2 V (p-p) square
wave; f < 1 MHz;
tf(VIN−) = 10 ns;
tr(VIN−) = 10 ns
−
8
−
V/ns
SRf
slew rate fall between
(VDD − 30 V) to 30 V (pin 12)
VVIN− = 2 V (p-p) square
wave; f < 1 MHz;
tf(VIN−) = 10 ns;
tr(VIN−) = 10 ns;
−
10
−
V/ns
OVr
cathode output voltage
overshoot rise (pin 12)
VOUTC(AC) = 125 V (p-p);
VOUTC(DC) = 100 V;
square wave; f < 1 MHz;
tf(VIN−) = 10 ns;
tr(VIN−) = 10 ns;
see Figs 6 and 7
−
5
−
%
OVf
cathode output voltage
overshoot fall (pin 12)
VOUTC(AC) = 125 V (p-p);
VOUTC(DC) = 100 V;
square wave; f < 1 MHz;
tf(VIN−) = 10 ns;
tr(VIN−) = 10 ns;
see Figs 6 and 7
−
20
−
%
PSRRh
high voltage power supply
rejection ratio
f < 50 kHz; note 2
−
44
−
dB
PSRRl
low voltage power supply
rejection ratio
f < 50 kHz; note 2
−
48
−
dB
Notes
1. The operating range of the measurement output OUTM is 4 to 20 V. Below 4 V, OUTM acts as a voltage source with
an output resistance such that the maximum current input from OUTM is 2 mA.
a) The linearity of the current transfer is guaranteed until a junction temperature of 125 °C.
2. The ratio of the change in supply voltage to the change in input voltage when there is no change in output voltage.
1997 Aug 27
7
Philips Semiconductors
Preliminary specification
Video output amplifier
handbook, full pagewidth
VIN
C11
Ra
50 Ω
RCC
+12 V
C10
TDA6120Q
RDD
47 Ω
CCCC
CCC
CDD
CDDD
47 µF
10 nF
10 nF
10 µF
22 nF
VIN−
Rba 1 kΩ
C1
68 pF
Vref
Rbb 1 kΩ
Ria
22 Ω
C12
22 nF
RC−
6
2
1
Ri
442 Ω
22 kΩ
VDD
10
IIN
5
OUT
13
12
TDA6120Q
RC+
VIN+
OUTC
Rflash
147 Ω
C8
7
3
6.8 pF
OUTM
4
Im
10 µF
VOUT
3.3 pF
C9
136 pF
MGK443
Rf
Overall gain = G int × ----Ri
Fig.5 Test circuit with gain of 40 dB.
1997 Aug 27
R3
2 MΩ
C7
8
GND
C13
+200 V
Rf
VCC
10 µF
47 Ω
8
R2
100 kΩ
Philips Semiconductors
Preliminary specification
Video output amplifier
TDA6120Q
x
Vi
0
t
x
tst
overshoot (in %)
163.75
162.5
150
161.25
Voc
100
50
37.5
t
to(r)
MGK444
tpd
Fig.6 Output (pins 12 and 13; rising edge) as a function of input signal.
1997 Aug 27
9
Philips Semiconductors
Preliminary specification
Video output amplifier
TDA6120Q
x
Vi
0
t
x
tst
162.5
150
Voc
100
overshoot (in %)
38.75
50
37.5
36.25
t
to(r)
MGK445
tpd
Fig.7 Output (pins 12 and 13; falling edge) as a function of input signal.
This external network causes an increase in the rise and
fall times and a decrease in the overshoot.
FLASHOVER PROTECTION
The TDA6120Q does NOT include protection diodes that
clamp the cathode output pin to the high voltage supply pin
during a CRT flashover discharge. Therefore an external
high voltage reverse biased diode has to be connected
between the OUTC pin and the VDD pin. An external 147 Ω
carbon high-voltage resistor in combination with a 2 kV
spark gap between the cathode and ground will limit the
maximum clamp current (for this resistor value, the CRT
has to be connected to the main printed-circuit board).
1997 Aug 27
Pin 10 must be decoupled to pin 8:
• By a capacitor >22 nF with good HF behaviour (e.g. foil).
This capacitor must be placed as close as possible to
pin 10 and pin 8; definitely within 5 mm.
• By a capacitor >3.3 µF on the picture tube base printed
circuit board (common for three output stages).
10
Philips Semiconductors
Preliminary specification
Video output amplifier
TDA6120Q
TEST AND APPLICATION INFORMATION
Where:
CL = load capacitance
Dissipation
Cint = effective internal load capacitance
(approximately 7 pF)
Regarding dissipation, distinction must be made between
static dissipation (independent of frequency) and dynamic
dissipation (proportional to frequency). The static
dissipation of the TDA6120Q is due to supply currents, and
currents in the feedback network and CRT.
f = frequency
VOUTC(p-p) = output voltage (peak-to-peak value)
b = non-blanking duty cycle (0.8).
The static dissipation is given by the following equation:
The IC must be mounted on the picture tube base
printed-circuit board to minimize the load capacitance CL.
V OUTC
P stat = V CC × I CC + V DD × I DD – V OUTC × --------------------------R f – I OUTC
Switch-off
Where:
The voltage at output pins OUT and OUTC will be pulled
to ground when the low voltage supply voltage (VCC) is
switched off.
Rf = feedback resistance
IOUTC = DC cathode current.
The dynamic dissipation is given by the following equation:
P dyn = V DD × ( C L + C int ) × f × V OUTC ( p – p ) × b
1997 Aug 27
11
Philips Semiconductors
Preliminary specification
Video output amplifier
TDA6120Q
INTERNAL PIN CONFIGURATION
VCC
handbook, full pagewidth
VDD
6
VIN−
10
2
ESD
ESD
RC−
12
1
ESD
OUTC
ESD
TDA6120Q
VIN+
4
ESD
RC+
3
ESD
ESD
IIN
ESD
13
OUT
5
ESD
7
OUTM
ESD
8
MGK439
GND
Fig.8 Internal pin diagram.
1997 Aug 27
12
Philips Semiconductors
Preliminary specification
Video output amplifier
TDA6120Q
PACKAGE OUTLINE
DBS13P: plastic DIL-bent-SIL power package; 13 leads (lead length 7.7 mm)
SOT141-8
non-concave
Dh
x
D
Eh
view B: mounting base side
d
A2
B
j
E
A
L3
L
c
Q
1
13
e1
Z
e
e2
m
w M
bp
0
5
v M
10 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
A2
bp
c
D (1)
d
Dh
E (1)
e
e1
e2
Eh
j
L
L3
m
Q
v
w
x
Z (1)
mm
17.0
15.5
4.6
4.2
0.75
0.60
0.48
0.38
24.0
23.6
20.0
19.6
10
12.2
11.8
3.4
1.7
5.08
6
3.4
3.1
8.4
7.0
2.4
1.6
4.3
2.1
1.8
0.6
0.25
0.03
2.00
1.45
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
EIAJ
ISSUE DATE
92-11-17
95-03-11
SOT141-8
1997 Aug 27
EUROPEAN
PROJECTION
13
Philips Semiconductors
Preliminary specification
Video output amplifier
TDA6120Q
The device may be mounted up to the seating plane, but
the temperature of the plastic body must not exceed the
specified maximum storage temperature (Tstg max). If the
printed-circuit board has been pre-heated, forced cooling
may be necessary immediately after soldering to keep the
temperature within the permissible limit.
SOLDERING
Introduction
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
Repairing soldered joints
Apply a low voltage soldering iron (less than 24 V) to the
lead(s) of the package, below the seating plane or not
more than 2 mm above it. If the temperature of the
soldering iron bit is less than 300 °C it may remain in
contact for up to 10 seconds. If the bit temperature is
between 300 and 400 °C, contact may be up to 5 seconds.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “IC Package Databook” (order code 9398 652 90011).
Soldering by dipping or by wave
The maximum permissible temperature of the solder is
260 °C; solder at this temperature must not be in contact
with the joint for more than 5 seconds. The total contact
time of successive solder waves must not exceed
5 seconds.
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1997 Aug 27
14
Philips Semiconductors
Preliminary specification
Video output amplifier
TDA6120Q
NOTES
1997 Aug 27
15
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,
Fax. +43 160 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 0044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580920
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: see Singapore
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51,
04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
© Philips Electronics N.V. 1997
SCA55
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
547047/1200/02/pp16
Date of release: 1997 Aug 27
Document order number:
9397 750 02701