

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 Assembler.book.pdf

		
				 PSoC™ Designer:
Assembly Language
User Guide
Revision 2.1 (Cypress Revision *A)
Spec.# 38-12004
Last Revised: December 8, 2003
Cypress MicroSystems, Inc.
CYPRESS MICROSYSTEMS
Cypress MicroSystems, Inc.
2700 162nd St. SW, Building D
Lynnwood, WA 98037
Phone: 800.669.0557
Fax: 425.787.4641
http://www.cypress.com/
http://www.cypress.com/aboutus/sales_locations.cfm
Copyright © 2001-2003 Cypress MicroSystems, Inc. All rights reserved.
PSoC™ (Programmable System-on-Chip) is a trademark of Cypress MicroSystems, Inc.
Copyright © 1999-2000 iMAGEcraft Creations Inc. All rights reserved.
The information contained herein is subject to change without notice.
Table of Contents
List of Tables ... 7
Notation Standards ... 9
Section 1. Introduction ... 11
1.1 Purpose ... 11
1.2 Section Overview ... 11
1.3 Product Updates .. 12
1.4 Support .. 12
Section 2. The M8C Microprocessor ... 13
2.1 Introduction .. 13
2.2 Internal Registers .. 13
2.3 Address Spaces .. 14
2.4 Instruction Format .. 15
2.4.1 One-Byte Instructions ... 16
2.4.2 Two-Byte Instructions ... 16
2.4.3 Three-Byte Instructions .. 17
2.5 Addressing Modes ... 18
2.5.1 Source Immediate .. 19
2.5.2 Source Direct ... 19
2.5.3 Source Indexed .. 20
2.5.4 Destination Direct ... 20
2.5.5 Destination Indexed ... 21
2.5.6 Destination Direct Source Immediate ... 21
2.5.7 Destination Indexed Source Immediate ... 21
2.5.8 Destination Direct Source Direct .. 22
2.5.9 Source Indirect Post Increment .. 22
2.5.10 Destination Indirect Post Increment ... 23
Section 3. The PSoC Designer Assembler ... 25
3.1 Source File Format .. 25
3.1.1 Labels ... 26
3.1.2 Mnemonics ... 27
3.1.3 Operands ... 28
3.1.4 Comments .. 29
3.1.5 Directives ... 30
3.2 Listing File Format ... 30
3.3 Map File Format .. 30
3.4 ROM File Format ... 31
3.5 Intel® HEX File Format ..31
3.6 Convention for Restoring Internal Registers .. 34
3.7 Compiling a File into a Library Module .. 34
Section 4. M8C Instruction Set .. 39
4.1 Add with Carry ... ADC 40
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
3
PSoC Designer: Assembly Language User Guide
4.2 Add without Carry .. ADD 41
4.3 Bitwise AND... AND 42
4.4 Arithmetic Shift Left ... ASL 43
4.5 Arithmetic Shift Right ... ASR 44
4.6 Call Function... CALL 45
4.7 Non-destructive Compare..CMP 46
4.8 Complement Accumulator .. CPL 46
4.9 Decrement ... DEC 47
4.10 Halt ...HALT 47
4.11 Increment...INC 48
4.12 Relative Table Read ... INDEX 49
4.13 Jump Accumulator ... JACC 50
4.14 Jump if Carry .. JC 51
4.15 Jump ...JMP 52
4.16 Jump if No Carry... JNC 53
4.17 Jump if Not Zero ... JNZ 54
4.18 Jump if Zero... JZ 55
4.19 Long Call ..LCALL 56
4.20 Long Jump ..LJMP 57
4.21 Move ..MOV 58
4.22 Move Indirect, Post-Increment to Memory.. MVI 59
4.23 No Operation ... NOP 60
4.24 Bitwise OR ... OR 61
4.25 Pop Stack into Register ... POP 62
4.26 Push Register onto Stack .. PUSH 63
4.27 Return ...RET 64
4.28 Return from Interrupt ..RETI 65
4.29 Rotate Left through Carry ..RLC 66
4.30 Absolute Table Read ... ROMX 67
4.31 Rotate Right through Carry ... RRC 68
4.32 Subtract with Borrow ..SBB 69
4.33 Subtract without Borrow ... SUB 70
4.34 Swap... SWAP 71
4.35 System Supervisor Call .. SSC 72
4.36 Test with Mask.. TST 73
4.37 Bitwise XOR .. XOR 74
Section 5. Assembler Directives ... 75
5.1 Area ... AREA 76
5.1.1 Example ...76
5.1.2 Code Compressor and the AREA Directive ... 76
5.2 NULL Terminated ASCII String .. ASCIZ 78
5.2.1 Example ...78
5.3 RAM Block in Bytes .. BLK 78
5.3.1 Example ...78
5.4 RAM Block in Words..BLKW 79
5.4.1 Example ...79
5.5 Define Byte ... DB 79
5.5.1 Example ...79
4
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
5.6 Define ASCII String .. DS 80
5.6.1 Example ...80
5.7 Define UNICODE String .. DSU 80
5.7.1 Example ...80
5.8 Define Word... DW 81
5.8.1 Example ...81
5.9 Define Word, Little Endian Ordering ..DWL 81
5.9.1 Example ...81
5.10 Equate Label ... EQU 82
5.10.1 Example ... 82
5.11 Export ... EXPORT 82
5.11.1 Example ... 82
5.12 Conditional Source ...IF, ELSE, ENDIF 83
5.12.1 Example ... 83
5.13 Include Source File .. INCLUDE 84
5.13.1 Example ... 84
5.14 Prevent Code Compression of DataLITERAL, .ENDLITERAL 84
5.14.1 Example ... 84
5.15 Macro Definition... MACRO, ENDM 85
5.15.1 Example ... 85
5.16 Area Origin ..ORG 86
5.16.1 Example ... 86
5.17 Section for Dead-Code EliminationSECTION, .ENDSECTION 86
5.17.1 Example ... 86
5.18 Suspend and Resume Code Compressor Suspend, Resume 87
5.18.1 Example ... 87
Section 6. Compile/Assemble Error Messages .. 89
6.1 Linker Operations .. 89
6.2 Preprocessor Errors .. 90
6.3 Assembler Errors ... 92
6.4 Linker Errors .. 93
6.5 Code Compressor and Dead-Code Elimination Error Messages 93
Appendix A. Assembly Language Reference Tables 95
Index .. 99
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
5
PSoC Designer: Assembly Language User Guide
6
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
List of Tables
Table 1: Internal Registers.. 9
Table 2: Flag (F) Register ... 14
Table 3: One-Byte Instruction Format... 16
Table 4: Two-Byte Instruction Formats ... 17
Table 5: Three-Byte Instruction Formats .. 18
Table 6: Source Immediate... 19
Table 7: Source Direct .. 19
Table 8: Source Indexed... 20
Table 9: Destination Direct.. 20
Table 10: Destination Indexed .. 21
Table 11: Destination Direct Source Immediate ... 21
Table 12: Destination Indexed Source Immediate .. 22
Table 13: Destination Direct Source Direct... 22
Table 14: Source Indirect Post Increment... 23
Table 15: Destination Indirect Post Increment .. 23
Table 16: Five Basic Components of an Assembly Source File ... 25
Table 17: Constants Formats.. 28
Table 18: Register Formats .. 29
Table 19: RAM Format.. 29
Table 20: Expressions .. 29
Table 21: Intel HEX File Record Format ... 32
Table 22: PSoC Microcontroller Intel HEX File Format... 33
Table 23: Preprocessor Errors/Warnings.. 90
Table 24: Preprocessor Command Line Errors .. 91
Table 25: Assembler Errors/Warnings .. 92
Table 26: Assembler Command Line Errors/Warnings... 93
Table 27: Linker Errors/Warnings ... 93
Table A-1: Documentation Conventions ... 95
Table A-3: Assembly Syntax Expressions .. 96
Table A-2: Instruction Set Summary (Sorted by Mnemonic)... 96
Table A-4: Instruction Set Summary (Sorted by Opcode)... 97
Table A-5: Assembler Directives Summary .. 98
Table A-6: ASCII Code Table ... 98
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
7
PSoC Designer: Assembly Language User Guide
8
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Notation Standards
Following is input notation referenced throughout this guide and wherever
applicable in the PSoC Designer suite of product documentation.
Table 1:
Internal Registers
Notation
Description
A
Accumulator
CF
Carry Flag
expr
Expression
F
Flags (ZF, CF, and Others)
k
Operand 1 Value
k1
k2
First Operand of 2 Operands
Second Operand of 2 Operands
PC
Program Counter
SP
Stack Pointer
X
X Register
ZF
Zero Flag
REG
Register Space
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
9
PSoC Designer: Assembly Language User Guide
10
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 1. Introduction
Section 1. Introduction
1.1
Purpose
The PSoC Designer: Assembly Language User Guide documents the assembly language instruction set for the M8C microprocessor as well as other compatible assembly practices.
The PSoC Designer Integrated Development Environment software is available free of charge and supports development in assembly language. For customers interested in developing in ‘C’, a low-cost compiler is available. Please
contact your local distributor if you are interested in purchasing the C compiler
for PSoC Designer. For more information about developing in C for the PSoC
device, please read the PSoC Designer: C Language Compiler User Guide
available at the Cypress web site.
1.2
Section Overview
Following is a brief description of each section in this user guide:
Section 2. The M8C Microprocessor
Discusses the microprocessor and
explains address spaces, instruction format, and destination of instruction results.
It also lists all addressing modes with
examples.
Section 3. The PSoC Designer Assembler
Provides assembly-language-source syntax including labels, mnemonics, operands, expressions, and comments.
Section 4. M8C Instruction Set
Provides a detailed list of all instructions.
Section 5. Assembler Directives
Provides a detailed list of all directives.
Section 6. Compile/Assemble Error Messages
Provides several lists of compile/assembler-related errors and warnings.
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
11
PSoC Designer: Assembly Language User Guide
1.3
Product Updates
The Cypress web site (http://www.cypress.com/) always has the most up-todate information available about Cypress MicroSystems products. Please visit
the web site for the latest version of PSoC Designer, the industry leading software development tool for PSoC devices. PSoC Designer is provided free of
charge. You may also order PSoC Designer on CD-ROM by contacting your
local distributor.
1.4
Support
Support for Cypress MicroSystems products is available free at http://
www.cypress.com. Resources include User Discussion Forums, Application
Notes, CYPros Consultants listing, TightLink Technical Support Email/Knowledge Base, Tele-Training seminars, and contact information for Support Technicians.
Cypress MicroSystems was established as a subsidiary of Cypress Semiconductor Corporation (NYSE: CY) in the fourth quarter of 1999. PSoC-related
support is also available at http://www.cypress.com.
12
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 2. The M8C Microprocessor
Section 2. The M8C Microprocessor
2.1
Introduction
The M8C is a 4 MIPS 8-bit Harvard architecture microprocessor. Code selectable processor clock speeds from 93.7 kHz to 24 MHz allow the M8C to be
tuned to a particular application’s performance and power requirements. The
M8C supports a rich instruction set which allows for efficient low-level language support.
This section covers:
ƒ
ƒ
ƒ
ƒ
2.2
Internal M8C Registers
Address Spaces
Instruction Formats
Addressing Modes
Internal Registers
The M8C has five internal registers that are used in program execution. Following is a list of the registers:
ƒ
ƒ
ƒ
ƒ
ƒ
Accumulator (A)
Index (X)
Program Counter (PC)
Stack Pointer (SP)
Flags (F)
All of the internal M8C registers are 8-bits in width except for the PC which is
16-bits wide. Upon reset, A, X, PC, and SP are reset to 0x00. The Flag register
(F) is reset to 0x02 indicating that the Z flag is set.
With each stack operation, the SP is automatically incremented or decremented so that it always points at the next stack byte in RAM. If the last byte in
the stack is at address 0xFF in RAM, the Stack Pointer will wrap to RAM
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
13
PSoC Designer: Assembly Language User Guide
address 0x00. It is the firmware developer’s responsibility to ensure that the
stack does not overlap with user-defined variables in RAM.
As shown in Table 2 on page 14 the Flag register has 5 of 8 bits defined. The
PMODE and XIO bits are used to control the active register and RAM address
spaces in the PSoC device. The C and Z bits are the Carry and Zero flags
respectively. These flags are affected by arithmetic, logical, and shift operations provided in the M8C instruction. The GIE bit is the Global Interrupt
Enable. When set, this bit allows the M8C to be interrupted by the PSoC
device’s interrupt controller.
Table 2:
Flag (F) Register
M8C Internal Flag Register (F)
7
6
5
4
3
2
1
0
PMODE
--
--
XIO
--
C
Z
GIE
With the exception of the F register, the M8C internal registers are not accessible via an explicit register address. PSoC parts in the CY8C25xxx and
CY8C26xxx device family do not have a readable F register. The OR F, expr
and AND F, expr instructions must be used to set and clear F register bits. The
internal M8C registers are accessed using special instructions such as:
ƒ
ƒ
ƒ
ƒ
ƒ
MOV A, expr
MOV X, expr
SWAP A, SP
OR F, expr
JMP
The F register may be read by using address 0xF7 in any register bank, except
in CY8C25xxx and CY8C26xxx devices.
2.3
Address Spaces
The M8C microcontroller has three address spaces: ROM, RAM, and registers. The ROM address space is accessed via its own address and data bus.
Figure 1 illustrates the arrangement of the PSoC microcontroller address
spaces.
The ROM address space is composed of the Supervisory ROM and the onchip Flash program store. Flash is organized into 64-byte blocks. The user
need not be concerned with program store page boundaries, as the M8C automatically increments the 16-bit PC on every instruction making the block
boundaries invisible to user code. Instructions occurring on a 256-byte Flash
page boundary (with the exception of jump instructions) incur an extra M8C
clock cycle as the upper byte of the PC is incremented.
14
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 2. The M8C Microprocessor
The register address space is used to configure the PSoC device’s programmable blocks. It consists of two banks of 256 bytes each. To switch between
banks, the XIO bit in the Flag register is set or cleared (set for Bank1, cleared
for Bank0). The common convention is to leave the bank set to Bank0 (XIO
cleared), switch to Bank1 as needed (set XIO), then switch back to Bank0.
Random Access Memory (RAM) is broken into 256-byte pages. For PSoC
microcontrollers with 256 bytes of RAM or less, the program stack is stored in
RAM page 0. For PSoC microcontrollers with 512 bytes of RAM or more, the
stack is constrained to a single RAM page. For information on RAM configuration in a specific device, refer to the device’s data sheet.
M8C Microcontroller
A
X
PC
SP
F
IOW
IOR
XIO
DB[7:0]
DA[7:0]
MW
MR
PAGE
ID[7:0]
Registers
RAM
ROM
Bank 0
256 bytes
Page 0
256 bytes
SROM
Bank 1
256 bytes
Page 1
256 bytes
m: total number of flash blocks in device
n: total number of RAM pages minus 1, in the device
IOR: register read
IOW: register write
MR: memory read
MW: memory write
Page n
256 bytes
PC[15:0]
Flash
m x 64
byte
blocks
Figure 1: M8C Microcontroller Address Spaces
2.4
Instruction Format
The M8C has a total of seven instruction formats which use instruction lengths
of one, two, and three bytes. All instruction bytes are fetched from the program
memory (Flash) using an address and data bus that are independent from the
address and data buses used for register and RAM access.
While examples of instructions will be given in this section, refer to Section 4.
M8C Instruction Set for detailed information on individual instructions.
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
15
PSoC Designer: Assembly Language User Guide
2.4.1
One-Byte Instructions
Many instructions, such as some of the MOV instructions, have single-byte
forms because they do not use an address or data as an operand. As shown in
Table 3, one-byte instructions use an 8-bit opcode. The set of one-byte instructions can be divided into four categories according to where their results are
stored.
Table 3:
One-Byte Instruction Format
Byte 0
8-bit opcode
The first category of one-byte instructions are those that do not update any
registers or RAM. Only the one-byte NOP and SSC instructions fit this category.
While the Program Counter is incremented as these instructions execute they
do not cause any other internal M8C registers to be updated nor do these
instructions directly affect the register space or the RAM address space. The
SSC instruction will cause SROM code to run which will modify RAM and M8C
internal registers.
The second category has only the two PUSH instructions in it. The PUSH instructions are unique because they are the only one-byte instructions that cause a
RAM address to be modified. This instruction automatically increments the SP.
The third category has only the HALT instruction in it. The HALT instruction is
unique because it is the only single-byte instruction that causes a user register
to be modified. The HALT instruction modifies user register space address 0xFF
(CPU_SCR).
The final category for single-byte instructions are those that cause internal
M8C registers to be updated. This category holds the largest number of
instructions: ASL, ASR, CPL, DEC, INC, MOV, POP, RET, RETI, RLC, ROMX, RRC, SWAP.
These instructions can cause the A, X, and SP registers or SRAM to be
updated.
2.4.2
Two-Byte Instructions
The majority of M8C instructions are two bytes in length. While these instructions can be divided into categories identical to the one-byte instructions this
16
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 2. The M8C Microprocessor
would not provide a useful distinction between the three two-byte instruction
formats that the M8C uses.
Table 4:
Two-Byte Instruction Formats
Byte 0
4-bit
opcode
Byte 1
12-bit relative address
8-bit opcode
8-bit data
8-bit opcode
8-bit address
The first two-byte instruction format shown in Table 4 is used by short jumps
and calls: CALL, JMP, JACC, INDEX, JC, JNC, JNZ, JZ. This instruction format uses
only 4-bits for the instruction opcode leaving 12-bits to store the relative destination address in a twos-complement form.These instructions can change program execution to an address relative to the current address by -2048 or
+2047.
The second two-byte instruction format (Table 4) is used by instructions that
employ the Source Immediate addressing mode (2.5.1 Source Immediate on
page 19). The destination for these instructions is an internal M8C register
while the source is a constant value. An example of this type of instruction
would be ADD A, 7.
The third two-byte instruction format is used by a wide range of instructions
and addressing modes. The following is a list of the addressing modes that
use this third two-byte instruction format:
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Source Direct (ADD A, [7])
Source Indexed (ADD A, [X+7])
Destination Direct (ADD [7], A)
Destination Indexed (ADD [X+7], A)
Source Indirect Post Increment (MVI A, [7])
Destination Indirect Post Increment (MVI [7], A)
For more information on addressing modes see 2.5 Addressing Modes on
page 18.
2.4.3
Three-Byte Instructions
The three-byte instruction formats are the second most prevalent instruction
formats. These instructions need three bytes because they either move data
between two addresses in the user-accessible address space (registers and
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
17
PSoC Designer: Assembly Language User Guide
RAM) or they hold 16-bit absolute addresses as the destination of a long jump
or long call.l
Table 5:
Three-Byte Instruction Formats
Byte 0
Byte 1
Byte 2
8-bit opcode
16-bit address (MSB, LSB)
8-bit opcode
8-bit address
8-bit data
8-bit opcode
8-bit address
8-bit address
The first instruction format shown in Table 5 is used by the LJMP and LCALL
instructions. These instructions change program execution unconditionally to
an absolute address. The instructions use an 8-bit opcode leaving room for a
16-bit destination address.
The second three-byte instruction format shown in Table 5 is used by the following two addressing modes:
ƒ
ƒ
Destination Direct Source Immediate (ADD [7], 5)
Destination Indexed Source Immediate (ADD [X+7], 5).
The third three-byte instruction format is for the Destination Direct Source
Direct addressing mode which is used by only one instruction. This instruction
format uses an 8-bit opcode followed by two 8-bit addresses. The first address
is the destination address in RAM while the second address is source address
in RAM. The following is an example of this instruction: MOV [7], [5]
For more information on addressing modes see 2.5 Addressing Modes on
page 18.
2.5
Addressing Modes
The M8C has ten addressing modes:
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
18
Source Immediate
Source Direct
Source Indexed
Destination Direct
Destination Indexed
Destination Direct Source Immediate
Destination Indexed Source Immediate
Destination Direct Source Direct
Source Indirect Post Increment
Destination Indirect Post Increment
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 2. The M8C Microprocessor
2.5.1
Source Immediate
For these instructions the source value is stored in operand 1 of the instruction. The result of these instructions is placed in either the M8C A, F, or X register as indicated by the instruction’s opcode. All instructions using the Source
Immediate addressing mode are two bytes in length.
Table 6:
Source Immediate
Opcode
Operand 1
Instruction
Immediate Value
Source Immediate examples:
2.5.2
Source Code
Machine
Code
Comments
ADD
A, 7
01 07
The immediate value 7 is added to the Accumulator. The result is placed in the Accumulator.
MOV
X, 8
57 08
The immediate value 8 is moved into the X register.
AND
F, 9
70 09
The immediate value of 9 is logically ANDed with
the F register and the result is placed in the F register.
Source Direct
For these instructions the source address is stored in operand 1 of the instruction. During instruction execution the address will be used to retrieve the
source value from RAM or register address space. The result of these instructions is placed in either the M8C A or X register as indicated by the instruction’s
opcode. All instructions using the Source Direct addressing mode are two
bytes in length.
Table 7:
Source Direct
Opcode
Operand 1
Instruction
Source Address
Source Direct examples:
Source Code
Machine
Code
Comments
ADD
A, [7]
02 07
The value in memory at address 7 is added to the
Accumulator and the result is placed into the Accumulator.
MOV
A, REG[8]
5D 08
The value in the register space at address 8 is
moved into the Accumulator.
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
19
PSoC Designer: Assembly Language User Guide
2.5.3
Source Indexed
For these instructions the source offset from the X register is stored in operand
1 of the instruction. During instruction execution the current X register value is
added to the signed offset to determine the address of the source value in
RAM or register address space. The result of these instructions is placed in
either the M8C A or X register as indicated by the instruction’s opcode. All
instructions using the Source Indexed addressing mode are two bytes in
length.
Table 8:
Source Indexed
Opcode
Operand 1
Instruction
Source Index
Source Indexed examples:
2.5.4
Source Code
Machine
Code
Comments
ADD
A, [X+7]
03 07
The value in memory at address X+7 is added to
the Accumulator. The result is placed in the Accumulator.
MOV
X, [X+8]
59 08
The value in RAM at address X+8 is moved into the
X register.
Destination Direct
For these instructions the destination address is stored in the machine code of
the instruction. The source for the operation is either the M8C A or X register as
indicated by the instruction’s opcode. All instructions using the Destination
Direct addressing mode are two bytes in length.
Table 9:
Destination Direct
Opcode
Instruction
Operand 1
Destination Address
Destination Direct examples:
Source Code
20
Machine
Code
Comments
ADD
[7], A
04 07
The value in the Accumulator is added to memory,
at address 7. The result is placed in memory at
address 7. The Accumulator is unchanged.
MOV
REG[8], A
60 08
The Accumulator value is moved to register space
at address 8. The Accumulator is unchanged.
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 2. The M8C Microprocessor
2.5.5
Destination Indexed
For these instructions the destination offset from the X register is stored in the
machine code for the instruction. The source for the operation is either the
M8C A or X register or an immediate value as indicated by the instruction’s
opcode. All instructions using the Destination Indexed addressing mode are
two bytes in length.
Table 10:
Destination Indexed
Opcode
Instruction
Operand 1
Destination Index
Destination Indexed Example:
2.5.6
Source Code
Machine
Code
Comments
ADD
05 07
The value in memory at address X+7 is added to
the Accumulator. The result is placed in memory at
address X+7. The Accumulator is unchanged.
[X+7], A
Destination Direct Source Immediate
For these instructions the destination address is stored in operand 1 of the
instruction. The source value is stored in operand 2 of the instruction. All
instructions using the Destination Direct Source Immediate addressing mode
are three bytes in length.
Table 11:
Destination Direct Source Immediate
Opcode
Instruction
Operand 1
Destination Address
Operand 2
Immediate Value
Destination Direct Source Immediate examples:
Source Code
2.5.7
Machine
Code
Comments
ADD
[7], 5
06 07 05
The value in memory at address 7 is added to the
immediate value 5. The result is placed in memory
at address 7.
MOV
REG[8], 6
62 08 06
The immediate value 6 is moved into register space
at address 8.
Destination Indexed Source Immediate
For these instructions the destination offset from the X register is stored in
operand 1 of the instruction. The source value is stored in operand 2 of the
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
21
PSoC Designer: Assembly Language User Guide
instruction. All instructions using the Destination Indexed Source Immediate
addressing mode are three bytes in length.
Table 12:
Destination Indexed Source Immediate
Opcode
Operand 1
Instruction
Destination Index
Operand 2
Immediate Value
Destination Indexed Source Immediate examples:
2.5.8
Source Code
Machine
Code
Comments
ADD
[X+7], 5
07 07 05
The value in memory at address X+7 is added to
the immediate value 5. The result is placed in memory at address X+7.
MOV
REG[X+8], 6
63 08 06
The immediate value 6 is moved into the register
space at address X+8.
Destination Direct Source Direct
Only one instruction uses this addressing mode. The destination address is
stored in operand 1 of the instruction. The source address is stored in operand
2 of the instruction. All instructions using the Destination Direct Source Direct
addressing mode are three bytes in length.
Table 13:
Destination Direct Source Direct
Opcode
Instruction
Operand 1
Destination Address
Operand 2
Source Address
Destination Direct Source Direct example:
2.5.9
Source Code
Machine
Code
Comments
MOV
5F 07 08
The value in memory at address 8 is moved to
memory at address 7.
[7], [8]
Source Indirect Post Increment
Only one instruction uses this addressing mode. The source address stored in
operand 1 is actually the address of a pointer. During instruction execution the
pointer’s current value is read to determine the address in RAM where the
source value will be found. The pointer’s value is incremented after the source
value is read. For PSoC microcontrollers with more than 256 bytes of RAM,
the Data Page Read (DPR_DR) register is used to determine which RAM page to
use with the source address. Therefore, values from pages other than the current page may be retrieved without changing the Current Page Pointer
22
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 2. The M8C Microprocessor
(CPP_DR). The pointer is always read from the current RAM page. For information on the DPR_DR and CPP_DR registers please see the device data sheet.
Table 14:
Source Indirect Post Increment
Opcode
Instruction
Operand 1
Source Address Pointer
Source Indirect Post Increment example:
2.5.10
Source Code
Machine
Code
Comments
MVI
3E 08
The value in memory at address 8 (the indirect
address) points to a memory location in RAM. The
value at the memory location pointed to by the indirect address is moved into the Accumulator. The
indirect address, at address 8 in memory, is then
incremented.
A, [8]
Destination Indirect Post Increment
Only one instruction uses this addressing mode. The destination address
stored in operand 1 is actually the address of a pointer. During instruction execution the pointer’s current value is read to determine the destination address
in RAM where the Accumulator’s value will be stored. The pointer’s value is
incremented after the value is written to the destination address. For PSoC
devices with more than 256 bytes of RAM, the Data Page Write (DPW_DR) register is used to determine which RAM page to use with the destination address.
Therefore, values may be stored in pages other than the current page without
changing the Current Page Pointer (CPP_DR). The pointer is always read from
the current RAM page. For information on the DPR_DR and CPP_DR registers
please see the device data sheet.
Table 15:
Destination Indirect Post Increment
Opcode
Instruction
Operand 1
Destination Address Pointer
Destination Indirect Post Increment example:
Source Code
MVI
December 8, 2003
[8], A
Machine
Code
3F 08
Comments
The value in memory at address 8 (the indirect
address) points to a memory location in RAM. The
Accumulator value is moved into the memory location pointed to by the indirect address. The indirect
address in memory, at address 8, is then incremented.
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
23
PSoC Designer: Assembly Language User Guide
24
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 3. The PSoC Designer Assembler
Section 3. The PSoC Designer Assembler
Assembly language is a low-level language. This means its structure is not like
a human language. By comparison, ‘C’ is a high level-language with structures
close to those used by human languages. Even though assembly is a low-level
language it is an abstraction created to make programming hardware easier
for humans. Therefore, this abstraction must be eliminated before an input, in
a form native to the microprocessor, can be generated. An assembler is used
to convert the abstractions used in assembly language to machine code that
the microprocessor can operate on directly.
This section will cover all of the information needed to use the PSoC Designer
Assembler. For information on generating source code in PSoC Designer, see
the PSoC Designer: Integrated Development Environment User Guide.
3.1
Source File Format
Assembly language source files for the PSoC Designer Assembler have five
basic components as listed in Table 16. Each line of the source file may hold a
single label, mnemonic, comment, or directive. Multiple operands or expressions may be used on a single source file line. The maximum length for a line
is 2,048 characters (including spaces) and the maximum word length is 256
characters. A word is a string of characters surrounded by spaces.
Table 16:
Five Basic Components of an Assembly Source File
Component
Description
Label
Symbolic name followed by a colon (:).
Mnemonic
Character string representing an M8C instruction.
Operand
Arguments to M8C instructions.
Comment
May follow operands or expressions and starts in any column if first nonspace character is either a C++-style comment (//) or semi-colon (;).
Directive
A command, interpreted by the assembler, to control the generation of
machine code.
Avoid use of the following characters in path and file names (they are problematic): \ / : * ? " < > | & + , ; = [] % $ ` '.
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
25
PSoC Designer: Assembly Language User Guide
From the components listed in Table 16 all user code is built and complex conditional-assembly constraints can be placed on a collection of source files. The
text below has an example of each of the six basic components that will be discussed in detail in the following sub sections. Line 1 is a comment line as indicated by the “//” character string. Lines 5, 6, and 7 also have comments
starting with the “;” character and continuing to the end of the line. Lines 2 and
3 are examples of assembler directives. The character strings before the “:”
character in lines 3 and 4 are labels. Lines 5, 6, and 7 have instruction mnemonics and operands.
Source File
Components:
3.1.1
1
2
3
4
5
6
7
// My Project Source Code
include “project.inc”
BASE: equ 0x10
_main:
mov reg[0x00], 0x34 ;write 0x34 to Port 0
mov A, reg[0x04]
;read Port 1
and [BASE+2], A
;store Port 1 value in RAM
Labels
A label is a case-sensitive string of alphanumeric characters and underscores
(_) followed by a colon. A label is assigned the address of the current Program
Counter by the assembler unless the label is defined on a line with an EQU
directive. See 5.10 Equate Label EQU on page 82 for more information.
Labels can be placed on any line, including lines with source code as long as
the label appears first. The PSoC Designer Assembler supports three types of
labels: local, global, and re-usable local.
Local Labels: consist of a character string followed by a colon. Local labels
cannot be referenced by other source files in the same project, they can only
be used within the file in which they are defined. Local labels become global
labels if they are “exported.” The following example has a single local label
named SubFun. Local labels are case sensitive.
Local Labels:
mov X, 10
SubFun:
xor reg[00h], FFh
dec X
jnz SubFun
Global Labels: are defined by the EXPORT assembler directive or by ending the
label with two colons “::” rather than one. Global labels may be referenced
from any source file in a project. The following example has two global labels.
26
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 3. The PSoC Designer Assembler
The EXPORT directive is used to make the SubFun label global while two colons
are used to make the MoreFun label global. Global labels are case sensitive.
Global Labels:
EXPORT SubFun
mov X, 10
SubFun:
xor reg[00h], FFh
dec X
jnz SubFun
mov X, 5
MoreFun::
xor reg[00h], FFh
dec X
jnz MoreFun
Re-usable Local Labels: have multiple independent definitions within a single
source file. They are defined by preceding the label string with a period “.”.
The scope of a local label is bounded by the nearest local or global label or the
end of the source file. The following example has a single global label called
SubFun and a re-usable local label called .MoreFun. Notice that while labels do
not include the colon when referenced, re-usable local labels require that a
period precede the label string for all instances. Re-usable local labels are
case sensitive.
Re-usable Local Label:
EXPORT SubFun
mov X, 10
SubFun:
xor reg[00h], FFh
mov A, 5
.MoreFun:
xor reg[04h], FFh
dec A
jnz .MoreFun
dec X
jnz SubFun
3.1.2
Mnemonics
An instruction mnemonic is a two to five letter string that represents one of the
microprocessor instructions. All mnemonics are defined in Section 4. M8C
Instruction Set. There can be 0 or 1 mnemonics per line of a source file. Mnemonics are not case sensitive.
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
27
PSoC Designer: Assembly Language User Guide
3.1.3
Operands
Operands are the arguments to instructions. The number of operands and the
format they use are defined by the instruction being used. The operand format
for each instruction is covered in Section 4. M8C Instruction Set.
Operands may take the form of constants, labels, dot operator, registers, RAM,
or expressions.
Constants: are operands bearing values explicitly stated in the source file.
Constants may be stated in the source file using one of the radixes listed in
Table 17.
Table 17:
Radix
Constants Formats
Name
Formats
Example
127
ASCII Character ‘J’
mov A, ‘J’
mov A, ‘\’’
mov A, ‘\\’
;character constant
;use “\” to escape “‘”
;use “\” to escape “\”
16
Hexadecimal
mov A, 0x4A
mov A, 4Ah
mov A, $4A
;hex--”0x” prefix
;hex--append “h”
;hex--”$” prefix
0x4A
4Ah
$4A
10
Decimal
74
mov A, 74
;decimal--no prefix
8
Octal
0112
mov A, 0112
;octal--zero prefix
Binary
0b01001010 mov A, 0b01001010;bin--“0b” prefix
%01001010 mov A, %01001010;bin--”%” prefix
2
Labels: as described on page 26 may be used as an operand for an instruc-
tion. Labels are most often used as the operands for jump and call instructions to specify the destination address. However, labels may be used as an
argument for any instruction.
Dot Operator (.): is used to indicate that the ROM address of the first byte of
the instruction should be used as an argument to the instruction.
Example 1:
mov
A, <.
; moves low byte of the PC to A
Example 2:
mov
A, >.
; moves high byte of the PC to A
Example 3:
jmp
nop
nop
nop
>.+3
; jumped to this instruction
Registers: have two forms in PSoC microcontrollers. The first type are those
that exist in the two banks of user-accessible registers. The second type are
28
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 3. The PSoC Designer Assembler
those that exist in the microprocessor. Table 18 contains examples for all types
of register operands.
Table 18:
Register Formats
Type
Formats
Example
User-Accessible Registers
reg[expr]
MOV A, reg[0x08];register at address 8
MOV A, reg[OU+8];address = label OU + 8
M8C Registers
A
MOV A, 8
;move 8 into the accumulator
F
OR
;set bit 0 of the flags
SP
MOV SP, 8
;set the stack pointer to 8
X
MOV X, 8
;set the M8C’s X reg to 8
F, 1
RAM: references are made by enclosing the address or expression in square
brackets. The assembler will evaluate the expression to create the actual RAM
address.
Table 19:
RAM Format
Type
Current RAM Page
Formats
[expr]
Example
MOV A, [0x08]
MOV A, [OU+8]
;RAM at address 8
;address = label OU + 8
Expressions: may be constructed using any combination of labels, constants,
the dot operator, and the arithmetic and logical operations defined in Table 20.
Table 20:
Expressions
Precedence
Expression
Symbol
Form
1
Bitwise Complement
~
(~ a)
2
Multiplication
Division
Modulo
*
/
%
(a * b)
(a / b)
(a % b)
3
Addition
Subtraction
+
-
(a + b)
(a – b)
4
Bitwise AND
&
(a & b)
5
Bitwise XOR
^
(a ^ b)
6
Bitwise OR
|
(a | b)
7
High Byte of an Address >
(>a)
8
Low Byte of an Address
(< a)
<
Only the Addition expression (+) may apply to a relocatable symbol (i.e., an
external symbol). All other expressions must be applied to constants or symbols resolvable by the assembler (i.e., a symbol defined in the file).
3.1.4
Comments
A comment starts with a semicolon (;) or a double slash (//) and goes to the
end of a line. It is usually used to explain the assembly code and may be
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
29
PSoC Designer: Assembly Language User Guide
placed anywhere in the source file. The PSoC Designer Assembler ignores
comments, however, they are written to the listing file for reference.
3.1.5
Directives
An assembler directive is used to tell the assembler to take some action during
the assembly process. Directives are not understood by the M8C microprocessor. As such, directives allow the firmware writer to create code that is easier
to maintain. See Section 5. Assembler Directives on page 75 for more information on directives.
3.2
Listing File Format
A <project name>.lst file is created each time the assembler completes without errors or warnings. The list file may be used to understand how the assembler has converted the source code into machine code.
The two lines below represent typical lines found in a listing file. Lines that
begin with a four-digit number in parentheses (“()”) are source file lines. The
number in parentheses is source file line number. The text following the right
parenthesis is the exact text from the source file. The second line in the example below begins with a four-digit number followed by a colon. This four-digit
number indicates the ROM address for the first machine code byte that follows
the colon. In this example the two hexidecimal numbers that follow the colon
are two bytes that form the MOV A, 74 instruction. Notice that the assembler
converts the constants used in the source file to decimal values and that the
machine code is always show in hexidecimal. In this case the source code
expressed the constant as an octal value (0112), the assembler represented
the same value in decimal (74), and the machine code uses hexidecimal (4A).
Example LST File:
3.3
(0014) mov
A,0112; Octal constant
01AF: 50 4A
MOV
A,74
Map File Format
A <project name>.mp file is created each time the assembler completes without errors or warnings. The map file documents where the assembler has
placed areas defined by the AREA assembler directive and lists the values of
global labels (also called global symbols).
30
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 3. The PSoC Designer Assembler
3.4
ROM File Format
A <project name>.rom file is created each time the assembler completes without errors or warnings. This file is provided as an alternative to the intel hex file
that is also created by the assembler. The ROM file does not contain the userdefined protection settings for the Flash or the fill value used to initialize
unused portions of Flash after the end of user code.
The ROM file is a simple text file with eight columns of data delimited by
spaces. The example below is a complete ROM file for a 47-byte program.
The ROM file does not contain any information about where the data should be
located in Flash. By convention, the data in the ROM file starts at address
0x0000 in Flash. For the example below only addresses 0x0000 through 0x002E
of the Flash have assigned values according to the ROM file.
Example ROM File:
3.5
80
7E
7E
91
3D
3F
5B
00
00
73
7F
00
00
00
00
90
60
3D
00
00
00
FE
3A
FF
7E
7D
7D
90
5B
3E
00
02
01
89
60
CC
00
62
EF
90
3E
FF
00
7E
7E
14
7F
Intel® HEX File Format
The Intel HEX file created by the assembler is used as a platform-independent
way of distributing all of the information needed to program a PSoC microcontroller. In addition to the user data created by the assembler, the hex file also
contains the protection settings for the project that will be used by the programmer.
The basic building block of the Intel HEX file format is called a record. Every
record consists of six fields as shown in Table 21. All fields, except for the start
field, represent information as ASCII encoded hexidecimal. This means that
every 8 bits of information are encoded in two ASCII characters.
The start field is one byte in length and must always contain a colon, “:”. The
length field is also one byte in length and indicates the number of bytes of data
stored in the record. Because the length field is one byte in length, the maximum amount of data stored in a record is 255 bytes which would require 510
ASCII characters in the hex file. The starting address field indicates the
address of the first byte of information in the record. The address field is 16
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
31
PSoC Designer: Assembly Language User Guide
bits in length (4 ASCII characters) which allows room for 64 kilobytes of data
per record.
Table 21:
Intel HEX File Record Format
Field Number
Field Name
Length (bytes)
Description
1
start
1
The only valid value is the colon, “:”,
character.
2
length
1
Indicates amount of data from 0 bytes
to 255 bytes.
3
starting
address
2
4
type
1
5
data
determined by
length field
6
checksum
1
“00”: data
“01”: end of file
“02”: extended segment address
“03”: start segment address
“04”: extended linear address
“05”: start linear address record
All hex files created by the PSoC Designer Assembler have the structure
shown in Table 22. Each row in the table describes a record type used in the
32
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 3. The PSoC Designer Assembler
hex file. Each record type conforms to the record definitions discussed previously.
Table 22:
PSoC Microcontroller Intel HEX File Format
Record
Description
<data record 1: flash data>
This is the first of many data records in the hex file
that contain Flash data.
<data record n: flash data>
The nth record containing data for Flash (last
record). The total number of data records for Flash
data can be determined by dividing the available
Flash space (in bytes) by 64. Therefore, a 16 KB
part would have a hex file with 256 Flash data
records.
:020000040010ea
The first two characters (02) indicate that this
record has a length of two bytes (4 ASCII characters). The next four characters (0000) specify the
starting address. The next two characters (04)
indicate that this is an extended linear address.
The four characters following 04 are the data for
this record. Because this is an extended linear
address record, the four characters indicate the
value for the upper 16 bits of a 32-bit address.
Therefore, the value of 0x0010 is a 1 MB offset.
For PSoC microcontroller hex files the extended
linear address is used to offset Flash protection
data from the Flash data. The Flash protection bits
start at the 1 MB address.
<data record 1: protection bits>
For PSoC devices with 16 KB of Flash or less this
is the only data record for protection bits.
<data record m: protection bits>
For PSoC devices with more than 16 KB of Flash
there will be an additional data record with protection bits for each 16 KB of additional Flash.
:020000040020da
This is another extended linear address record.
This record provides a 1 MB offset from the Flash
protection bits (absolute address of
2 MB).
<data record: checksum>
This is a two-byte data record that stores a checksum for all of the Flash data stored in the hex file.
The record will always start with :0200000000 and
end with the four characters that represent the
two-byte checksum.
:00000001ff
This is the end-of-file record. The length and starting address fields are all zero. The type field has a
value of 0x01 and the checksum value will always
be 0xff.
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
33
PSoC Designer: Assembly Language User Guide
The following is an example of PSoC device hex file for a very small program.
Example Code:
mov A, reg[0x04]
inc A
mov reg[0x04], A
Example ROM File:
5D 04 74 60 04
Example Hex File:
:400000005d0474600430303030303030303030303030303030303
03
0303030303030303030303030303077
:400040003
03
0303030303030303030303030303080
Records removed to make example compact.
:403fc0003
03
03030303030303030303030303030c1
:020000040010ea
:40000000fff
ff
fffffffffffffffffffffffffffff00
:020000040020da
:020000000049b5
:00000001ff
3.6
Convention for Restoring Internal Registers
When calling PSoC User Module APIs and library functions it is the caller's
responsibility to preserve the A and X registers. This means that if the current
context of the code has a value in the X and/or A register that must be maintained after the API call, then the caller must save (push on the stack) and
then restore (pop off the stack) them after the call has returned.
Even though some of the APIs do preserve the X and A register, Cypress
MicroSystems reserves the right to modify the API in future releases in such a
manner as to modify the contents of the X and A registers. Therefore, it is very
important to observe the convention when calling from assembly. The C compiler observes this convention.
3.7
Compiling a File into a Library Module
Each library module is simply an object file. Therefore, to create a library module, you need to compile a source file into an object file. There are several
ways that you can create a library.
34
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 3. The PSoC Designer Assembler
One method is to create a brand new project. Add all the necessary source
files that you wish to be added to your custom library, to this project. You then
add a project-specific MAKE file action to add those project files to a custom
library.
Let's take a closer look at this method, using an example. A blank project is
created for any type of part, since we are only interested in using 'C' and/or
assembly, the Application Editor, and the Debugger. The goal for creating a
custom library is to centralize a set of common functions that can be shared
between projects. These common functions, or primitives, have deterministic
inputs and outputs. Another goal for creating this custom library is to be able to
debug the primitives using a sequence of test instructions (e.g., a regression
test) in a source file that should not be included in the library. No User Modules
are involved in this example.
PSoC Designer automatically generates a certain amount of code for each
new project. In this example, use the generated _main source file to hold
regression tests but do not add this file to the custom library. Also, do not add
the generated boot.asm source file to the library. Essentially, all the files under
the "Source Files" branch of the project view source tree go into a custom
library, except main.asm (or main.c) and boot.asm.
Create a file called local.dep in the root folder of the project. The local.dep file
is included by the master Makefile (found in the …\PSoC Designer\tools
folder). The following shows how the Makefile includes local.dep (found at the
bottom of Makefile):
#this include is the dependencies
-include project.dep
#if you don't like project.dep use your own!!!
-include local.dep
The nice thing about having local.dep included at the end of the master Makefile is that the rules used in the Makefile can be redefined (see the Help >>
Documentation \Supporting Documents\make.pdf for detailed information). In this example, we use this to our advantage.
The following shows information from example local.dep:
----- Cut/Paste to your local.dep File ----define Add_To_MyCustomLib
$(CRLF)
$(LIBCMD) -a PSoCToolsLib.a $(library_file)
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
35
PSoC Designer: Assembly Language User Guide
endef
obj/%.o : %.asm project.mk
ifeq ($(ECHO_COMMANDS),novice)
echo $(call correct_path,$<)
endif
$(ASMCMD) $(INCLUDEFLAGS) $(DEFAULTASMFLAGS) $(ASMFLAGS) -o $@ $(call correct_path,$<)
$(foreach library_file, $(filter-out obj/main.o,
$@), $(Add_To_MyCustomLib))
obj/%.o : %.c project.mk
ifeq ($(ECHO_COMMANDS),novice)
echo $(call correct_path,$<)
endif
$(CCMD) $(CFLAGS) $(CDEFINES) $(INCLUDEFLAGS)
$(DEFAULTCFLAGS) -o $@ $(call correct_path,$<)
$(foreach library_file, $(filter-out obj/main.o,
$@), $(Add_To_MyCustomLib))
------ End Cut ----The rules (e.g., obj/%.o : %.asm project.mk and obj/%.o : %.c
project.mk) in the local.dep file shown above are the same rules found in
the master Makefile with one addition each. The addition in the redefined rules
is to add each object (target) to a library called PSoCToolsLib.a. Let's look
closely at this addition.
$(foreach library_file, $(filter-out obj/main.o,
$@), $(Add_To_MyCustomLib))
The MAKE keyword foreach causes one piece of text (the first argument) to
be used repeatedly, each time with a different substitution performed on it. The
substitution list comes from the second foreach argument.
In this second argument we see another MAKE keyword/function called filter-out. The filter-out function removes obj/main.o from the list of all
targets being built (e.g., obj/%.o). As you remember, this was one of the
goals for this example.You can filter out additional files by adding those files to
the first argument of filter-out such as $(filter-out obj/main.o
36
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 3. The PSoC Designer Assembler
obj/excludeme.o, $@). The MAKE symbol combination $@ is a shortcut
syntax that refers to the list of all the targets (e.g., obj/%.o).
The third argument in the foreach function is expanded into a sequence of
commands, for each substitution, to update or add the object file to the library.
This local.dep example is prepared to handle both 'C' and assembly source
files and put them in the library, PSoCToolsLib.a. The library is created/
updated in the project root folder in this example. However, you can provide a
full path to another folder (e.g., $(LIBCMD) -a c:\temp\PSoCToolsLib.a $(library_file)).
Another goal was to not include the boot.asm file in the library. This is easy
given that the master Makefile contains a separate rule for the boot.asm
source file, which we will not redefine in local.dep.
You can cut and paste this example and place it in a local.dep file in the root
folder of any project. To view messages in the Build tab of the Output Status
window regarding the behavior of your custom process, go to Tools >> Options
>> Builder tab and click a check at “Use verbose build messages.“
Use the Project >> Settings, Linker tab fields to add the library modules/library
path if you want other PSoC Designer projects to link in your custom library.
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
37
PSoC Designer: Assembly Language User Guide
38
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
Section 4. M8C Instruction Set
This section of the Assembly Language User Guide describes all M8C instructions in detail. The M8C supports a total of 256 instructions which are divided
into 37 instruction types.
For each instruction the assembly code format will be illustrated as well as the
operation performed by the instruction. The microprocessor cycles that are
listed for each instruction are for instructions that are not on a ROM (Flash)
page-boundary execution. If the instruction is located on a 256-byte ROM
page boundary, an additional microprocessor clock cycle will be needed by the
instruction. The expr string that is used to explain the assembly code format
represents the use of assembler directives which tell the assembler how to calculate the constant used in the final machine code. Note that in the operation
equations the machine code constant is represented by k, k1, and k2.
While the instruction mnemonics are often shown in all capital letters, the
PSoC Designer Assembler ignores case for directives and instructions mnemonics. However, the assembler does consider case for user-defined symbols
(i.e., labels).
The remainder of this section is divided into 37 sub sections arranged in alphabetical order according to the instruction types mnemonic.
Information about individual M8C instructions is also available via PSoC
Designer Online Help. Pressing the [F1] key will cause the online help system to search for the word at the current insertion point in a source file. If
your insertion point is an instruction mnemonic, pressing [F1] will direct you
to information about that instruction.
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
39
PSoC Designer: Assembly Language User Guide
4.1
Add with Carry
Description:
ADC
Computes the sum of the two operands plus the carry value from
the Flag register. The first operand’s value is replaced by the computed sum. If the sum is greater than 255, the Carry Flag is set in
the Flag register. If the sum is zero, the Zero Flag is set in the Flag
register.
Arguments
Opcode
Cycles
Bytes
ADC
A, expr
A ← A + k + CF
0x09
4
2
ADC
A, [expr]
A ← A + RAM [k] + CF
0x0A
6
2
ADC
A, [X+expr]
A ← A + RAM [X + k] + CF
0x0B
7
2
ADC
[expr], A
RAM [k] ← R AM [k] + A + CF
0x0C
7
2
ADC
[X+expr], A
RAM [X + k] ← R AM [X + k] + A + CF
0x0D
8
2
ADC
[expr], expr
RAM [k 1] ← R AM [k1] + k 2 + CF
0x0E
9
3
ADC
[X+expr], expr
RAM [X + k1] ← RAM [X + k 1] + k 2 + CF
0x0F
10
3
Conditional Flags:
40
Operation
CF
Set if the result > 255; cleared otherwise.
ZF
Set if the result is zero; cleared otherwise.
Example 1:
mov A, 0
or
F, 0x02
adc A, 12
Example 2:
mov
mov
inc
adc
;set accumulator to zero
;set carry flag
;accumulator value is now 13
[0x39], 0 ;initialize ram[0x39]=0x00
[0x40], FFh ;initialize ram[0x40]=0xFF
[0x40]
;ram[0x40]=0x00, CF=1, ZF=1
[0x39], 0 ;ram[0x39]=0x01, CF=0, ZF=0
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.2
Add without Carry
Description:
ADD
Computes the sum of the two operands. The first operand’s value
is replaced by the computed sum. If the sum is greater than 255,
the Carry Flag is set in the Flag register. If the sum is zero, the
Zero Flag is set in the Flag register. The ADD SP, expr instruction does not affect the flags in any way.
Arguments
Operation
Opcode
Cycles
Bytes
ADD
A, expr
A←A+k
0x01
4
2
ADD
A, [expr]
A ← A + RAM [k]
0x02
6
2
ADD
A, [X+expr]
A ← A + RAM [X + k]
0x03
7
2
ADD
[expr], A
RAM [k] ← R AM [k] + A
0x04
7
2
ADD
[X+expr], A
RAM [X + k] ← R AM [X + k] + A
0x05
8
2
ADD
[expr], expr
RAM [k 1] ← R AM [k1] + k 2
0x06
9
3
ADD
[X+expr], expr
RAM [X + k1] ← RAM [X + k 1] + k 2
0x07
10
3
ADD
SP, expr
SP ← SP + k
0x38
5
2
Conditional Flags:
Example 1:
Example 2:
Example 3:
December 8, 2003
CF
Set if the result >255; cleared otherwise.
ADD SP, expr does not affect the Carry Flag.
ZF
Set if the result is zero; cleared otherwise.
ADD SP, expr does not affect the Zero Flag.
mov A, 10
;initialize A to 10 (decimal)
add A, 240
add A, 6
;result is A=250 (decimal)
;result is A=0, CF=1, ZF=1
mov A, 10
;initialize A to 10 (decimal)
add A, 240
add A, 7
add A, 5
;result is A=250 (decimal)
;result is A=1, CF=1, ZF=0
;result is A=6, CF=0, ZF=0
mov A, 10
;initialize A to 10 (decimal)
swap A, SP
add SP, 240
add SP, 6
;put 10 in SP
;result is SP=250 (decimal)
;SP=0, CF=unchanged, ZF=unchanged
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
41
PSoC Designer: Assembly Language User Guide
4.3
Bitwise AND
AND
Description:
Computes the logical AND for each bit position using both arguments. The result of the logical AND is placed in the corresponding
bit position for the first argument.
The Carry Flag is only changed when the AND F, expr instruction is used. The Carry Flag will be set to the result of the logical
AND of the Carry Flag at the beginning of instruction execution and
the second argument’s value at bit position 2 (i.e., F[2] and
expr[2]).
For the AND F, expr instruction the ZF is handled the same as
the CF in that it is changed as a result of the logical AND of the ZF’s
value at the beginning of instruction execution and the value of the
second argument’s value at bit position 1 (i.e., F[1] and expr[1]).
However, for all other AND instructions the Zero Flag will be set or
cleared based on the result of the logical AND operation. If the
result of the AND is that all bits are zero the Zero Flag will be set,
otherwise, the Zero Flag Is cleared.
Arguments
Opcode
Cycles
Bytes
AND
A, expr
A←A& k
0x21
4
2
AND
A, [expr]
A ← A & ram[k]
0x22
6
2
AND
A, [X+expr]
A ← A & ram[X+k]
0x23
7
2
AND
[expr], A
ram [k] ← ram [k] & A
0x24
7
2
AND
[X+expr], A
ram [X + k] ← ram [X + k] & A
0x25
8
2
AND
[expr], expr
ram [k1] ← ram [k1] & k 2
0x26
9
3
AND
[X+expr], expr
ram [X + k 1] ← ram [X + k 1] & k 2
0x27
10
3
AND
REG[expr], expr
reg [k1] ← reg [k 1] & k 2
0x41
9
3
AND
REG[X+expr], expr
reg [X + k 1] ← reg [X + k 1] & k 2
0x42
10
3
AND
F, expr
F←F& k
0x70
4
2
Conditional Flags:
42
Operation
CF
Affected only by the AND F, expr instruction.
ZF
Set if the result is zero; cleared otherwise.
AND F, expr will set this flag as a result of the AND operation.
Example 1:
and A, 0x00
;A=0, CF=unchanged, ZF=1
Example 2:
and F, 0x00
;F=0 therefore CF=0, ZF=0
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.4
Arithmetic Shift Left
Description:
ASL
Shifts all bits of the instruction’s argument one bit to the left. Bit 7 is
loaded into the Carry Flag and bit 0 is loaded with a zero.
CF
7
Arguments
ASL
A
ASL
[expr]
ASL
[X+expr]
Conditional Flags:
6
5
4
3
Operation
CF ← A:7
A:7 ← A:6
A:6 ← A:5
A:5 ← A4
A ← A:4 ← A:3
A:3 ← A:2
A:2 ← A:1
A:1 ← A:0
A:0 ← 0
CF ← ram [k]:7
ram [k]:7 ← ram [k]:6
ram [k]:6 ← ram [k]:5
ram [k]:5 ← ram [k]:4
ram [k] ← ram [k]:4 ← ram [k]:3
ram [k]:3 ← ram [k]:2
ram [k]:2 ← ram [k]:1
ram [k]:1 ← ram [k]:0
ram [k]:0 ← 0
CF ← ram [(X + k)]:7
ram [(X + k)]:7 ← ram [(X + k)]:6
ram [(X + k)]:6 ← ram [(X + k)]:5
ram [(X + k)]:5 ← ram [(X + k)]:4
ram [X + k] ← ram [(X + k)]:4 ← ram [(X + k)]:3
ram [(X + k)]:3 ← ram [(X + k)]:2
ram [(X + k)]:2 ← ram [(X + k)]:1
ram [(X + k)]:1 ← ram [(X + k)]:0
ram [(X + k)]:0 ← 0
2
1
0
0
Opcode
Cycles
Bytes
0x64
4
1
0x65
7
2
0x66
8
2
CF
Set equal to the initial argument’s bit 7 value.
ZF
Set if the result is zero; cleared otherwise.
Example 1:
mov A, 0x7F
asl A
Example 2:
mov [0xEB], AA ;initialize RAM @ 0xEB with 0
asl [0xEB]
;ram[0xEB]=54, CF=1, ZF=0
December 8, 2003
;initialize A with 127
;A=0xFE, CF=0, ZF=0
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
43
PSoC Designer: Assembly Language User Guide
4.5
Arithmetic Shift Right
Description:
ASR
Shifts all bits of the instruction’s argument one bit to the right. Bit 7
remains the same while bit 0 is shifted into the Carry Flag.
7
Arguments
ASR
A
ASR
[expr]
ASR
[X+expr]
Conditional Flags:
44
6
5
4
3
2
Operation
CF ← A:0, A:0 ← A:1, A:1 ← A:2
A ← A:2 ← A:3, A:3 ← A:4, A:4 ← A:5
A:5 ← A:6, A:6 ← A:7
CF ← ram [(k)]:0
ram [k]:0 ← ram [k]:1
ram [k]:1 ← ram [k]:2
ram [k] ← ram [k]:2 ← ram [k]:3
ram [k]:3 ← ram [k]:4
ram [k]:4 ← ram [k]:5
ram [k]:5 ← ram [k]:6
ram [k]:6 ← ram [k]:7
CF ← ram [(X + k)]:0
ram [(X + k)]:0 ← ram [(X + k)]:1
ram [(X + k)]:1 ← ram [(X + k)]:2
ram
[(X + k)]:2 ← ram [(X + k)]:3
ram [X + k] ←
ram [(X + k)]:3 ← ram [(X + k)]:4
ram [(X + k)]:4 ← ram [(X + k)]:5
ram [(X + k)]:5 ← ram [(X + k)]:6
ram [(X + k)]:6 ← ram [(X + k)]:7
1
0
CF
Opcode
Cycles
Bytes
0x67
4
1
0x68
7
2
0x69
8
2
CF
Set if LSB of the source was set before the shift, else
cleared.
ZF
Set if the result is zero; cleared otherwise.
Example 1:
mov A, 0x00
and F, 0x00
asr A
;initialize A to 0
;make sure all flags are cleared
;A=0, CF=0, ZF=1
Example 2:
mov A, 0xFF
and F, 0x00
asr A
;initialize A to 255
;make sure all flags are cleared
;A=0xFF, CF=1, ZF=0
Example 3:
mov A, 0xAA
and F, 0x00
asr A
;initialize A to 170
;make sure all flags are cleared
;A=0xD5, CF=0, ZF=0
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.6
Call Function
CALL
Description:
Adds the signed argument to the current PC+2 value resulting in a
new PC that determines the address of the first byte of the next
instruction. The current PC value is defined as the PC value that
corresponds to the ROM address of the first byte of the next
instruction.
Two pushes are used to store the Program Counter (PC+2) on the
stack. First, the upper 8-bits of the PC are placed on the stack followed by the lower 8-bits. The Stack Pointer is post-incremented
for each push. For devices with more than 256 bytes of RAM, the
stack is confined to a single designated stack page defined in the
device data sheet. The M8C automatically selects the stack page
as the destination for the push during the CALL instruction. Therefore, a CALL instruction may be issued in any RAM page. After the
CALL has completed, user code will be operating from the same
RAM page as before the CALL instruction was executed.
This instruction has a 12-bit twos-complement relative address that
is added to the PC. The 12 bits are packed into the two-byte
instruction format by using the lower nibble of the opcode and the
second byte of the instruction format. Therefore, all opcodes with
an upper nibble of 9 are call instructions. The “x” character is
used in the table below to indicate that the first byte of a call
instruction can have one of 16 values (i.e., 0x90, 0x91,
0x92,...,0x9F).
Arguments
CALL
expr
Conditional Flags:
Example:
December 8, 2003
Operation
C ← PC + 2 + k, (– 2048 ≤ k ≤ 2047
CF
Unaffected.
ZF
Unaffected.
Opcode
Cycles
0x9x
11
Bytes
2
0000
_main:
0000 40
nop
0001 90 E8
call SubFun
0003 40
nop
Note that the relative address for the CALL above is positive
(0xE8) and that the sum of that address and the PC value for the
first byte of the next instruction (0x0003) equals the address of the
SubFun label
(0xE8 + 0x0003 = 0x00EB)
0004 9F FA call _main
Note that the call to Main uses a negative address (0xFA).
0006
00EB
org 0x00EB
00EB
SubFun:
00EB 40
nop
00EC 7F
ret
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
45
PSoC Designer: Assembly Language User Guide
4.7
Non-destructive Compare
Description:
Subtracts the second argument from the first. If the difference is
less than zero the Carry Flag is set. If the difference is 0 the Zero
Flag is set. Neither operand’s value is destroyed by this instruction.
Arguments
Operation
Cycles
Bytes
A, expr
A–k
0x39
5
2
CMP
A, [expr]
A – ram [k]
0x3A
7
2
CMP
A, [X+expr]
A – ram [X + k]
0x3B
8
2
CMP
[expr], expr
ram [k1] – k 2
0x3C
8
3
CMP
[X+expr], expr
ram [X + k 1] – k 2
0x3D
9
3
Example:
CF
Set if Operand 1 < Operand 2; cleared otherwise.
ZF
Set if the operands are equal; cleared otherwise.
mov
cmp
cmp
cmp
A,
A,
A,
A,
34
33
34
35
;initialize the accumulator to 34
;A>=34 CF cleared, A != 33 ZF cleared
;A=34 CF cleared, ZF set
;A<35 CF set, A != 35 ZF cleared
Complement Accumulator
Description:
A
Conditional Flags:
Example 1:
Example 2:
Example 3:
CPL
Computes the bitwise complement of the Accumulator and stores
the result in the Accumulator. The Carry Flag is not affected but the
Zero Flag will be set if the result of the compliment is 0 (i.e., the
original value was 0xFF).
Arguments
CPL
46
Opcode
CMP
Conditional Flags:
4.8
CMP
Operation
Opcode
Cycles
Bytes
4
1
0x73
A←A
CF
Unaffected.
ZF
Set if the result is zero; cleared otherwise.
mov A, 0xFF
cpl A
;A=0x00, ZF=1
mov A, 0xA5
cpl A
;A=0x5A, ZF=0
mov A, 0xFE
cpl A
;A=0x01, ZF=0
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.9
Decrement
DEC
Description:
Subtracts one from the value of the argument and replaces the
argument’s original value with the result. If the result is -1 (original
value was zero) the Carry Flag is set. If the result is 0 (original
value was one) the Zero Flag is set.
Arguments
Opcode
Cycles
Bytes
DEC
A
A←A–1
0x78
4
1
DEC
X
X←X–1
0x79
4
1
DEC
[expr]
ram [k] ← ram [k] – 1
0x7A
7
2
DEC
[X+expr]
ram [X + k] ← ram [X + k] – 1
0x7B
8
2
Conditional Flags:
Example:
4.10
Operation
CF
Set if the result is -1; cleared otherwise.
ZF
Set if the result is zero; cleared otherwise.
mov [0xEB], 3
loop2:
dec [0xEB]
jnz loop2
;The loop will be executed 3 times.
;Jump will not be taken when ZF is
;set by DEC (i.e. wait until the
;loop counter (0xEB) is decremented
;to 0x00).
Halt
HALT
Description:
Halts the execution of the processor. The processor will remain
halted until a Power-On-Reset (POR), Watchdog Timer Reset
(WDR), or external reset (XRES) event occurs. The POR, WDR,
and XRES are all hardware resets which will cause a complete
system reset including the resetting of registers to their power-on
state. Watchdog reset will not cause the Watchdog Timer to be disabled while all other resets will disable the Watchdog Timer.
Arguments
Operation
HALT
reg [CPU_SCR] ← reg [CPU_SCR] + 1
Conditional Flags:
CF
Carry Flag unaffected.
ZF
Zero Flag unaffected.
Example:
December 8, 2003
halt
Opcode
Cycles
Bytes
0x30
9
1
;sets STOP bit in CPU_SCR register
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
47
PSoC Designer: Assembly Language User Guide
4.11
Increment
INC
Description:
Adds one to the argument. The argument’s original value is
replaced by the new value. If the value after the increment is 0x00
the Carry Flag and the Zero Flag will be set (original value must
have been 0xFF).
Arguments
Opcode
Cycles
Bytes
INC
A
A←A+1
0x74
4
1
INC
X
X←X+1
0x75
4
1
INC
[expr]
ram [k] ← ram [k] + 1
0x76
7
2
INC
[X+expr]
ram [X + k] ← ram [X + k]
0x77
8
2
Conditional Flags:
48
Operation
CF
Set if value after the increment is 0; cleared otherwise.
ZF
Set if the result is zero; cleared otherwise.
Example 1:
mov A, 0x00
or
F, 0x06
inc A
;initialize A to 0
;make sure CF and ZF are set (1)
;A=0x01, CF=0, ZF=0
Example 2:
mov A, 0xFF
and F, 0x00
inc A
;initialize A to 0
;make sure flags are all 0
;A=0x00, CF=1, ZF=1
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.12
Relative Table Read
Description:
INDEX
Places the contents of ROM at the location indicated by the sum of
the Accumulator, the argument, and the current PC into the Accumulator. This instruction has a 12-bit, two’s-complement offsetaddress, relative to the current PC. The current PC value is defined
as the PC value that corresponds to the ROM address of the first
byte of the instruction.
The INDEX instruction is used to retrieve information from a table
to the Accumulator. The lower nibble of the first byte of the instruction is used as the upper 4 bits of the 12-bit address. Therefore, all
instructions that begin with 0xF are INDEX instructions, so all of
the following are INDEX “opcodes”: 0xF0, 0xF1,
0xF2,...,0xFF.
The offset into the table is taken as the value of the Accumulator
when the INDEX instruction is executed. The maximum readable
table size is 256 bytes due to the Accumulator being 8 bits in
lengths.
Arguments
INDEX
expr
Conditional Flags:
Example:
Operation
A ← rom [k + A], (– 2048 ≤ k ≤ 2047)
Opcode
Cycles
Bytes
0xFx
13
2
CF
Unaffected.
ZF
Set if the byte returned to A is zero.
0000
0000
0001
0003
0005
40
50 03
F0 E6
60 04
OUT_REG: equ 04h
[04] nop
[04] mov A, 3
[13] index ASCIInumbers
[05] mov reg[OUT_REG], A
Note that the 12-bit address for the INDEX instruction is positive
and that the sum of the address (0x0E6) and the next instruction’s
address (0x0005) are equal to the first address of the ASCIInumbers table (0x00EB). Because the accumulator has been set to 3
before executing the INDEX instruction the fourth byte in the ASCIInumbers table will be returned to A. Therefore, A will be 0x33 at
the end of the INDEX instruction.
0007
00EB
00EB
00EB
December 8, 2003
org 0x00EB
ASCIInumbers:
30 31 ...
ds
32 33 34 35 36 37 38 39
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
"0123456789"
49
PSoC Designer: Assembly Language User Guide
4.13
Jump Accumulator
Description:
JACC
Jump, unconditionally, to the address computed by the sum of the
Accumulator, the 12-bit twos-compliment argument, and the current PC+1. The current PC value is defined as the PC value that corresponds to the ROM address of the first byte of the JACC
instruction.
The Accumulator is not affected by this instruction. The JACC
instruction uses a two-byte instruction format where the lower nibble of the first byte is used for the upper 4 bits of the 12-bit relative
address. This causes an effective 4-bit opcode. Therefore, the following are all valid “opcode” bytes for the JACC instruction: 0xE0,
0xE1, 0xE2,...,0xEF.
Arguments
JACC
expr
Conditional Flags:
Example:
Operation
PC ← (PC + 1) + k + A
Opcode
Cycles
0xEx
7
CF
Unaffected.
ZF
Unaffected.
0000
0000
0002
50 03
E0 01
_main:
mov A, 3 ;set A with jump offset
jacc
SubFun
0004
0004
0005
0006
0007
40
40
40
30
SubFun:
nop
nop
nop
halt
Bytes
2
Program execution will jump to address 0x0007 (halt)
50
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.14
Jump if Carry
JC
Description:
If the Carry Flag is set, jump to the sum of the relative address
argument and the current PC+1. The current PC value is defined as
the PC value that corresponds to the ROM address of the first byte
of the JC instruction.
The JC instruction uses a two-byte instruction format where the
lower nibble of the first byte is used for the upper 4 bits of the 12-bit
relative address. This causes an effective 4-bit opcode. Therefore,
the following are all valid “opcode” bytes for the JC instruction:
0xC0, 0xC1, 0xC2,...,0xCF.
Arguments
JC
expr
Conditional Flags:
Example:
December 8, 2003
Operation
PC ← (PC + 1) + k , (– 2048 ≤ k ≤ 2047)
Opcode
Cycles
0xCx
5
CF
Carry Flag unaffected.
ZF
Zero Flag unaffected.
0000
0000
0003
0006
0008
0009
0009
0009
_main:
55 3C 02 mov [3Ch], 2
16 3C 03 sub [3Ch], 3 ;2-2=0 CF=1, ZF=0
C0 02
jc SubFun ;CF=1, jump to SubFun
30
halt
40
Bytes
2
SubFun:
nop
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
51
PSoC Designer: Assembly Language User Guide
4.15
Jump
JMP
Description:
Jump unconditionally to the address indicated by the sum of the
argument and the current PC+1. The current PC value is defined as
the PC value that corresponds to the ROM address of the first byte
of the JMP instruction.
The JMP instruction uses a two-byte instruction format where the
lower nibble of the first byte is used for the upper 4 bits of the 12-bit
relative address. This causes an effective 4-bit opcode. Therefore,
the following are all valid “opcode” bytes for the JMP instruction:
0x80, 0x81, 0x82,...,0x8F.
Arguments
JMP
expr
Conditional Flags:
Example:
Operation
Opcode
Cycles
Bytes
0x8x
5
2
PC ← (PC + 1) + k , (– 2048 ≤ k ≤ 2047)
CF
Carry Flag unaffected.
ZF
Zero Flag unaffected.
0000
0000
80 01
_main:
[05] jmp SubFun
0002
0002
8F FD
SubFun:
[05] jmp _main
Jump is forward, relative to PC, therefore offset is positive (0x01).
Jump is backwards, relative to PC, therefore, offset is negative
(0xFD).
52
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.16
Jump if No Carry
Description:
JNC
If the Carry Flag is not set, jump to the sum of the relative address
argument and the current PC+1. The current PC value is defined as
the PC value that corresponds to the ROM address of the first byte
of the JNC instruction.
The JNC instruction uses a two-byte instruction format where the
lower nibble of the first byte is used for the upper 4 bits of the 12-bit
relative address. This causes an effective 4-bit opcode. Therefore,
the following are all valid “opcode” bytes for the JNC instruction:
0xD0, 0xD1, 0xD2,...,0xDF.
Arguments
JNC
expr
Example:
December 8, 2003
Operation
PC ← (PC + 1) + k , (– 2048 ≤ k ≤ 2047)
Opcode
Cycles
Bytes
0xDx
5
2
CF
Carry Flag unaffected.
ZF
Zero Flag unaffected.
0000
0000
0003
0006
0008
0009
0009
0009
_main:
55 3C 02 [08] mov [3Ch], 2
16 3C 02 [09] sub [3Ch], 2
;2-2=0 CF=0, ZF=1
D0 02
[05] jnc SubFun ; jump to SubFun
30
[04] halt
40
SubFun:
[04] nop
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
53
PSoC Designer: Assembly Language User Guide
4.17
Jump if Not Zero
Description:
JNZ
If the Zero Flag is not set, jump to the address indicated by the sum
of the argument and the current PC+1. The current PC value is
defined as the PC value that corresponds to the ROM address of
the first byte of the JNZ instruction.
The JNZ instruction uses a two-byte instruction format where the
lower nibble of the first byte is used for the upper 4 bits of the 12-bit
relative address. This causes an effective 4-bit opcode. Therefore,
the following are all valid “opcode” bytes for the JNZ instruction:
0xB0, 0xB1, 0xB2,...,0xBF.
Arguments
JNZ
expr
Conditional Flags:
Example:
54
Operation
PC ← (PC + 1) + k , (– 2048 ≤ k ≤ 2047)
Opcode
Cycles
Bytes
0xBx
5
2
CF
Carry Flag unaffected.
ZF
Zero Flag unaffected.
0000
0000
0003
0006
0008
0009
0009
0009
_main:
55 3C 02 [08] mov [3Ch], 2
16 3C 01 [09] sub [3Ch], 1 ;2-1=1 CF=0, ZF=0
B0 02
[05] jnz SubFun ;jump to SubFun
30
[04] halt
40
SubFun:
[04] nop
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.18
Jump if Zero
JZ
Description:
If the Zero Flag is set, jump to the address indicated by the sum of
the argument and the current PC+1. The current PC value is
defined as the PC value that corresponds to the ROM address of
the first byte of the JZ instruction.
The JZ instruction uses a two-byte instruction format where the
lower nibble of the first byte is used for the upper 4 bits of the 12-bit
relative address. This causes an effective 4-bit opcode. Therefore,
the following are all valid “opcode” bytes for the JZ instruction:
0xA0, 0xA1, 0xA2,...,0xAF.
Arguments
JZ
expr
Conditional Flags:
Example:
December 8, 2003
Operation
PC ← (PC + 1) + k , (– 2048 ≤ k ≤ 2047)
Opcode
Cycles
0xAx
5
Bytes
2
CF
Carry Flag unaffected.
ZF
Zero Flag unaffected.
0000
0000
0003
0006
0008
0009
0009
0009
_main:
55 3C 02 [08] mov [3Ch], 2
16 3C 02 [09] sub [3Ch], 2
;2-2=0 CF=0, ZF=1
A0 02
[05] jz SubFun ;jump to SubFun
30
[04] halt
40
SubFun:
[04] nop
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
55
PSoC Designer: Assembly Language User Guide
4.19
Long Call
LCALL
Description:
Replaces the PC value with the LCALL instruction’s argument. The
new PC value determines the address of the first byte of the next
instruction.
Two pushes are used to store the Program Counter (current PC+2)
on the stack. The current PC value is defined as the PC value that
corresponds to the ROM address of the first byte of the instruction.
First, the upper 8 bits of the PC are placed on the stack followed by
the lower 8 bits. The Stack Pointer is post-incremented for each
push. For PSoC microcontrollers with more than 256 bytes of
RAM, the stack is confined to a single designated stack page
defined in the device data sheet. The M8C automatically selects
the stack page as the destination for the push during the LCALL
instruction. Therefore, a LCALL instruction may be issued in any
RAM page. After the LCALL has completed, user code will be operating from the same RAM page as before the LCALL instruction
was executed.
This instruction has a 16-bit unsigned address. A three-byte
instruction format is used where the first byte is a full 8-bit opcode.
Arguments
LCALL
expr
Conditional Flags:
Example:
Operation
Opcode
Cycles
Bytes
0x7C
13
3
ram [SP] ← PC [15:8]
SP ← SP + 1
ram [SP] ← PC [7:0]
SP ← SP + 1
PC ← k, (0 ≤ k ≤ 65535)
CF
Unaffected.
ZF
Unaffected.
0000
0000
0003
_main:
7C 00 05 [13] lcall SubFun
8F FC
[05] jmp _main
0005
0005
0005
7F
Although in this example a full 16-bit address is not needed for the
call to SubFun the listing above shows that the lcall instruction
is using a three byte format which accommodates the 16-bit absolute jump address of 0x0005.
56
SubFun:
[08] ret
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.20
Long Jump
LJMP
Description:
Jump unconditionally to the unsigned address indicated by the
instruction’s argument. The LJMP instruction uses a three-byte
instruction format to accommodate a full 16-bit argument. The first
byte of the instruction is a full 8-bit opcode.
Arguments
LJMP
expr
Conditional Flags:
Example:
Operation
Opcode
PC ← K, (0 ≤ k ≤ 65535)
CF
Unaffected.
ZF
Unaffected.
0000
0000
_main:
7D 00 03 [07]ljmp SubFun
0003
0003
0003
SubFun:
7D 00 00 [07]ljmp _main
0x7D
Cycles
7
Bytes
3
Although in this example a full 16-bit address is not needed for the
jump to SubFun the listing above shows that the ljmp instruction
is using a three byte format which accommodates the 16-bit absolute jump address of 0x0003.
Note that this instruction is jumping backwards, relative to the current PC value, and the address in the instruction is a positive number (0x0000). This is because the ljmp instruction uses an
absolute address.
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
57
PSoC Designer: Assembly Language User Guide
4.21
Move
MOV
Description:
This instruction allows for a number of combinations of moves.
Immediate, direct, and indexed addressing are supported.
Arguments
Opcode
Cycles
Bytes
MOV
X, SP
X ← SP
0x4F
4
1
MOV
A, expr
A←k
0x50
4
2
MOV
A, [expr]
A ← ram [k]
0x51
5
2
MOV
A, [X+expr]
A ← ram [X + k]
0x52
6
2
MOV
[expr], A
ram [k] ← A
0x53
5
2
MOV
[X+expr], A
ram [X + k] ← A
0x54
6
2
MOV
[expr], expr
ram [k 1] ← k 2
0x55
8
3
MOV
[X+expr], expr
ram [X + k 1] ← k 2
0x56
9
3
MOV
X, expr
X←k
0x57
4
2
MOV
X, [expr]
X ← ram [k]
0x58
6
2
MOV
X, [X+expr]
X ← ram [X + k]
0x59
7
2
MOV
[expr], X
ram [k] ← X
0x5A
5
2
MOV
A, X
A←X
0x5B
4
1
MOV
X, A
X←A
0x5C
4
1
MOV
A, reg[expr]
A ← reg [k]
0x5D
6
2
MOV
A, reg[X+expr]
A ← reg [X + k]
0x5E
7
2
MOV
[expr], [expr]
ram [k 1] ← ram [k 2]
0x5F
10
3
MOV
REG[expr], A
reg [k] ← A
0x60
5
2
MOV
REG[X+expr], A
reg [X + k] ← A
0x61
6
2
MOV
REG[expr], expr
reg [k 1] ← k 2
0x62
8
3
MOV
REG[X+expr], expr
reg [X + k 1] ← k 2
0x63
9
3
Condition Flags:
Example:
58
Operation
CF
Carry Flag unaffected.
ZF
Set if A is the destination and the result is zero.
mov A, 0x01
mov A, 0x00
;accumulator will equal 1, ZF=0
;accumulator will equal 0, ZF=1
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.22
Move Indirect, Post-Increment to Memory
Description:
MVI
A data pointer in RAM is used to move data between another RAM
address and the Accumulator. The data pointer is incremented
after the data transfer has completed.
For PSoC microcontrollers with more than 256 bytes of RAM, special page pointers are used to allow the MVI instructions to access
data in remote RAM pages. Two page pointers are available, one
for MVI read (MVI A, [[expr]++]) and another for MVI write
(MVI [[expr]++], A). The data pointer is always found in the
current RAM page. The page pointers determine which RAM page
the data pointer’s address will be used. At the end of an MVI
instruction, user code will be operating from the same RAM page
as before the MVI instruction was executed.
Arguments
Operation
Opcode
Cycles
Bytes
MVI
A, [[expr]++]
A ← ram [ram [k]]
ram [k] ← ram [k] + 1
0x3E
10
2
MVI
[[expr]++], A
ram [ram [k]] ← A
ram [k] ← ram [k] + 1
0x3F
10
2
Conditional Flags:
December 8, 2003
CF
Unaffected.
ZF
Set if A is updated with zero.
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
59
PSoC Designer: Assembly Language User Guide
4.23
Example 1:
mov
mov
mov
mvi
mvi
[10h], 4
[11h], 3
[EBh], 10h ;initialize MVI read pointer to 10h
A, [EBh]
;A=4, ram[EBh]=11h
A, [EBh]
;A=3, ram[EBh]=12h
Example 2:
mov
mov
mvi
mov
mvi
[EBh], 10h ;initialize MVI write pointer to 10h
A, 8
[EBh], A
;ram[10h]=8, ram[EBh]=11h
A, 1
[EBh], A
;ram[11h]=1, ram[EBh]=12h
Multi-Page Example 3:
mov
mov
mov
mov
mov
mov
mvi
mvi
reg[CPP_DR], 2;set Current Page Pointer to 2
[10h], 4
;ram_2[10h]=4
[11h], 3
;ram_2[11h]=3
reg[CPP_DR], 0;set Current Page Pointer back to 0
reg[DPR_DR], 2;set MVI write RAM page pointer
[EBh], 10h ;initialize MVI read pointer to 10h
A, [EBh]
;A=4, ram_0[EBh]=11h
A, [EBh]
;A=3, ram_0[EBh]=12h
Multi-Page Example 4:
mov
mov
mov
mov
mvi
mov
mvi
reg[CPP_DR], 0;set Current Page Pointer to 0
reg[DPW_DR], 3;set MVI read RAM page pointer
[EBh], 10h ;initialize MVI write pointer to 10h
A, 8
[EBh], A
;ram_3[10h]=8, ram_0[EBh]=11h
A, 1
[EBh], A
;ram_3[11h]=1, ram_0[EBh]=12h
No Operation
NOP
Description:
This one-byte instruction performs no operation, but, consumes 4
CPU clock cycles.
Arguments
60
Operation
NOP
None
Conditional Flags:
CF
Carry Flag unaffected.
ZF
Zero Flag unaffected.
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
Opcode
Cycles
Bytes
0x40
4
1
December 8, 2003
Section 4. M8C Instruction Set
4.24
Bitwise OR
OR
Description:
Computes the logical OR for each bit position using both arguments. The result of the logical OR is placed in the corresponding
bit position for the first argument.
The Carry Flag is only changed when the OR F, expr instruction
is used. The Carry Flag will be set to the result of the logical OR of
the Carry Flag at the beginning of instruction execution and the
second argument’s value at bit position 2 (i.e., F[2] and
expr[2]).
For the OR F, expr instruction the Zero Flag is handled the same
as the Carry Flag in that it is changed as a result of the logical OR
of the Zero Flag’s value at the beginning of instruction execution
and the value of the second arguments value at bit position 1 (i.e.,
F[1] and expr[1]). However, for all other OR instructions the
Zero Flag will be set or cleared based on the result of the logical
OR operation. If the result of the OR is that all bits are zero, the
Zero Flag will be set, otherwise the Zero Flag is cleared.
Note that OR (or AND or XOR as appropriate) is a read-modify
write instruction. When operating on a register, that register must
be of the read-write type. Bitwise OR to a write-only register will
generate nonsense.
Arguments
Operation
Opcode
Cycles
Bytes
OR
A, expr
A←A k
0x29
4
2
OR
A, [expr]
A ← A ram [k]
0x2A
6
2
OR
A, [X+expr]
A ← A ram [X + k]
0x2B
7
2
OR
[expr], A
ram [k] ← ram [k] A
0x2C
7
2
OR
[X+expr], A
ram [X + k] ← ram [X + k] A
0x2D
8
2
OR
[expr], expr
ram [k 1] ← ram [k 1] k 2
0x2E
9
3
OR
[X+expr], expr
ram [X + k 1] ← ram [X + k 1] k 2
0x2F
10
3
OR
REG[expr], expr
reg [k 1] ← reg [k 1] k 2
0x43
9
3
OR
REG[X+expr], expr
reg [X + k 1] ← reg [X + k 1] k 2
0x44
10
3
OR
F, expr
F←F k
0x71
4
2
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
61
PSoC Designer: Assembly Language User Guide
Conditional Flags:
Example 1:
Example 2:
4.25
CF
Unaffected (unless F is destination).
ZF
Set if the result is zero; cleared otherwise (unless F is destination).
mov A, 0x00
or A, 0xAA
;A=0xAA, CF=unchanged, ZF=0
and F, 0x00
or F, 0x01
;F=1 therefore CF=0, ZF=0
Pop Stack into Register
Description:
POP
Remove the last byte placed on the stack and put it in the specified
M8C register. The Stack Pointer is automatically decremented. The
Zero Flag is set if the popped value is zero, otherwise the Zero
Flag is cleared. The Carry Flag is not affected by this instruction.
For PSoC devices with more than 256 bytes of RAM, the stack is
confined to a single designated stack page defined in the device
data sheet. The M8C automatically selects the stack page as the
source for the memory read during the POP instruction. Therefore,
a POP instruction may be issued in any RAM page. After the POP
has completed, user code will be operating from the same RAM
page as before the POP instruction was executed.
Arguments
POP
A
POP
X
Conditional Flags:
Example 1:
Example 2:
62
Operation
Opcode
Cycles
A ← ram [SP – 1]
SP ← SP – 1
0x18
5
1
X ← ram [SP – 1]
SP ← SP – 1
0x20
5
1
CF
Carry Flag unaffected.
ZF
Set if A is updated to zero.
mov
push
mov
pop
Bytes
A, 34
A
A, 0
A
;top value of stack is now 34, SP+1
;clear the Accumulator
;A=34, SP-1
mov A, 34
push A
pop X
;top value of stack is now 34, SP+1
;X=34, SP-1
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.26
Push Register onto Stack
Description:
PUSH
Transfer the value from the specified M8C register to the top of the
stack as indicated by the value of the SP at the start of the instruction. After placing the value on the stack, the SP is incremented.
The Zero Flag is set if the pushed value is zero, else the Zero Flag
is cleared. The Carry Flag is not affected by this instruction.
For PSoC microcontrollers with more than 256 bytes of RAM, the
stack is confined to a single designated stack page defined in the
device data sheet. The M8C automatically selects the stack page
as the source for the memory write during the PUSH instruction.
Therefore, a PUSH instruction may be issued in any PUSH page.
After the PUSH has completed user code will be operating from the
same RAM page as before the PUSH instruction was executed.
Arguments
Operation
Opcode
Cycles
Bytes
PUSH
A
ram [SP] ← A
SP ← SP + 1
0x08
4
1
PUSH
X
ram [SP] ← X
SP ← SP + 1
0x10
4
1
Conditional Flags:
Example 1:
Example 2:
December 8, 2003
CF
Carry Flag unaffected.
ZF
Zero Flag unaffected.
mov A, 0x3E
push A
;top value of stack is now 0x3E, SP+1
mov X, 0x3F
push X
;top value of stack is now 0x3F, SP+1
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
63
PSoC Designer: Assembly Language User Guide
4.27
Return
RET
Description:
The last two bytes placed on the stack are used to change the PC.
The lower 8 bits of the PC are popped off the stack first followed by
the SP being decremented by one. Next the upper 8 bits of the PC
are popped off the stack followed by a decrement of the SP. Neither
Carry or Zero Flag is affected by this instruction.
For PSoC devices with more than 256 bytes of RAM, the stack is
confined to a single designated stack page defined in the device
data sheet. The M8C automatically selects the stack page as the
source for the pop during the RET instruction. Therefore, an RET
instruction may be issued in any RAM page. After the RET has
completed, user code will be operating from the same RAM page
as before the RET instruction was executed.
Arguments
Operation
Opcode
Cycles
Bytes
0x7F
8
1
RET
SP ← SP – 1
PC [7:0] ← ram [SP]
SP ← SP – 1
PC [15:8] ← ram [SP]
Conditional Flags:
CF
Unaffected by this instruction.
ZF
Unaffected by this instruction.
Example:
0000
0000
0002
0003
0004
0004
0004
0005
90 02
40
30
_main:
[11] call SubFun
[04] nop
[04] halt
40
7F
SubFun:
[04] nop
[08] ret
The ret instruction will set the PC to 0x0002, which is the starting
address of the first instruction after the call.
64
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.28
Return from Interrupt
Description:
RETI
The last three bytes placed on the stack are used to change the F
register and the PC. The first byte removed from the stack is used
to restore the F register. The SP is decremented after the first byte
is removed. The lower 8 bits of the PC are popped off the stack
next followed by the SP being decremented by one again. Finally
the upper 8 bits of the PC are popped off the stack followed by a
last decrement of the SP. The Carry and Zero Flags are updated
with the values from the first byte popped off the stack.
For PSoC devices with more than 256 bytes of RAM, the stack is
confined to a single designated stack page defined in the device
data sheet. The M8C automatically selects the stack page as the
source for the pop during the RETI instruction. Therefore, an
RETI instruction may be issued in any RAM page. After the RETI
has completed, user code will be operating from the same RAM
page as before the RETI instruction was executed.
Arguments
Operation
Opcode
0x7E
Cycles
Bytes
RETI
SP ← SP – 1
F ← ram [SP]
SP ← SP – 1
PC [7:0] ← ram [SP]
SP ← SP – 1
PC [15:8] ← ram [SP]
10
Conditional Flags:
CF
All Flag bits are restored to the value pushed during an
interrupt call.
ZF
All Flag bits are restored to the value pushed during an
interrupt call.
1
Example:
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
65
PSoC Designer: Assembly Language User Guide
4.29
Rotate Left through Carry
Description:
Shifts all bits of the instruction’s argument one bit to the left. Bit 0 is
loaded with the Carry Flag. The most significant bit of the specified
location is loaded into the Carry Flag.
7
6
Arguments
RLC
A
RLC
[expr]
RLC
[X+expr]
Conditional Flags:
Example 1:
66
RLC
5
4
3
2
1
Operation
CF ← A:7
A:7 ← A:6
A:6 ← A:5
A:5 ← A4
A ← A:4 ← A:3
A:3 ← A:2
A:2 ← A:1
A:1 ← A:0
A:0 ← CF
CF ← ram [k]:7
ram [k]:7 ← ram [k]:6
ram [k]:6 ← ram [k]:5
ram [k]:5 ← ram [k]:4
ram [k] ← ram [k]:4 ← ram [k]:3
ram [k]:3 ← ram [k]:2
ram [k]:2 ← ram [k]:1
ram [k]:1 ← ram [k]:0
ram [k [0]] ← CF
CF ← ram [(X + k)]:7
ram [(X + k)]:7 ← ram [(X + k)]:6
ram [(X + k)]:6 ← ram [(X + k)]:5
ram [(X + k)]:5 ← ram [(X + k)]:4
ram [X + k] ← ram [(X + k)]:4 ← ram [(X + k)]:3
ram [(X + k)]:3 ← ram [(X + k)]:2
ram [(X + k)]:2 ← ram [(X + k)]:1
ram [(X + k)]:1 ← ram [(X + k)]:0
ram [(X + k)]:0 ← CF
0
CF
Opcode
Cycles
Bytes
0x6A
4
1
0x6B
7
2
0x6C
8
2
CF
Set if the MSB of the specified Accumulator was set before
the shift, otherwise cleared.
ZF
Set if the result is zero; cleared otherwise.
and F, 0xFB
mov A, 0x7F
rlc A
;clear carry flag
;initialize A with 127
;A=0xFE, CF=0, ZF=0
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.30
Absolute Table Read
Description:
ROMX
Moves any byte from ROM (Flash) into the Accumulator. The
address of the byte to be retrieved is determined by the 16-bit
value formed by the concatenation of the A and X registers. The A
register is the most significant byte and the X register is the least
significant byte of the address. The Zero Flag is set if the retrieved
byte is zero, otherwise the Zero Flag is cleared. The Carry Flag is
not affected by this instruction.
Arguments
Operation
Opcode
Cycles
Bytes
0x28
11
1
ROMX
t1 ← PC [7:0]
PC [7:0] ← X
t2 ← PC [15:8]
PC [15:8] ← A
A ← rom [PC]
PC [7:0] ← t1
PC [15:8] ← t2
Conditional Flags:
CF
Unaffected.
ZF
Set if A is zero, cleared otherwise.
0000
0000
0002
0004
0005
0007
0008
50 00
57 08
28
60 00
40
30
Example:
_main:
[04] mov A, 00h
[04] mov X, 08h
[11] romx
[05] mov reg[00h], A
[04] nop
[04] halt
The romx instruction will read a byte from Flash at address
0x0008. The halt opcode is at address 0x0008, therefore, register 0x00 will receive the value 0x30.
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
67
PSoC Designer: Assembly Language User Guide
4.31
Rotate Right through Carry
Description:
Shifts all bits of the instruction’s argument one bit to the right. The
Carry Flag is loaded into the most significant bit of the argument.
Bit 0 of the argument is loaded into the Carry Flag.
CF
Arguments
68
RRC
A
RRC
[expr]
RRC
[X+expr]
RRC
7
6
5
4
3
2
Operation
CF ← A:0, A:0 ← A:1, A:1 ← A:2
A ← A:2 ← A:3, A:3 ← A:4, A:4 ← A:5
A:5 ← A:6, A:6 ← A:7, A:7 ← CF
CF ← ram [(k)]:0
ram [k]:0 ← ram [k]:1
ram [k]:1 ← ram [k]:2
ram [k]:2 ← ram [k]:3
ram [k] ← ram [k]:3 ← ram [k]:4
ram [k]:4 ← ram [k]:5
ram [k]:5 ← ram [k]:6
ram [k]:6 ← ram [k]:7
ram [k]:7 ← CF
CF ← ram [(X + k)]:0
ram [(X + k)]:0 ← ram [(X + k)]:1
ram [(X + k)]:1 ← ram [(X + k)]:2
ram [(X + k)]:2 ← ram [(X + k)]:3
ram [X + k] ← ram [(X + k)]:3 ← ram [(X + k)]:4
ram [(X + k)]:4 ← ram [(X + k)]:5
ram [(X + k)]:5 ← ram [(X + k)]:6
ram [(X + k)]:6 ← ram [(X + k)]:7
ram [(X + k)]:7 ← CF
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
1
0
Opcode
Cycle
s
Bytes
0x6D
4
1
0x6E
7
2
0x6F
8
2
December 8, 2003
Section 4. M8C Instruction Set
Conditional Flags:
4.32
CF
Set if LSB of the specified Accumulator was set before the
shift, cleared otherwise.
ZF
Set if the result is zero, cleared otherwise.
Example 1:
or
F, 0x04
and A, 0x00
rrc A
;set carry flag
;clear the accumulator
;A=0x80, CF=0, ZF=0
Example 2:
and
mov
and
rrc
;clear carry flag
;initialize A to 255
;make sure all flags are cleared
;A=0x7F, CF=1, ZF=0
Example3:
or
F, 0x04
;set carry flag
mov [0xEB], 0xAA;initialize A to 170
rrc [0xEB]
;ram[0xEB]=0xD5, CF=1, ZF=0
F, 0xFB
A, 0xFF
A, 0x00
A
Subtract with Borrow
Description:
SBB
Computes the difference of the two operands plus the carry value
from the Flag register. The first operand’s value is replaced by the
computed difference. If the difference is less than 0 the Carry Flag
is set in the Flag register. If the sum is zero the Zero Flag is set in
the Flag register, otherwise the Zero Flag is cleared.
Arguments
Operation
Opcode
Cycles
Bytes
SBB
A, expr
A ← A – (K + CF)
0x19
4
2
SBB
A, [expr]
A ← A – (ram [k] + CF)
0x1A
6
2
SBB
A, [X+expr]
A ← A – (ram [X + k] + CF)
0x1B
7
2
SBB
[expr], A
ram [k] ← ram [k] – (A + CF)
0x1C
7
2
SBB
[X+expr], A
ram [X + k] ← ram [X + k] – (A + CF)
0x1D
8
2
SBB
[expr], expr
ram [k1] ← ram [k1] – (k 2 + CF)
0x1E
9
3
SBB
[X+expr], expr
ram [X + k 1] ← ram [X + k 1] – (k 2 + CF)
0x1F
10
3
Conditional Flags:
CF
Set if, treating the numbers as unsigned, the result < 0;
cleared otherwise.
ZF
Set if the result is zero; cleared otherwise.
Example 1:
mov A, 0
or
F, 0x02
sbb A, 12
Example 2:
mov
mov
inc
sbb
December 8, 2003
;set accumulator to zero
;set carry flag
;accumulator value is now 0xF3
[0x39], 2 ;initialize ram[0x39]=0x02
[0x40], FFh ;initialize ram[0x40]=0xff
[0x40]
;ram[0x40]=0x00, CF=1
[0x39], 0 ;ram[0x39]=0x01
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
69
PSoC Designer: Assembly Language User Guide
4.33
Subtract without Borrow
Description:
Computes the difference of the two operands. The first operand’s
value is replaced by the computed difference. If the difference is
less than 0 the Carry Flag is set in the Flag register. If the sum is
zero the Zero Flag is set in the Flag register, otherwise the Zero
Flag is cleared.
Arguments
Operation
Opcode
Cycles
Bytes
SUB
A, expr
A←A–K
0x11
4
2
SUB
A, [expr]
A ← A – ram [k]
0x12
6
2
SUB
A, [X+expr]
A ← A – ram [X + k]
0x13
7
2
SUB
[expr], A
ram [k] ← ram [k] – A
0x14
7
2
SUB
[X+expr], A
ram [X + k] ← ram [X + k] – A
0x15
8
2
SUB
[expr], expr
ram [k1] ← ram [k1] – k 2
0x16
9
3
SUB
[X+expr], expr
ram [X + k 1] ← ram [X + k 1] – k 2
0x17
10
3
Conditional Flags:
70
SUB
CF
Set if, treating the numbers as unsigned, the result < 0;
cleared otherwise.
ZF
Set if the result is zero; cleared otherwise.
Example 1:
mov A, 0
or
F, 0x04
sub A, 12
Example 2:
mov
mov
inc
sub
;set accumulator to zero
;set carry flag
;accumulator value is now 0xF4
[0x39], 2 ;initialize ram[0x39]=0x02
[0x40], FFh ;initialize ram[0x40]=0xff
[0x40]
;ram[0x40]=0x00, CF=1
[0x39], 0 ;ram[0x39]=0x02
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.34
Swap
SWAP
Description:
Each argument is updated with the other argument’s value. The
Zero Flag is set if the Accumulator is updated with zero, else the
Zero Flag is cleared. The swap X, [expr] instruction does not
affect either the Carry or Zero Flags.
Arguments
Operation
Opcode
Cycles
Bytes
SWAP
A, X
t←X
X←A
A←t
0x4B
5
1
SWAP
A, [expr]
t ← ram [k]
ram [k] ← A
A←t
0x4C
7
2
SWAP
X, [expr]
t ← ram [k]
ram [k] ← X
X←t
0x4D
7
2
SWAP
A, SP
t ← SP
SP ← A
A←t
0x4E
5
1
Conditional Flags:
Example:
December 8, 2003
CF
Carry Flag unaffected.
ZF
Set if Accumulator is cleared.
mov A, 0x30
swap A, SP
;SP=0x30, A equals previous SP value
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
71
PSoC Designer: Assembly Language User Guide
4.35
System Supervisor Call
Description:
SSC
The System Supervisor Call instruction provides the method for
users to access pre-existing routines in the Supervisor ROM. The
supervisory routines perform various system-related functions. The
PC and F registers are pushed on the stack prior to the execution of
the supervisory routine. All bits of the Flag register are cleared
before any supervisory routine code is executed, therefore, interrupts and page mode are disabled.
All supervisory routines return using the RETI instruction causing
the PC and F register to be restored to their pre-supervisory routine
state.
Supervisory routines are device specific, please reference the data
sheet for the device you are using for detailed information on the
available supervisory routines.
Arguments
Operation
SSC
ram [SP] ← PC [15:8]
SP ← SP + 1
ram [SP] ← PC [7:0]
SP ← SP + 1
ram [SP] ← F
PC ← 0x0000
F ← 0x00
Conditional Flags:
CF
Unaffected.
ZF
Unaffected.
Example:
Cycles
Bytes
0x00
15
1
The following example is one way to set up an SSC operation for
the CY8C25xxx and CY8C26xxx PSoC devices. PSoC Designer
uses the signature created by the following lines of code to recognize supervisory system calls and configures the In-Circuit Emulator for SSC debugging. It is recommended that users take
advantage of the SSC Macro provided in PSoC Designer to ensure
that the debugger recognizes and therefore debugs supervisory
operations correctly. See separate data sheets for complete
device-specific options (CY8C25xxx/26xxx or CY8C22xxx/24xxx/
27xxx).
mov
mov
add
mov
mov
mov
SSC
72
Opcode
X, SP
;get stack pointers current value
A, X
;move SP to A
A, 3
;add 3 to SP value
[0xF9], A ;store SP+3 value in ram[0xF9]=KEY2
[0xF8], 0x3A;set ram[0xF9]=0x3A=KEY1
A, 2
;set supervisory function code = 2
;call supervisory function
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 4. M8C Instruction Set
4.36
Test with Mask
Description:
TST
Calculates a bitwise AND with the value of argument one and argument two. Argument one’s value is not affected by the instruction. If
the result of the AND is zero the Zero Flag is set, otherwise the
Zero Flag is cleared. The Carry Flag is not affected by the instruction.
Arguments
Operation
Opcode
Cycles
Bytes
TST
[expr], expr
ram [k1] & k 2
0x47
8
3
TST
[X+expr], expr
ram [X + k 1] & k 2
0x48
9
3
TST
REG[expr], expr
reg [k1] & k 2
0x49
9
3
TST
REG[X+expr], expr
reg [X + k 1] & k 2
0x4A
10
3
Conditional Flags:
Example:
December 8, 2003
CF
Unaffected.
ZF
Set if the result of AND is zero; cleared otherwise.
mov
tst
tst
tst
tst
[0x00],
[0x00],
[0x00],
[0x00],
[0x00],
0x03
0x02;CF=0,
0x01;CF=0,
0x03;CF=0,
0x04;CF=0,
ZF=0
ZF=0
ZF=0
ZF=1
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
(i.e.
(i.e.
(i.e.
(i.e.
bit
bit
bit
bit
1
0
0
2
is 1)
is 1)
and 1 are 1)
is 0)
73
PSoC Designer: Assembly Language User Guide
4.37
Bitwise XOR
XOR
Description:
Computes the logical XOR for each bit position using both arguments. The result of the logical XOR is placed in the corresponding
bit position for the argument.
The Carry Flag is only changed when the XOR F, expr instruction is used. The Carry Flag will be set to the result of the logical
XOR of the Carry Flag at the beginning of instruction execution and
the second argument’s value at bit position 2 (i.e., F[2] and
expr[2]).
For the xOR F, expr instruction the Zero Flag is handled the
same as the Carry Flag in that it is changed as a result of the logical XOR of the Zero Flag’s value at the beginning of instruction
execution and the value of the second argument’s value at bit position 1 (i.e., F[1] and expr[1]). However, for all other xOR
instructions the Zero Flag will be set or cleared based on the result
of the logical XOR operation. If the result of the XOR is that all bits
are zero, the Zero Flag will be set, otherwise the Zero Flag is
cleared. The Carry Flag is not affected.
Arguments
Opcode
Cycles
Bytes
XOR
A, expr
A←A⊕k
0x31
4
2
XOR
A, [expr]
A ← A ⊕ ram [k]
0x32
6
2
XOR
A, [X+expr]
A ← A ⊕ ram [X + k]
0x33
7
2
XOR
[expr], A
ram [k] ← ram [k] ⊕ A
0x34
7
2
XOR
[X+expr], A
ram [X + k] ← ram [X + k] ⊕ A
0x35
8
2
XOR
[expr], expr
ram [k1] ← ram [k1] ⊕ k 2
0x36
9
3
XOR
[X+expr], expr
ram [X + k 1] ← ram [X + k 1] ⊕ k 2
0x37
10
3
XOR
REG[expr], expr
reg [k1] ← reg [k 1] ⊕ k 2
0x45
9
3
XOR
REG[X+expr], expr
reg [X + k 1] ← reg [X + k 1] ⊕ k 2
0x46
10
3
XOR
F, expr
F←F⊕k
0x72
4
2
Conditional Flags:
Example 1:
74
Operation
CF
Unaffected (unless F is destination).
ZF
Set if the result is zero; cleared otherwise (unless F is destination).
mov A, 0x00
xor A, 0xAA
;A=0xAA, CF=unchanged, ZF=0
Example 2:
and F, 0x00
xor F, 0x01
;F=0
;F=1 therefore CF=0, ZF=0
Example 3:
mov A, 0x5A
xor A, 0xAA
;A=0xF0, CF=unchanged, ZF=0
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 5. Assembler Directives
Section 5. Assembler Directives
Assembler directives are used to communicate with the assembler and do not
generate code. The directives allow a firmware developer to conditionally
assemble source files, equate character strings to values, locate code or data
at specific addresses, etc.
While the directives are often shown in all capital letters, the PSoC Designer
Assembler ignores case for directives and instructions mnemonics. However,
the assembler does consider case for user-defined symbols (i.e., labels).
This section will cover all of the assembler directives currently supported by
the PSoC Designer Assembler. A description of each directive and its syntax
will be given for each directive.
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
75
PSoC Designer: Assembly Language User Guide
5.1
Area
Description:
AREA
Defines where code or data is located in Flash by the Linker. The Linker
gathers all areas with the same name together from the source files, and
either concatenates or overlays them, depending on the attributes specified.
All areas with the same name must have the same attributes, even if they
are used in different modules.
The following is a complete list of valid key words that can be used with the
AREA directive:
•
•
•
•
•
•
RAM: Specifies that data is stored in RAM. Only used for variable storage.
Commonly used with BLK directive.
ROM: Specifies that code or data is stored in Flash.
ABS: Absolute, i.e., non-relocatable, location for code or data specified by the
ORG directive. Default value if ABS or REL is not specified.
REL: Allows the linker to relocate the code or data.
CON: Specifies that sequential AREAs follow each other in memory. Each
AREA is allocated its own memory. The total size of the AREA is the sum of all
AREA sizes. Default value if CON or OVR is not specified.
OVR: Specifies that sequential AREAs start at the same address. This is a
union of the AREAs. The total size of the AREA is the size of the largest area.
PSoC Designer requires that the bss area be used for RAM variables.
Directive
AREA
5.1.1
Arguments
<name> (< RAM | ROM >, [ABS | REL], [CON | OVR])
Example
A code area is defined at address 2000.
AREA MyArea(ROM,ABS,CON)
_MyArea_start:
ORG 2000h
5.1.2
Code Compressor and the AREA Directive
The Code Compressor “looks” for duplicate code within the ‘text” Area. The
“text” Area is the default area in which all ‘C’ code is placed.
76
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 5. Assembler Directives
Not Allowed
Function A
Function B
"text" Area
Calls
Function X
"not_text" Area
The above diagram shows a scenario that is not allowed or potentially problematic. Code areas created with the AREA directive, using a name other than
“text,” are not compressed or “fixed up” (following compression). Therefore, if
Function A in the “text” Area calls Function X in the “non_text” Area, then
Function X calls Function B where there would be “thepotential” that the location of Function B changed. The call or jump generated in the code for Function X would go to the wrong location.
It is allowable for Function A to call a function in a “non_text” Area and simply
return.
For example, if Function A in the “text” Area calls Function X in the “non_text”
Area, then Function X calls to Function B could be invalid. The location for
Function B can change because it is in the “text” Area. Calls and jumps are
fixed up in the “text” Area only. Following code compression, the call location
to Function B from Function X in the “non_text” Area will not be fixed up.
All normal user code that is to be compressed must be in the default "text"
Area. If you create code in other area, for example, in a bootloader, then it
must not call any functions in the “text” Area. However, it is acceptable for a
function in the “text” Area to call functions in other areas. The exception is the
TOP area where the interrupt vectors and the startup code can call functions in
the “text” Area. Addresses within the “text” Area must be not used directly otherwise.
If you reference any text area function by address, then it must be done indirectly. Its address must be put in a word in the area "func_lit." At runtime, you
must de-reference the content of this word to get the correct address of the
function. Note that if you are using C to call a function indirectly, the compiler
will take care of all these details for you. The information is useful if you are
writing assembly code.
For further details on enabling and using code compression, see:
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
77
PSoC Designer: Assembly Language User Guide
5.2
ƒ
PSoC Designer: C Language Compiler User Guide
(Code Compression)
ƒ
PSoC Designer: Integrated Development Environment User Guide
(Project Settings)
NULL Terminated ASCII String
Description:
ASCIZ
Stores a string of characters as ASCII values and appends a terminating
NULL (00h) character. The string must start and end with quotation marks
"".
The string is stored character by character in ASCII hex format. The backslash character \ is used in the string as an escape character. Non-printing
characters, such as \n and \r, can be used. A quotation mark (")can be
entered into a string using the backslash (\"), a single quote (‘) as (\’), and a
backslash (\) as (\\).
Directive
ASCIZ
5.2.1
Arguments
< “character string“ >
Example
My"String\ is defined with a terminating NULL character.
MyString:
ASCIZ "My\"String\\"
5.3
RAM Block in Bytes
Description:
BLK
Reserves blocks of RAM in bytes. The argument is an expression, specifying
the size of the block, in bytes, to reserve. The AREA directive must be used
to ensure the block of bytes will reside in the correct memory location.
PSoC Designer requires that the bss area be used for RAM variables.
Directive
BLK
5.3.1
Arguments
< size >
Example
A 4-byte variable called MyVariable is allocated.
AREA bss
78
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 5. Assembler Directives
MyVariable:
BLK 4
5.4
RAM Block in Words
Description:
BLKW
Reserves a block of RAM. The amount of RAM reserved is determined by
the size argument to the directive. The units for the size argument is words
(16 bits).
PSoC Designer requires that the AREA bss be used for RAM variables.
Directive
BLKW
5.4.1
Arguments
< size >
Example
A 4-byte variable called MyVariable is allocated.
AREA bss
MyVariable:
BLKW 2
5.5
Define Byte
Description:
DB
Reserves bytes of ROM and assigns the specified values to the reserved
bytes. This directive is useful for creating data tables in ROM.
Arguments may be constants or labels. The length of the source line limits
the number of arguments in a DB statement.
Directive
DB
5.5.1
Arguments
< value1 > [, value2, ..., valuen]
Example
3 bytes are defined starting at address 3000.
MyNum:
EQU 77h
ORG 3000h
MyTable:
DB 55h, 66h, MyNum
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
79
PSoC Designer: Assembly Language User Guide
5.6
Define ASCII String
Description:
DS
Stores a string of characters as ASCII values. The string must start and end
with quotation marks "".
The string is stored character by character in ASCII hex format. The backslash character \ is used in the string as an escape character. Non-printing
characters, such as \n and \r, can be used. A quotation mark (")can be
entered into a string using the backslash (\"), a single quote (‘) as (\’), and a
backslash (\) as (\\).
The string is not null terminated. To create a null terminated string; follow the
DS with a DB 00h or use ASCIZ.
Directive
DS
5.6.1
Arguments
< “character string“ >
Example
My"String\ is defined:
MyString:
DS "My\"String\\"
5.7
Define UNICODE String
Description:
DSU
Stores a string of characters as UNICODE values with little ENDIAN byte
order. The string must start and end with quotation marks "".
The string is stored character by character in UNICODE format. Each character in the string is stored with the low byte followed by the high byte.
The backslash character \ is used in the string as an escape character.
Non-printing characters, such as \n and \r, can be used. A quotation mark
(")can be entered into a string using the backslash (\"), a single quote (‘)
as (\’), and a backslash (\) as (\\).
Directive
DSU
5.7.1
Arguments
< “character string” >
Example
My"String\ is defined with little endian byte order.
MyString:
DSU "My\"String\\"
80
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 5. Assembler Directives
5.8
Define Word
Description:
DW
Reserves two-byte pairs of ROM and assigns the specified words to each
reserved byte. This directive is useful for creating tables in ROM.
The arguments may be constants or labels. Only the length of the source
line limits the number of arguments in a DW statement.
Directive
DW
5.8.1
Arguments
< value1 > [, value2, ..., valuen]
Example
6 bytes are defined starting at address 2000.
MyNum:
EQU 3333h
ORG 2000h
MyTable:
DW 1111h, 2222h, MyNum
5.9
Define Word, Little Endian Ordering
Description:
DWL
Reserves two-byte pairs of ROM and assigns the specified words to each
reserved byte, swapping the order of the upper and lower bytes.
The arguments may be constants or labels. The length of the source line
limits the number of arguments in a DWL statement.
Directive
DWL
5.9.1
Arguments
< value1 > [, value2, ..., valuen]
Example
6 bytes are defined starting at address 2000.
MyNum:
EQU 6655h
ORG 2000h
MyTable:
DWL 2211h, 4433h, MyNum
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
81
PSoC Designer: Assembly Language User Guide
5.10
Equate Label
Description:
EQU
Assign an integer value to a label. The label and operand are required for an
EQU directive. The argument must be a constant or label or “.” (the current
PC). Each EQU directive may have only one argument and if a label is
defined more than once, an assembly error will occur.
To use the same equate in more than one assembly source file, place the
equate in an .inc file and include that file in the referencing source files. Do
not export equates from assembly source files, or the PSoC Designer Linker
will resolve the directive in unpredictable ways.
Directive
EQU
5.10.1
Syntax
< label> EQU < value | address >
Example
BITMASK is equated to 1Fh.
BITMASK: EQU 1Fh
5.11
Export
Description:
EXPORT
Designate that a label is global, and can be referenced in another file. Otherwise, the label is not visible to another file. Another way to export a label is
to end the label definition with two colons instead of one.
Directive
EXPORT
5.11.1
Syntax
EXPORT < label >
Example
MyVariable is exported.
Export MyVariable
AREA bss
MyVariable:
BLK 1
82
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 5. Assembler Directives
5.12
Conditional Source
Description:
IF, ELSE, ENDIF
All source lines between the IF and ENDIF (or IF and ELSE) directives are
assembled if the condition is true. These statements can be nested.
Else delineates a “not true” action for a previous IF directive.
ENDIF finishes a section of conditional assembly that began with an IF
directive.
Directive
IF
[ELSE]
ENDIF
5.12.1
Arguments
value
Example
Sections of the source code are conditional.
Cond1:
Cond2:
EQU 1
EQU 0
ORG 1000h
IF (Cond1)
ADD A, 33h
IF (Cond2)
ADD A, FFh
ENDIF
NOP
ELSE
MOV A, FFh
ENDIF
// The example creates the following code
ADD A, 33h
NOP
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
83
PSoC Designer: Assembly Language User Guide
5.13
Include Source File
Description:
INCLUDE
Used to add additional source files to the file being assembled. When an
INCLUDE directive is encountered, the assembler reads in the specified
source file until either another INCLUDE is encountered or the end of file is
reached. If additional INCLUDES are encountered, additional source files
are read in. When an end of file is encountered, the assembler resumes
reading the previous file.
Specify the full (or relative) path to the file if the source file does not reside in
the current directory.
Directive
INCLUDE
5.13.1
Arguments
< file name >
Example
Three files are included into the source code.
INCLUDE "MyInclude1.inc"
INCLUDE "MyIncludeFiles\MyInclude2.inc"
INCLUDE "C:\MyGlobalIncludeFiles\MyInclude3.inc"
5.14
Prevent Code Compression of Data
Description:
Used to avoid code compression of the data defined between the .LITERAL and .ENDLITERAL directives. For the code compressor to function,
all data defined in ROM with ASCIZ, DB, DS, DSU, DW, or DWL must use this
directive. The .LITERAL directive must be followed by an exported global
label. The .ENDLITERAL directive resumes code compression.
Directive
.LITERAL
.ENDLITERAL
5.14.1
.LITERAL, .ENDLITERAL
Syntax
< none >
Example
Code compression is suspended for the data table.
Export DataTable
.LITERAL
DataTable:
DB 01h, 02h, 03h
.ENDLITERAL
84
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 5. Assembler Directives
5.15
Macro Definition
Description:
MACRO, ENDM
Used to specify the start and end of a macro definition. The lines of code
defined between a MACRO statement and an ENDM statement are not directly
assembled into the program. Instead, it forms a macro that can later be substituted into the code by a macro call. Following the MACRO directive is used
to call the macro as well as a list of parameters. Each time a parameter is
used in the macro body of a macro call, it will be replaced by the corresponding value from the macro call.
Any assembly statement is allowed in a macro body except for another
macro statement. Within a macro body, the expression @digit, where digit
is between 0 and 9, is replaced by the corresponding macro argument
when the macro is invoked. You cannot define a macro name that conflicts
with an instruction mnemonic or an assembly directive.
Directive
MACRO
ENDM
5.15.1
Arguments
< name >< arguments >
Example
A MACRO is defined and used in the source code.
MACRO MyMacro
ADD A, 42h
MOV X, 33h
ENDM
// The Macro instructions are expanded at address 2400
ORG 2400h
MyMacro
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
85
PSoC Designer: Assembly Language User Guide
5.16
Area Origin
Description:
ORG
Allows the programmer to set the value of the Program/Data Counter during
assembly. This is most often used to set the start of a table in conjunction
with the define directives DB, DS, and DW. The ORG directive can only be
used in areas with the ABS mode.
An operand is required for an ORG directive and may be an integer constant,
a label, or “.” (the current PC). The assembler does not keep track of areas
previously defined and will not flag overlapping areas in a single source file.
Directive
ORG
5.16.1
Arguments
< address >
Example
The bytes defined after the ORG statement are at address 1000.
ORG 1000h
DB 55h, 66h, 77h
5.17
Section for Dead-Code Elimination
Description:
.SECTION, .ENDSECTION
Allows the removal of code specified between the .SECTION and .ENDSECTION directives. The .SECTION directive must be followed by an
exported global label. If there is no call to the global label, the code will be
eliminated and call offsets will be adjusted appropriately. The .ENDSECTION
directive ends the dead-code section.
Note that use of this directive is not limited to removing dead code. PSoC
Designer takes care of dead code if you check the “Enable Elimination of
un-used User Modules (area) APIs” field. This feature can be accessed
under Project >> Settings, Compiler tab. If you check this field, upon a build
the system will go in and remove all “dead code” from the APIs in effort to
free up space.
Directive
.SECTION
.ENDSECTION
5.17.1
Arguments
< none >
Example
The section of code is designated as possible dead code.
Export Counter8_1_WriteCompareValue
.SECTION
Counter8_1_WriteCompareValue:
86
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 5. Assembler Directives
MOV
reg[Counter8_1_COMPARE_REG], A
RET
.ENDSECTION
5.18
Suspend and Resume Code Compressor
Suspend - OR F,0
Resume - ADD SP,0
Description:
Used to prevent code compression of the code between the OR F,0 and
ADD SP,0 instructions. The code compressor may need to be suspended
for timing loops and jump tables. If the JACC instruction is used to access
fixed offset boundaries in a jump table, any LJMP and/or LCALL entries in
the table may be optimized to relative jumps or calls, changing the proper
offset value for the JACC. An RET or RETI instruction will resume code compression if it is encountered before an ADD SP,0 instruction. These instructions are defined as the macros Suspend_CodeCompressor and
Resume_CodeCompressor in m8c.inc.
Directive
OR F,0
ADD SP,0
5.18.1
Arguments
< none >
Example
Code compression is suspended for the jump table.
OR F,0
MOV A, [State]
JACC StateTable
StateTable:
LJMP State1
LJMP State2
LJMP State3
ADD SP,0
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
87
PSoC Designer: Assembly Language User Guide
88
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 6. Compile/Assemble Error Messages
Section 6. Compile/Assemble Error Messages
This section describes the PSoC Designer Linker as well as C Compiler and
Assembler errors and warnings.
Once you have added and modified assembly-language source and/or C
Compiler files, you must compile/assemble the files and build the project. This
is done so PSoC Designer can generate a .rom file to be used to debug the
MCU program.
To compile the source files for the current project, click the Compile/Assemble
icon in the toolbar.
To build the current project, click the Build icon in the toolbar.
Each time you compile/assemble files or build the project, the Output Status
Window is cleared and the current status entered as the process occurs.
When compiling or building is complete, you will see the number of errors.
Zero errors signifies that the compilation/assemblage or build was successful.
One or more errors indicate problems with one or more files. For further information on the PSoC Designer Output Status Window refer to section 3 in the
PSoC Designer: Integrated Development Environment User Guide.
The remainder of this section lists all compile/assemble and build (Linker)
errors and warnings you might encounter from your code.
6.1
Linker Operations
The main purpose of the linker is to combine multiple object files into a single
output file suitable to be downloaded to the In-Circuit Emulator for debugging
the code and programming the device. Linking takes place in PSoC Designer
when a project “build” is executed. The linker can also take input from a
"library" which is basically a file containing multiple object files. In producing
the output file, the linker resolves any references between the input files. In
some detail, the linking steps involve:
1. Making the startup file (boot.asm) the first file to be linked. The startup file
initializes the execution environment for the C program to run.
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
89
PSoC Designer: Assembly Language User Guide
2. Appending any libraries that you explicitly request (or in most cases, as are
requested by the IDE) to the list of files to be linked. Library modules that
are directly or indirectly referenced will be linked. All user-specified object
files (e.g., your program files) are linked.
3. Scanning the object files to find unresolved references. The linker marks
the object file (possibly in the library) that satisfies the references and adds
it to its list of unresolved references. It repeats the process until there are
no outstanding unresolved references.
4. Combining all marked object files into an output file and generating map
and listing files as needed.
For additional information about Linker, and specifying Linker settings, refer to
the PSoC Designer: Integrated Development Environment User Guide (Project
Settings).
6.2
Preprocessor Errors
Note that these errors and warnings are also associated with C Compiler
errors and warnings.
Table 23:
Preprocessor Errors/Warnings
Error/Warning
not followed by macro parameter
occurs at border of replacement
#defined token can't be redefined
#defined token is not a name
#elif after #else
#elif with no #if
#else after #else
#else with no #if
#endif with no #if
#if too deeply nested
#line specifies number out of range
Bad ?: in #if/endif
Bad syntax for control line
Bad token r produced by ## operator
Character constant taken as not signed
Could not find include file
Disagreement in number of macro arguments
Duplicate macro argument
EOF in macro arglist
90
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 6. Compile/Assemble Error Messages
Table 23:
Preprocessor Errors/Warnings, continued
Error/Warning
EOF in string or char constant
EOF inside comment
Empty character constant
Illegal operator * or & in #if/#elsif
Incorrect syntax for `defined'
Macro redefinition
Multibyte character constant undefined
Sorry, too many macro arguments
String in #if/#elsif
Stringified macro arg is too long
Syntax error in #else
Syntax error in #endif
Syntax error in #if/#elsif
Syntax error in #if/#endif
Syntax error in #ifdef/#ifndef
Syntax error in #include
Syntax error in #line
Syntax error in #undef
Syntax error in macro parameters
Undefined expression value
Unknown preprocessor control line
Unterminated #if/#ifdef/#ifndef
Unterminated string or char const
Table 24:
Preprocessor Command Line Errors
Error/Warning
Can't open input file
Can't open output file
Illegal -D or -U argument
Too many -I directives
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
91
PSoC Designer: Assembly Language User Guide
6.3
Assembler Errors
Table 25:
Assembler Errors/Warnings
Error/Warning
'[' addressing mode must end with ']'
) expected
.if/.else/.endif mismatched
<character> expected
EOF encountered before end of macro definition
No preceding global symbol
absolute expression expected
badly formed argument, (without a matching)
branch out of range
cannot add two relocatable items
cannot perform subtract relocation
cannot subtract two relocatable items
cannot use .org in relocatable area
character expected
comma expected
equ statement must have a label
identifier expected, but got character <c>
illegal addressing mode
illegal operand
input expected
label must start with an alphabet, '.' or '_'
letter expected but got <c>
macro <name> already entered
macro definition cannot be nested
maximum <#> macro arguments exceeded
missing macro argument number
multiple definitions <name>
no such mnemonic <name>
relocation error
target too far for instruction
too many include files
too many nested .if
undefined mnemonic <word>
undefined symbol
unknown operator
unmatched .else
unmatched .endif
92
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Section 6. Compile/Assemble Error Messages
Table 26:
Assembler Command Line Errors/Warnings
Error/Warning
cannot create output file %s\n
Too many include paths
6.4
Linker Errors
Table 27:
Linker Errors/Warnings
Error/Warning
Address <address> already contains a value
can't find address for symbol <symbol>
can't open file <file>
can't open temporary file <file>
cannot open library file <file>
cannot write to <file>
definition of builtin symbol <symbol> ignored
ill-formed line <%s> in the listing file
multiple define <name>
no space left in section <area>
redefinition of symbol <symbol>
undefined symbol <name>
unknown output format <format>
6.5
Code Compressor and Dead-Code Elimination Error Messages
ƒ
!X The compiler has failed an internal consistency check. This
may be due to incorrect input or an internal error. Please
report the information target == 0 || new_target at
..\optm8c.c(340) to "Cypress MicroSystems" C:\Program Files\Cypress MicroSystems\PSoC
Designer\tools\make: *** [output/drc_test.rom] Error 1
Possible Causes
a. The label in a .LITERAL or .SECTION segment of code has not been
made global using the EXPORT directive or a double colon.
b. A .LITERAL segment has only a label and no defined data.
ƒ
ƒ
December 8, 2003
.SECTION was not followed by a label
.LITERAL was not followed by a label
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
93
PSoC Designer: Assembly Language User Guide
ƒ
ƒ
ƒ
ƒ
ƒ
.ENDSECTION has no matching .SECTION
.ENDLITERAL has no matching .LITERAL
.SECTION has no .ENDSECTION
Unmatched .LITERAL directive
directive creating data may not be compatible with Code Compression and other advanced technologies
Possible Causes
1. Data defined in ROM does not have the .LITERAL and .ENDLITERAL directives.
94
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Appendix A. Assembly Language Reference Tables
The tables in this appendix are intended to serve as a quick reference to the
M8C instruction set and assembler directives. For detailed information on the
instruction set and the assembler directives see M8C Instruction Set on
page 39 and Assembler Directives on page 75
Table A-1:
Documentation Conventions
Convention
Usage
Courier New Size 10
Displays input and output:
// Created by PSoC Designer
// from template BOOT.ASM
// Boot Code, from Reset
//
--- 000AREA
TOP(ABS)
org 0
0000 8033 jmp __start
0002 8031 jmp __start
0004 801F jmp Interrupt0
0006 801E jmp Interrupt1
[bracketed, bold]
Displays keyboard commands:
[Enter] or [Ctrl] [C]
Courier New Size 10, italics
Displays file names and extensions:
<Project Name>.rom
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
95
PSoC Designer: Assembly Language User Guide
Table A-2:
Instruction Set Summary (Sorted by Mnemonic)
Table A-3:
Precedence
1
2
3
4
5
6
7
8
96
Flags
INC [expr]
INC [X+expr]
INDEX
JACC
JC
JMP
JNC
JNZ
JZ
LCALL
LJMP
MOV X, SP
MOV A, expr
MOV A, [expr]
MOV A, [X+expr]
MOV [expr], A
MOV [X+expr], A
MOV [expr], expr
MOV [X+expr], expr
MOV X, expr
MOV X, [expr]
MOV X, [X+expr]
MOV [expr], X
MOV A, X
MOV X, A
MOV A, reg[expr]
MOV A, reg[X+expr]
MOV [expr], [expr]
MOV reg[expr], A
MOV reg[X+expr], A
MOV reg[expr], expr
MOV reg[X+expr], expr
MVI A, [[expr]++]
MVI [[expr]++], A
NOP
OR A, expr
OR A, [expr]
OR A, [X+expr]
OR [expr], A
OR [X+expr], A
OR [expr], expr
OR [X+expr], expr
OR reg[expr], expr
OR reg[X+expr], expr
OR F, expr
C, Z
C, Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
C, Z
20
18
10
08
7E
7F
6A
6B
6C
28
6D
6E
6F
19
1A
1B
1C
1D
1E
1F
00
11
12
13
14
15
16
17
4B
4C
4D
4E
47
48
49
4A
72
31
32
33
34
35
36
37
45
46
Bytes
Cycles
09 4 2 ADC A, expr
C, Z
76 7 2
0A 6 2 ADC A, [expr]
C, Z
77 8 2
0B 7 2 ADC A, [X+expr]
C, Z
Fx 13 2
0C 7 2 ADC [expr], A
C, Z
Ex 7 2
0D 8 2 ADC [X+expr], A
C, Z
Cx 5 2
0E 9 3 ADC [expr], expr
C, Z
8x 5 2
0F 10 3 ADC [X+expr], expr
C, Z
Dx 5 2
01 4 2 ADD A, expr
C, Z
Bx 5 2
02 6 2 ADD A, [expr]
C, Z
Ax 5 2
03 7 2 ADD A, [X+expr]
C, Z
7C 13 3
04 7 2 ADD [expr], A
C, Z
7D 7 3
05 8 2 ADD [X+expr], A
C, Z
4F 4 1
06 9 3 ADD [expr], expr
C, Z
50 4 2
07 10 3 ADD [X+expr], expr
C, Z
51 5 2
38 5 2 ADD SP, expr
52 6 2
21 4 2 AND A, expr
Z
53 5 2
22 6 2 AND A, [expr]
Z
54 6 2
23 7 2 AND A, [X+expr]
Z
55 8 3
24 7 2 AND [expr], A
Z
56 9 3
25 8 2 AND [X+expr], A
Z
57 4 2
26 9 3 AND [expr], expr
Z
58 6 2
27 10 3 AND [X+expr], expr
Z
59 7 2
70 4 2 AND F, expr
C, Z
5A 5 2
41 9 3 AND reg[expr], expr
Z
5B 4 1
42 10 3 AND reg[X+expr], expr Z
5C 4 1
64 4 1 ASL A
C, Z
5D 6 2
65 7 2 ASL [expr]
C, Z
5E 7 2
66 8 2 ASL [X+expr]
C, Z
5F 10 3
67 4 1 ASR A
C, Z
60 5 2
68 7 2 ASR [expr]
C, Z
61 6 2
69 8 2 ASR [X+expr]
C, Z
62 8 3
9x 11 2 CALL
63 9 3
39 5 2 CMP A, expr
if (A=B) Z=1 3E 10 2
if (A<B) C=1 3F 10 2
3A 7 2 CMP A, [expr]
3B 8 2 CMP A, [X+expr]
40 4 1
3C 8 3 CMP [expr], expr
29 4 2
3D 9 3 CMP [X+expr], expr
2A 6 2
73 4 1 CPL A
Z
2B 7 2
78 4 1 DEC A
C, Z
2C 7 2
79 4 1 DEC X
C, Z
2D 8 2
7A 7 2 DEC [expr]
C, Z
2E 9 3
7B 8 2 DEC [X+expr]
C, Z
2F 10 3
30 9 1 HALT
43 9 3
74 4 1 INC A
C, Z
44 10 3
75 4 1 INC X
C, Z
71 4 2
Note: Interrupt acknowledge to Interrupt Vector table = 13 cycles.
Instruction Format
Opcode Hex
Bytes
Cycles
Flags
Opcode Hex
Bytes
Cycles
Opcode Hex
Instruction Format
Instruction Format
5
5
4
4
10
8
4
7
8
11
4
7
8
4
6
7
7
8
9
10
15
4
6
7
7
8
9
10
5
7
7
5
8
9
9
10
4
4
6
7
7
8
9
10
9
10
POP X
POP A
PUSH X
PUSH A
RETI
RET
RLC A
RLC [expr]
RLC [X+expr]
ROMX
RRC A
RRC [expr]
RRC [X+expr]
SBB A, expr
SBB A, [expr]
SBB A, [X+expr]
SBB [expr], A
SBB [X+expr], A
SBB [expr], expr
SBB [X+expr], expr
SSC
SUB A, expr
SUB A, [expr]
SUB A, [X+expr]
SUB [expr], A
SUB [X+expr], A
SUB [expr], expr
SUB [X+expr], expr
SWAP A, X
SWAP A, [expr]
SWAP X, [expr]
SWAP A, SP
TST [expr], expr
TST [X+expr], expr
TST reg[expr], expr
TST reg[X+expr], expr
XOR F, expr
XOR A, expr
XOR A, [expr]
XOR A, [X+expr]
XOR [expr], A
XOR [X+expr], A
XOR [expr], expr
XOR [X+expr], expr
XOR reg[expr], expr
XOR reg[X+expr], expr
1
1
1
1
1
1
1
2
2
1
1
2
2
2
2
2
2
2
3
3
1
2
2
2
2
2
3
3
1
2
2
1
3
3
3
3
2
2
2
2
2
2
3
3
3
3
Flags
Z
C, Z
C, Z
C, Z
C, Z
Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
Z
Z
Z
Z
Z
Z
Z
C, Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Assembly Syntax Expressions
Expression
Bitwise Complement
Multiplication/Division/Modulo
Addition / Subtraction
Bitwise AND
Bitwise XOR
Bitwise OR
High Byte of an Address
Low Byte of an Address
Symbol
~
*, /, %
+, &
^
|
>
<
Form
(~a)
(a*b), (a/b), (a%b)
(a+b), (a-b)
(a&b)
(a^b)
(a|b)
(>a)
(<a)
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Table A-4:
Instruction Set Summary (Sorted by Opcode)
December 8, 2003
Flags
OR [X+expr], A
OR [expr], expr
OR [X+expr], expr
HALT
XOR A, expr
XOR A, [expr]
XOR A, [X+expr]
XOR [expr], A
XOR [X+expr], A
XOR [expr], expr
XOR [X+expr], expr
ADD SP, expr
CMP A, expr
CMP A, [expr]
CMP A, [X+expr]
CMP [expr], expr
CMP [X+expr], expr
MVI A, [[expr]++]
MVI [[expr]++], A
NOP
AND reg[expr], expr
AND reg[X+expr], expr
OR reg[expr], expr
OR reg[X+expr], expr
XOR reg[expr], expr
XOR reg[X+expr], expr
TST [expr], expr
TST [X+expr], expr
TST reg[expr], expr
TST reg[X+expr], expr
SWAP A, X
SWAP A, [expr]
SWAP X, [expr]
SWAP A, SP
MOV X, SP
MOV A, expr
MOV A, [expr]
MOV A, [X+expr]
MOV [expr], A
MOV [X+expr], A
MOV [expr], expr
MOV [X+expr], expr
MOV X, expr
MOV X, [expr]
MOV X, [X+expr]
Z
Z
Z
5A
5B
5C
5D
Z
5E
Z
5F
Z
60
Z
61
Z
62
Z
63
Z
64
65
if (A=B) Z=1 66
if (A<B) C=1 67
68
69
6A
Z
6B
6C
6D
Z
6E
Z
6F
Z
70
Z
71
Z
72
Z
73
Z
74
Z
75
Z
76
Z
77
Z
78
Z
79
7A
Z
7B
7C
Z
7D
Z
7E
Z
7F
8x
9x
Ax
Bx
Cx
Dx
Ex
Fx
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
Bytes
Cycles
00 15 1 SSC
2D 8 2
01 4 2 ADD A, expr
C, Z
2E 9 3
02 6 2 ADD A, [expr]
C, Z
2F 10 3
03 7 2 ADD A, [X+expr]
C, Z
30 9 1
04 7 2 ADD [expr], A
C, Z
31 4 2
05 8 2 ADD [X+expr], A
C, Z
32 6 2
06 9 3 ADD [expr], expr
C, Z
33 7 2
07 10 3 ADD [X+expr], expr
C, Z
34 7 2
08 4 1 PUSH A
35 8 2
09 4 2 ADC A, expr
C, Z
36 9 3
0A 6 2 ADC A, [expr]
C, Z
37 10 3
0B 7 2 ADC A, [X+expr]
C, Z
38 5 2
0C 7 2 ADC [expr], A
C, Z
39 5 2
0D 8 2 ADC [X+expr], A
C, Z
3A 7 2
0E 9 3 ADC [expr], expr
C, Z
3B 8 2
0F 10 3 ADC [X+expr], expr
C, Z
3C 8 3
10 4 1 PUSH X
3D 9 3
11 4 2 SUB A, expr
C, Z
3E 10 2
12 6 2 SUB A, [expr]
C, Z
3F 10 2
13 7 2 SUB A, [X+expr]
C, Z
40 4 1
14 7 2 SUB [expr], A
C, Z
41 9 3
15 8 2 SUB [X+expr], A
C, Z
42 10 3
16 9 3 SUB [expr], expr
C, Z
43 9 3
17 10 3 SUB [X+expr], expr
C, Z
44 10 3
18 5 1 POP A
Z
45 9 3
19 4 2 SBB A, expr
C, Z
46 10 3
1A 6 2 SBB A, [expr]
C, Z
47 8 3
1B 7 2 SBB A, [X+expr]
C, Z
48 9 3
1C 7 2 SBB [expr], A
C, Z
49 9 3
1D 8 2 SBB [X+expr], A
C, Z
4A 10 3
1E 9 3 SBB [expr], expr
C, Z
4B 5 1
1F 10 3 SBB [X+expr], expr
C, Z
4C 7 2
20 5 1 POP X
4D 7 2
21 4 2 AND A, expr
Z
4E 5 1
22 6 2 AND A, [expr]
Z
4F 4 1
23 7 2 AND A, [X+expr]
Z
50 4 2
24 7 2 AND [expr], A
Z
51 5 2
25 8 2 AND [X+expr], A
Z
52 6 2
26 9 3 AND [expr], expr
Z
53 5 2
27 10 3 AND [X+expr], expr
Z
54 6 2
28 11 1 ROMX
Z
55 8 3
29 4 2 OR A, expr
Z
56 9 3
2A 6 2 OR A, [expr]
Z
57 4 2
2B 7 2 OR A, [X+expr]
Z
58 6 2
2C 7 2 OR [expr], A
Z
59 7 2
Note: Interrupt acknowledge to Interrupt Vector table = 13 cycles.
Instruction Format
Opcode Hex
Bytes
Cycles
Flags
Opcode Hex
Bytes
Cycles
Opcode Hex
Instruction Format
Instruction Format
5
4
4
6
7
10
5
6
8
9
4
7
8
4
7
8
4
7
8
4
7
8
4
4
4
4
4
4
7
8
4
4
7
8
13
7
10
8
5
11
5
5
5
5
7
13
MOV [expr], X
MOV A, X
MOV X, A
MOV A, reg[expr]
MOV A, reg[X+expr]
MOV [expr], [expr]
MOV reg[expr], A
MOV reg[X+expr], A
MOV reg[expr], expr
MOV reg[X+expr], expr
ASL A
ASL [expr]
ASL [X+expr]
ASR A
ASR [expr]
ASR [X+expr]
RLC A
RLC [expr]
RLC [X+expr]
RRC A
RRC [expr]
RRC [X+expr]
AND F, expr
OR F, expr
XOR F, expr
CPL A
INC A
INC X
INC [expr]
INC [X+expr]
DEC A
DEC X
DEC [expr]
DEC [X+expr]
LCALL
LJMP
RETI
RET
JMP
CALL
JZ
JNZ
JC
JNC
JACC
INDEX
2
1
1
2
2
3
2
2
3
3
1
2
2
1
2
2
1
2
2
1
2
2
2
2
2
1
1
1
2
2
1
1
2
2
3
3
1
1
2
2
2
2
2
2
2
2
Flags
Z
Z
Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
C, Z
Z
97
PSoC Designer: Assembly Language User Guide
Table A-5:
Assembler Directives Summary
Symbol
Directive
Symbol
Directive
AREA
Area
ENDM
End Macro
ASCIZ
NULL Terminated ASCII String
EQU
Equate Label to Variable Value
BLK
RAM Byte Block
EXPORT
Export
BLKW
RAM Word Block
IF
Start Conditional Assembly
DB
Define Byte
INCLUDE
Include Source File
DS
Define ASCII String
.LITERAL, .ENDLITERAL
Prevent Code Compression of Data
DSU
Define UNICODE String
MACRO
Start Macro Definition
DW
Define Word
ORG
Area Origin
DWL
Define Word With Little Endian Ordering
.SECTION, .ENDSECTION
Section for Dead-Code Elimination
ELSE
Alternative Result of IF Directive
Suspend - OR F,0
Resume - ADD SP,0
Suspend and Resume Code Compressor
ENDIF
End Conditional Assembly
Table A-6:
Dec
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
98
Hex
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
ASCII Code Table
Oct
Char
000 NULL
001 SOH
002 STX
003 ETX
004 EOT
005 ENQ
006 ACK
007 BEL
010
BS
011
HT
012
LF
013
VT
014
FF
015 CR
016 SO
017
SI
020 DLE
021 DC1
022 DC2
023 DC3
024 DC4
025 NAK
026 SYN
027 ETB
030 CAN
031 EM
032 SUB
033 ESC
034
FS
035 GS
036
RS
037
US
Dec
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
Hex
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
Oct
Char
040 space
041
!
042
“
043
#
044
$
045
%
046
&
047
‘
050
(
051
)
052
*
053
+
054
,
055
056
.
057
/
060
0
061
1
062
2
063
3
064
4
065
5
066
6
067
7
070
8
071
9
072
:
073
;
074
<
075
=
076
>
077
?
Dec
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
Hex
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
Oct
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
Char
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_
Dec
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
Hex
60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F
Oct
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177
Char
‘
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~
DEL
December 8, 2003
Index
DW 81
DWL 81
EQU 82
EXPORT 82
IF, ELSE, ENDIF 83
INCLUDE 84
MACRO, ENDM 85
ORG 86
Suspend, Resume 87
A
ADC 40
ADD 41
Address Spaces 14, 14
Addressing Modes 18
Destination Direct 20
Destination Direct Source Direct 22
Destination Direct Source Immediate 21
Destination Indexed 21
Destination Indexed Source Immediate 21
Destination Indirect Post Increment 23
Source Direct 19
Source Immediate 19
Source Indexed 20
Source Indirect Post Increment 22
F
Five Basic Components of an Assembly Source
File 25
H
AND 42
ASL 43
ASR 44
HALT 47
C
INC 48
INDEX 49
Instruction Format 15
I
CALL 45
CMP 46
Code Compression 78
Code Compressor and Dead-Code Elimination Error Messages 93
Compiling a File into a Library Module 34
Convention for Restoring Internal Registers 34
CPL 46
One-Byte Instructions 16
Three-Byte Instructions 17
Two-Byte Instructions 16
Internal Registers
Accumulator 13
Flags 13
Index 13
Program Counter 13
Stack Pointer 13
Table 9
D
DEC 47
Directive
.LITERAL, .ENDLITERAL 84
.SECTION, .ENDSECTION 86
AREA 76
BLK 78
BLKW 79
DB 79
DS 80
DSU 80
December 8, 2003
J
JACC 50
JC 51
JMP 52
JNC 53
JNZ 54
JZ 55
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
99
PSoC Designer: Assembly Language User Guide
L
X
LCALL 56
Linker Operations 89
LJMP 57
XOR 74
M
MOV 58
MVI 59
N
NOP 60
Notation Standards 9
O
One-Byte Instructions 16
OR 61
P
POP 62
Product Updates 12
Purpose 11
PUSH 63
R
RET 64
RETI 65
RLC 66
ROMX 67
RRC 68
S
SBB 69
Section Overview 11
Source File Components
Comments 29
Directives 30
Labels 26
Mnemonics 27
Operands 28
Source File Format 25
Source Immediate 19
SSC 72
SUB 70
Support 12
SWAP 71
T
TST 73
100
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003
Document Revision History
Document Title: PSoC Designer: Assembly Language User Guide
Document Number: 38-12004
Revision
**
ECN #
115170
Issue Date
4/23/2002
*A
Origin of Change
Submit to CY Document Control.
Updates.
HMT.
Description of Change
New document to CY Document Control (Revision **). Revision 2.0 for CMS
customers.
Misc. updates received over the past
few months including code compression and the AREA directive, and custom libraries. New directives.
Distribution: External/Public
Posting: None
December 8, 2003
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
101
PSoC Designer: Assembly Language User Guide
102
Document #: 38-12004 CY Rev. *A CMS Rev. 2.1
December 8, 2003

				

 Open as PDF

 	Similar pages
	

										View detail for C51ASM

	

										32-bit DSP Assembly Programmer's Guide

	

										STMICROELECTRONICS UM0144

	

										INFINEON XC800

	

										ETC C166SV2

	

										AMD64 Architecture Programmer s Manual Volume 3: General-Purpose and System Instructions

	

										ADSP-218x DSP Instruction Set Reference (Rev. 2.0)

	

										C166 Family Instruction Set Manual

	

										SAMSUNG S3FK225

	

										CY16 Programmers Guide.pdf

	

										http://www.cypress.com/file/44746

	

										PSoC1 ISSP Programming Specifications.pdf

	

										I2Cm_001-13564.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

