

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 CY16 Programmers Guide.pdf

		
				 CY16
USB Host/Slave Controller/16-Bit
RISC Processor Programmers Guide
Version 1.1
Cypress Semiconductor
3901 North First Street
San Jose, CA 95134
Tel.: (800) 858-1810 (toll-free in the U.S.)
(408) 943-2600
www.cypress.com
Cypress License Agreement
Use of this document and the intellectual properties contained herein indicates acceptance of
the following License Agreement. If you do not
accept the terms of this License Agreement, do
not use this document, nor the associated
intellectual properties, nor any other material
you received in association with this product,
and return this document and the associated
materials within fifteen (15) days to Cypress
Corporation or Cypress’s authorized distributor
from whom you purchased the product.
1. You can only legally obtain Cypress’s intellectual properties contained in this document
through Cypress or its authorized distributors.
2. You are granted a nontransferable license to
use and to incorporate Cypress’s intellectual
properties contained in this document into your
product. The product may be either for your
own use or for sale.
3. You may not reverse-engineer the CY16 or
otherwise attempt to discover the designs of
CY16.
4. You may not assign, distribute, sell, transfer,
or disclose Cypress’s intellectual properties
contained in this document to any other person
or entity.
5. This license terminates if you fail to comply
with any of the provisions of this Agreement.
You agree upon termination to destroy this
document, stop using the intellectual properties contained in this document and any of its
modification and incorporated or merged por-
tions in any form, and destroy any unused
CY16 chips.
Warranty Disclaimer and Limited
Liability
Cypress Corporation makes no warranty for
the use of its products, other than those
expressly contained in the Company’s standard warranty which is detailed in Cypress’s
Terms and Conditions located on the Company’s web site. The Company assumes no
responsibility for any errors which may appear
in this document, reserves the right to change
devices or specifications detailed herein at any
time without notice, and does not make any
commitment to update the information contained herein. No licenses to patents or other
intellectual property of Cypress are granted by
the Company in connection with the sale of
Cypress products, expressly or by implication.
Cypress’s products are not authorized for use
as critical components in life support devices
or systems.
CY16 is a trademark of the Cypress Corporation. All other product names are trademarks
are registered trademarks of their respective
owners.
CY16 USB Host/Slave Controller/16-Bit RISC
Processor Programmers Guide Version 1.1.
Copyright © 2003
Cypress Semiconductor Corporation.
All rights reserved.
Table of Contents
Chapter 1. CPU Instruction Formats and Hardware Specific Details
1.1 Introduction..1-1
1.2 General..1-1
1.3 Register Set...1-3
1.3.1 General Purpose Registers ...1-3
1.3.2 General Purpose/Address Registers ...1-3
1.3.3 REGBANK Register (0xC002: R/W) ..1-3
1.3.4 Flags Register (0xC000: R/W)...1-4
1.3.5 Program Counter ...1-5
1.3.6 Reset Vector ..1-5
1.3.7 Hardware Interrupt Servicing ...1-5
1.3.8 General Instruction Format ..1-6
1.3.9 Addressing Modes ...1-6
1.3.9.1 Byte vs Word Addressing...1-6
1.3.10 Register Addressing ..1-7
1.3.11 Immediate Addressing ...1-7
1.3.12 Direct Addressing ..1-7
1.3.13 Indirect Addressing ..1-8
1.3.14 Indirect Addressing with Auto Increment ...1-8
1.3.15 Indirect Addressing with Offset ..1-8
1.3.16 Stack Pointer (R15) Special Handling ...1-8
1.3.17 SW Call Stack Details..1-9
Chapter 2. CY16 CPU Instruction Set
2.1 General..2-1
2.2 Detailed Instruction Formats ...2-1
2.2.1 Dual Operand Instructions ...2-1
2.2.2 Program Control Instructions ...2-3
2.2.3 Single Operand Operation Instructions..2-5
2.2.4 Miscellaneous Instructions...2-8
2.3 Built-in Macros...2-9
2.4 CY16 Processor Instruction Set Summary ...2-10
Chapter 3. Assembly Language Reference Guide
3.1 General Information...3-1
3.1.1 Overview..3-1
3.2 Instruction Set Description ..3-3
i
(Table of Contents)
3.2.1 DATA MOVES ...3-3
3.2.2 ADDITION ...3-5
3.2.3 SUBTRACTION ..3-6
3.2.4 COMPARISON ..3-7
3.2.5 BIT TESTING ..3-8
3.2.6 LOGICAL BIT-WISE OPERATIONS ..3-9
3.2.7 BIT SHIFTING ..3-10
3.2.8 BIT ROTATION ...3-11
3.2.9 1’s Compliment..3-12
3.2.10 2’s Compliment..3-13
3.2.11 Program Branching..3-14
3.2.12 Subroutine Calling ..3-15
3.2.13 Subroutine Return ...3-15
3.2.14 Software Interrupt ...3-16
3.2.15 Set Interrupt Enable Flag ...3-16
3.2.16 Clear Interrupt Enable Flag ...3-17
3.2.17 Set Carry Flag ...3-17
3.2.18 Clear Carry Flag ..3-18
Appendix A
Definitions ..Appendix - 1
Appendix B
Revision History ...Appendix - 3
ii
Table of Contents
Chapter 1
1.1
CPU Instruction Formats and Hardware
Specific Details
Introduction
This document describes the assembly language programming environment for the CY16 Instruction Set, Registers and Addressing modes, etc.. A complete description of all the assembler
instructions is provided.
1.2
General
The CY16 processor uses a unified program and data memory space; although this RAM is also
integrated into the CY16 core, provisions have been made for external memory as well.
The CY16 RISC processor incorporates 2 sets of 16 CPU registers (selected with a REGBANK
register) along with a Flags Register, Interrupt Enable, and many other control registers.
It is important to remember the CY16 is a byte addressable processor, which supports byte moves
and even-aligned word moves. A simplified functional block diagram of the heart of the processor
is shown in Figure 1-1.
The model in Figure 1-1 will help the programmer understand the effects of byte and word operations from an assembly syntax point-of-view. This is a usage model only and does not reflect the
actual hardware architecture.
Chapter 1. CPU Instruction Formats and Hardware Specific Details
Page 1-1
Programmers Guide
16-bit ALU SRC
Input REG
16-bit ALU DEST
Output REG
LSB
XD[7:0]
FLAGS
LSB
XD[7:0]
WRL
SA0
XD[15:8]
ALU
XD[15:8]
WRH
“0”
“b”
MSB
“b”
MSB
16-bit ALU DEST
Input REG
ADD (b/w)[DEST], (b/w) [SRC]
LSB
XD[7:0]
SA0
Controller
DA0
DA0
XA[15:1]
SA0 - Source Address lsb
DA0 - Destination Address lsb
WRL - Mem Write LSB Enable (Derived from A0 and “b/w”)
WRH - Mem Write MSB Enable (Derived from A0 and “b/w”)
XD[15:8]
“0”
“b”
MSB
Figure 1-1. Simplified Functional Block Diagram
Page 1-2
Programmers Guide v1.1
1.3
Register Set
The CY16 Processor incorporates 16-bit general-purpose registers called R0..R15, a REGBANK
register, a program counter, along with various other registers. The function of each register is
defined as follows:
Table 1-1. Register Name and Function
Name
Function
General Purpose Registers
R0-R7
General Purpose/Address Registers
R8-R14
REGBANK
Forms base address for registers R0-R15
Flags
Contains Flags (defined below)
Program Counter
PC
Stack Pointer
R15
Interrupt Enable (0xC00E)
Bit masks to enable/disable various interrupts
1.3.1 General Purpose Registers
The general-purpose registers can be used to store intermediate results, and to pass parameters
to and return them from subroutine calls.
1.3.2 General Purpose/Address Registers
In addition to acting as general-purpose registers, registers R8-R14 can also serve as pointer registers. Instructions can access RAM locations by referring to any of these registers. In normal
operation, register R15 is reserved for use as a stack pointer.
1.3.3 REGBANK Register (0xC002: R/W)
Registers R0..R15 are mapped into RAM via the REGBANK register. The REGBANK register is
loaded with a base address, of which the 11 most significant bits are used. A read from or a write
to one of the registers will generate a RAM address by:
•
Shifting the 4 least significant bits of the register number left by 1.
•
OR-ing the shifted bits of the register number with the upper 11 bits of the REGBANK register.
•
Forcing the Least Significant Bit to 0.
Chapter 1. CPU Instruction Formats and Hardware Specific Details
Page 1-3
Programmers Guide
For example, if the REGBANK register is left at its default value of 100 hex, a read of register R14
would read address 11C hex.
Register
Hex Value
Binary Value
REGBANK
0100
0
0
0
0
0
0
0
1
0
0
0
x
x
x
x
x
R14
000E << 1 = 001C
x
x
x
x
x
x
x
x
x
x
0
1
1
1
0
0
RAM Location
011C
0
0
0
0
0
0
0
1
0
0
0
1
1
1
0
0
Note: Regardless of the value loaded into the REGBANK register, bits 0..4 will be ignored.
1.3.4 Flags Register (0xC000: R/W)
The CY16 Processor uses the flags listed below.
FLAG
Bit:
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
I
S
O
C
Z
Flag
Definition
Z
Zero: Instruction execution resulted in a result of 0.
C
Carry/Borrow: Arithmetic instruction resulted in a carry (for addition) or a borrow (for
subtraction).
O
Overflow: Arithmetic result was either larger than the destination operand size (for
addition) or smaller than the destination operand should allow for subtraction.
S
Sign: Set if MS result bit is “1” .
I
Global Interrupts: Enabled if “1”.
Notes:
1. FLAGS ARE SET FOR 16-BIT OPERATIONS ONLY!
2. Flag behavior for each instruction will be described in the following sections.
3. The FLAG Register should be Pushed and Popped to the Stack for hardware ISRs.
Page 1-4
Programmers Guide v1.1
1.3.5 Program Counter
The Program Counter is an internal 16-bit register. The contents of this register will be pushed onto
the stack following either an interrupt or a call instruction and popped from the stack following a
return instruction.
1.3.6 Reset Vector
On receiving a hardware reset, the CY16 Processor jumps to address 0xFFF0, which is an internal
ROM address.
1.3.7 Hardware Interrupt Servicing
The CY16 has 48 hardware interrupt vectors. Each interrupt has a special purpose as described in
the Hardware Technical Reference Manual.
When a hardware interrupt occurs, program execution jumps to the interrupt vector’s address and
global interrupts are disabled (i.e. the CY16 does an implied CLI). The rest of the haardware interrupt service must be supplied by the programmer, i.e. push/pop flags, STI and RET.
A template for a hardware ISR is shown below:
INT_XX_ISR:
push [0xc000]
;-- push registers -;
;== USER CODE ==
;
;-- pop registers -pop [0xc000]
sti
ret
; push flags
; pop flags
This template must be used for all hardware interrupt service routines. Software Interrupts are
effectively the same as CALLs, so these operations are not required.
Chapter 1. CPU Instruction Formats and Hardware Specific Details
Page 1-5
Programmers Guide
1.3.8 General Instruction Format
To understand addressing modes supported by the CY16 Processor, you must know how the
instruction format is defined. In general, the instructions include four bits for the instruction
opcode, six bits for the source operand, and six bits for the destination operand.
ADD
Bit:
15
14
13
12
11
10
Opcode
9
8
7
6
5
4
3
Source
2
1
0
Destination
Some instructions, especially single operand-operator and program control instructions, will not
adhere strictly to this format. They will be discussed in detail in the following sections.
1.3.9 Addressing Modes
This section describes in detail the six-operand field bits referred to in the previous section as
source and destination. Bear in mind that although the discussion refers to bits 0 through 5, the
same bit definitions apply to the “source” operand field, bits 6 through 11. These are the basic
addressing modes in the CY16 Processor.
Table 1-2. Addressing Modes
Mode
5
4
3
2
1
0
Register
0
0
r
r
r
r
Immediate
0
1
1
1
1
1
Direct
1
0
b/w
1
1
1
Indirect
0
1
b/w
r
r
r
Indirect with Auto Increment
1
0
b/w
r
r
r
Indirect with Index
1
1
b/w
r
r
r
Notes:
1. b/w: ‘1’ for byte-wide access, ‘0’ for word access.
2. Immediate mode not valid as a destination.
3. Indirect with auto increment and byte-wide Indirect addressing is illegal with the stack
pointer (R15).
1.3.9.1 Byte vs Word Addressing
The CY16 Processor supports byte and word data access for direct and indirect source and destination operands. However, this is a memory access modifier only. I.e. all internal operations are
16 bit. Fetching or storing a byte operand always uses the low byte of the 16-bit internal ALU reg-
Page 1-6
Programmers Guide v1.1
isters. It is not possible to fetch a byte from memory and place it in the high byte of a register or
visa-versa. Also, the setting of flags are based on internal 16-bit register operations. Hence there
is no support for signed byte arithmetic and all shift and rotate operations are 16 bits etc.
1.3.10 Register Addressing
In Register Addressing, any one of registers R0-R15 can be selected using bits 0-3. If register
addressing is used, operands are always 16-bit operands, since all registers are 16-bit registers.
For example, an instruction using register R7 as an operand would fill the operand field like this:
Bits
5
4
3
2
1
0
Register Operand
0
0
0
1
1
1
1.3.11 Immediate Addressing
In Immediate Addressing, the instruction word is immediately followed by the source operand. For
example, the operand field would be filled with:
Bits
5
4
3
2
1
0
Operand field
0
1
1
1
1
1
Note: In immediate addressing, the source operand must be 16 bits wide, eliminating the need for
a b/w bit.
1.3.12 Direct Addressing
In Direct Addressing, the word following the instruction word is used as an address into RAM.
Again, the operand can be either byte or word sized, depending on the state of bit 3 of the operand
field. For example, to do a word-wide read from a direct address, the source operand field would
be formed like this:
Bits
5
4
3
2
1
0
I/O operand
1
0
0
1
1
1
Note: For a memory-to-memory move, the instruction word would be followed by two words, the
first being the source address and the second being the destination.
Chapter 1. CPU Instruction Formats and Hardware Specific Details
Page 1-7
Programmers Guide
1.3.13 Indirect Addressing
Indirect addressing is accomplished using address registers R8-15. In indirect addressing, the
operand is found at the memory address pointed to by the register. Since only eight address registers exist, only three bits are required to select an address register. For example, register R10
(binary 1010) can be selected by ignoring bit 3, leaving the bits 010. Bit 3 of the operand field is
then used as the byte/word bit, set to “0” to select word or “1” to select byte addressing. In this
example, a byte-wide operand is selected at the memory location pointed to by register R10:
Bits
5
4
3
2
1
0
Memory operand
0
1
1
0
1
0
Note: For register R15, byte-wide operands are prohibited. If bit 3 is set high, the instruction is
decoded differently.
1.3.14 Indirect Addressing with Auto Increment
Indirect Addressing with Auto Increment works identically to Indirect Addressing, except that at the
end of the read or write cycle, the register is incremented by 1 or 2 (depending whether it is a bytewide or word-wide access.)
This mode is prohibited for register R15. If bits 0..2 are all high, the instruction is decoded differently.
1.3.15 Indirect Addressing with Offset
In Indirect Addressing with Offset, the instruction word is followed by a 16-bit word that is added to
the contents of the address register to form the address for the operand. The offset is an unsigned
16-bit word, and will “wrap” to low memory addresses if the register and offset add up to a value
greater than the size of the processor’s address space.
1.3.16 Stack Pointer (R15) Special Handling
Register R15 is designated as the Stack Pointer, and has these special behaviors:
•
If addressed in indirect mode, the register pre-decrements on a write instruction, and postincrements on a read instruction, emulating Push and Pop instructions.
•
Byte-wide reads or writes are prohibited in indirect mode.
•
If R15 is addressed in Indirect with Index mode, it does not auto-increment or auto-decrement.
Page 1-8
Programmers Guide v1.1
1.3.17 SW Call Stack Details
The CY16 initializes R15 to the top of the software Call Stack. When data is pushed on to the
stack the stack pointer (R15) is decremented and the value is moved to the memory location
pointed to by R15. Hence, the stack grows toward smaller addresses and R15 always points to the
last item on the stack. For a subroutine CALL or software INT, the return address is pushed onto
the stack and the PC is set to the branch address for the instruction. An RET instruction pops the
return address off the stack and sets the PC to that address.
Chapter 1. CPU Instruction Formats and Hardware Specific Details
Page 1-9
Programmers Guide
Page 1-10
Programmers Guide v1.1
Chapter 2
2.1
CY16 CPU Instruction Set
General
The instruction set can be roughly divided into three classes of instructions:
•
Dual Operand Instructions (Instructions with two operands – a source and a destination)
•
Program Control Instructions (Jump, Call and Return)
•
Single Operand Instructions (Instructions with only one operand – a destination)
2.2
Detailed Instruction Formats
2.2.1 Dual Operand Instructions
MOV
Bit:
15
14
13
12
11
10
0000
9
8
7
6
5
4
Source
3
2
1
0
1
0
Destination
Destination := Source
Flags Affected: None
ADD
Bit:
15
14
13
12
11
10
0001
9
8
Source
7
6
5
4
3
2
Destination
Destination := Destination + Source
Flags Affected: Z, C, O, S
Chapter 2. CY16 CPU Instruction Set
Page 2-1
Programmers Guide
ADDC
Bit:
15
14
13
12
11
10
0010
9
8
7
6
5
4
Source
3
2
1
0
1
0
1
0
1
0
1
0
1
0
Destination
Destination := Destination + Source + Carry Flag
Flags Affected: Z, C, O, S
SUB
Bit:
15
14
13
12
11
10
0011
9
8
7
6
5
4
Source
3
2
Destination
Destination := Destination - Source
Flags Affected: Z, C, O, S
SUBB
Bit:
15
14
13
12
11
10
0100
9
8
7
6
5
4
Source
3
2
Destination
Destination := Destination - Source - Carry Flag
Flags Affected: Z, C, O, S
CMP
Bit:
15
14
13
12
11
10
0101
9
8
7
6
5
4
Source
3
2
Destination
[Not saved] := Destination - Source
Flags Affected: Z, C, O, S
AND
Bit:
15
14
13
12
11
10
0110
9
8
7
6
5
4
Source
3
2
Destination
Destination := Destination & Source
Flags Affected: Z, S
TEST
Bit:
15
14
13
12
11
10
0111
9
8
Source
7
6
5
4
3
2
Destination
[Not saved] := Destination & Source
Flags Affected: Z, S
Page 2-2
Programmers Guide v1.1
OR
Bit:
15
14
13
12
11
10
1000
9
8
7
6
5
4
Source
3
2
1
0
1
0
2
1
0
2
1
0
Destination
Destination := Destination | Source
Flags Affected: Z, S
XOR
Bit:
15
14
13
12
11
10
1001
9
8
7
6
5
4
Source
3
2
Destination
Destination := Destination ^ Source
Flags Affected: Z, S
2.2.2 Program Control Instructions
Jcc JUMP RELATIVE cccc
see Table 2-1, “Definitions for the Condition (cccc) Bits"
Bit:
15
14
13
12
11
1100
10
9
8
cccc
PC := PC + (Offset*2)
7
6
5
4
0
3
Offset
(offset is a 7-bit signed number from -64..+63)
JccL JUMP ABSOLUTE cccc
see Table 2-1, “Definitions for the Condition (cccc) Bits"
Bit:
15
14
13
12
11
1100
10
9
8
cccc
PC := Destination
7
6
1
0
5
4
3
Destination
(destination is computed in the normal fashion for operand
fields)
Rcc RET cccc
see Table 2-1, “Definitions for the Condition (cccc) Bits"
Bit:
15
14
13
12
1100
11
10
cccc
9
8
7
6
1
0
5
4
3
2
1
0
010111
PC := [R15]
R15++
Chapter 2. CY16 CPU Instruction Set
Page 2-3
Programmers Guide
Ccc CALL cccc
see Table 2-1, “Definitions for the Condition (cccc) Bits"
Bit:
15
14
13
12
11
1010
10
9
8
cccc
7
6
1
0
7
6
5
4
3
2
1
0
1
0
Destination
R15-[R15] := Next Instruction
PC := Destination
INT
Bit:
15
14
13
12
11
1010
10
9
8
1111
5
4
0
3
2
Int vector
R15-[R15] := PC
PC := [int vector * 2]
This instruction allows the programmer to implement software interrupts. Int vector is multiplied by
two, and zero extended to 16 bits.
Note: Interrupt vectors 0 through 63 may be reserved for hardware interrupts, depending on the
application.
The condition (cccc) bits for all of the above instructions are defined in the following table.
Table 2-1. Definitions for the Condition (cccc) Bits
Condition
Mnemonic Meaning
cccc Bits
Description
Jump
CALL
RET
Z
Zero
0000
Z=1
JZ
CZ
RZ
NZ
Not Zero
0001
Z=0
JNZ
CNZ
RNZ
C
/B
Carry
/ Borrow
0010
C=1
JC
CC
RC
NC
/ AE
Not Carry
/ Above or Equal
0011
C=0
JNC
CNC
RNC
S
Sign
0100
S=1
JS
CS
RS
NS
Not Sign
0101
S=0
JNS
CNS
RNS
O
Overflow
0110
O=1
JO
CO
RO
NO
Not Overflow
0111
O=0
JNO
CNO
RNO
A
/ NBE
Above
/ Not Below or Equal
1000
(Z=0 AND C=0)
JA
CA
RA
BE
/ NA
Below or Equal
/ Not Above
1001
(Z=1 OR C=1)
JBE
CBE
RBE
G
/ NLE
Greater Than
/ Not Less Than or Equal
1010
(O= S AND Z=0) JG
CG
RG
Page 2-4
Programmers Guide v1.1
Table 2-1. Definitions for the Condition (cccc) Bits (Continued)
Condition
Mnemonic Meaning
cccc Bits
Description
Jump
CALL
RET
GE
/ NL
Greater or Equal
/ Not Less Than
1011
(O=S)
JGE
CGE
RGE
L
/ NGE
Less Than
/ Not Greater or Equal
1100
(O≠S)
JL
CL
RL
LE
/ NG
Less Than or Equal
/ Not Greater Than
1101
(O≠S OR Z=1)
JLE
CLE
RLE
(not used)

1110
Unconditional
JMP
CALL
RET
Unconditional Unconditionally
1111
1.) For the JUMP mnemonics, adding an “L” to the end indicates a long or absolute jump. Adding
an “S” to the end indicates a short or relative jump. If nothing is added, the assembler will choose
“S” or “L.”
2.) S, G, L type mnemonics use the Sign Flag and are for processing signed compares, other mnemonics like A, B etc are for unsigned compares.
2.2.3 Single Operand Operation Instructions
Since Single operand instructions do not require a source field, the format of the Single operand
operation instructions is slightly different.
Instruction
Bit:
15
14
13
12
1101***
11
10
9
8
7
[param]
6
5
4
3
2
1
0
Destination
Notice that the opcode field is expanded to seven bits wide. The four most significant bits for all
instructions of this class are “1101.”
In addition, there is space for an optional three bit-immediate value, which is used in a manner
appropriate to the instruction. The destination field functions exactly as it does in the dual operand
operation instructions.
1) For the SHR, SHL, ROR, ROL, ADDI and SUBI instructions, the three-bit count or n operand is
incremented by 1 before it is used. The CY16 Assembler takes this into account.
2) For the SHR, SHL, ROR, ROL, destinations can be byte-wide addresses, but shifting and rotating logic is only correct for word addresses. Byte values are treated as 16-bit values with top byte
set to zeros.
3) The SHR, SHL, ROR, ROL instructions are 16-bit instructions only. 8-bit will not be supported.
Chapter 2. CY16 CPU Instruction Set
Page 2-5
Programmers Guide
SHR
Bit:
15
14
13
12
11
10
9
8
1101000
7
6
5
4
Count-1
3
2
1
0
1
0
1
0
Destination
Destination := Destination >> Count
Flags Affected: Z, C, S
Notes:
The SHR instruction shifts in sign bits.
The C flag is set with the last bit shifted out of LSB.
SHR is strictly a 16-bit operation
SHL
Bit:
15
14
13
12
11
10
9
8
1101001
7
6
5
4
Count-1
3
2
Destination
Destination := Destination << Count
Flags Affected: Z, C, S
Notes:
The C flag is set with the last bit shifted out of MSB.
SHL is strictly a 16-bit operation
ROR
Bit:
15
14
13
12
1101010
11
10
9
8
7
6
5
Count-1
4
3
2
Destination
Works identically to the SHR instruction, except that the LSB of destination is rotated into
the MSB as opposed to SHR, which discards that bit.
Flags Affected: Z, C, S
Before ROR
15 14 13
2 1 0
C
C = Unknown
After ROR
0 15 14 13
2 1
Bit 0
C = Bit 0
Note: ROR is a 16-bit operation.
Page 2-6
Programmers Guide v1.1
ROL
Bit:
15
14
13
12
11
10
9
8
1101011
7
6
5
4
Count-1
3
2
1
0
Destination
Works identically to the SHL instruction, except that the MSB of destination is rotated into
the LSB as opposed to SHL, which discards that bit.
Flags Affected: Z, C, S
Before ROL
C
15 14 13
2 1 0
14 13 12
2 1 0 15
C = Unknown
After ROL
Bit 15
C = Bit 15
Note: ROL is a 16-bit operation.
ADDI
Bit:
15
14
13
12
11
10
9
8
1101100
7
6
5
4
n-1
3
2
1
0
1
0
1
0
Destination
Destination := Destination + n (note: n is unsigned)
Flags Affected: Z, S
SUBI
Bit:
15
14
13
12
11
10
9
8
1101101
7
6
5
4
n-1
3
2
Destination
Destination := Destination – n (note: n is unsigned)
Flags Affected: Z, S
NOT
Bit:
15
14
13
12
1101111
11
10
9
8
7
6
5
000
4
3
2
Destination
Destination := ~Destination (bitwise 1’s complement negation)
Flags Affected: Z, S
Chapter 2. CY16 CPU Instruction Set
Page 2-7
Programmers Guide
NEG
Bit:
15
14
13
12
11
10
9
8
1101111
7
6
5
4
001
3
2
1
0
1
0
Destination
Destination := -Destination(2’s complement negation)
Flags Affected: Z, O, C, S
CBW
Bit:
15
14
13
12
11
10
9
8
1101111
7
6
5
4
100
3
2
Destination
Sign-extends a byte in the lower eight bits of [destination] to a 16-bit signed word (integer).
Flags Affected: Z, S
Note: After excuting this instruction, the upper byte of data is destroyed.
2.2.4 Miscellaneous Instructions
STI
Bit:
15
14
13
12
11
10
9
8
1101111
7
6
5
4
111
3
2
1
0
1
0
000000
Sets Interrupt Enable Flag
Flags Affected: I
Note: The STI instruction takes effect 1 cycle after it is executed.
CLI
Bit:
15
14
13
12
11
1101111
10
9
8
7
111
6
5
4
3
2
000001
Clears Interrupt Enable Flag
Flags Affected: I
Page 2-8
Programmers Guide v1.1
STC
Bit:
15
14
13
12
11
10
9
8
1101111
7
6
5
4
111
3
2
1
0
1
0
000010
Set Carry Flag
Flags Affected: C
CLC
Bit:
15
14
13
12
11
10
9
8
1101111
7
6
5
4
111
3
2
000011
Clear Carry Flag
Flags Affected: C
2.3
Built-in Macros
For the programmer’s convenience, the CY16 Assembler implements several built-in macros. The
table below shows the macros, and the mnemonics for the code that the assembler will generate
for these macros.
Table 2-2. Macros and Assembler-Generated Mnemonics
Macro
Assembler will Generate
INC X
ADDI X, 1
DEC X
SUBI X, 1
PUSH X
MOV [R15], X
POP X
MOV X, [R15]
Chapter 2. CY16 CPU Instruction Set
Page 2-9
Programmers Guide
2.4
CY16 Processor Instruction Set Summary
Table 1-3. CY16 Processor Instruction Set Summary
Mnemonic Operands
Description
Operands
Flags
Clock
MSB
LSB Affected Cycles Notes
MOV
s,d
Move s to d
0000 ssss ssdd dddd
None
5
1,3
ADD
s,d
Add s to d
0001 ssss ssdd dddd
Z,C,O,S
5
1,3
ADDC
s,d
Add s to d with carry
0010 ssss ssdd dddd
Z,C,O,S
5
1,3
SUB
s,d
Subtract s from d
0011 ssss ssdd dddd
Z,C,O,S
5
1,3
SUBB
s,d
Subtract s from d with
carry
0100 ssss ssdd dddd
Z,C,O,S
5
1,3
CMP
s,d
Compare d with s
0101 ssss ssdd dddd
Z,C,O,S
5
1,3
AND
s,d
AND d with s
0110 ssss ssdd dddd
Z,S
5
1,3
TEST
s,d
Bit test d with s
0111 ssss ssdd dddd
Z,S
5
1,3
OR
s,d
OR d with s
1000 ssss ssdd dddd
Z,S
5
1,3
XOR
s,d
XOR d with s
1001 ssss ssdd dddd
Z,S
5
1,3
Jcc
c,v
Jump relative on condition 'c'
1100 cccc 0ooo oooo
None
3
3
JccL
c,d
Jump absolute on condi- 1100 cccc 10dd dddd
tion 'c'
None
4
3
Rcc
c
Return on condition 'c'
1100 cccc 1001 0111
None
6
3
Ccc
c,d
Call subroutine on condi- 1010 cccc 10dd dddd
tion 'c'
None
7
3,4
Int
v
Software interrupt
1010 1111 0vvv vvvv
None
7
3,4
SHR
n,d
Shift right out of carry
1101 000n nndd dddd
Z,C,S
4
1,2,3
SHL
n,d
Shift left into carry
1101 001n nndd dddd
Z,C,S
4
1,2,3
ROR
n,d
Rotate right
1101 010n nndd dddd
Z,C,S
4
1,2,3
ROL
n,d
Rotate left
1101 011n nndd dddd
Z,C,S
4
1,2,3
ADDI
n,d
Add immediate
1101 100n nndd dddd
Z,S
4
3
SUBI
n,d
Subtract immediate
1101 101n nndd dddd
Z,S
4
3
NOT
d
1's complement
1101 1110 00dd dddd
Z,S
4
3
NEG
d
2's complement
1101 1110 01dd dddd
Z,O,C,S
4
3
CBW
d
Sign-extend d(7:0) to
d(15:0)
1101 1111 00dd dddd
Z,S
4
3
STI
Enable interrupts
1101 1111 1100 0000
None
3
3
CLI
Disable interrupts
1101 1111 1100 0001
None
3
3
STC
Set carry
1101 1111 1100 0010
C
3
3
CLC
Clear carry
1101 1111 1100 0011
C
3
3
Notes:
1. The number in the "clock cycles" column reflects the number of clock cycles for register or immediate
accesses. For each occurrence of other types of accesses, include the appropriate "clock adder" as listed
in the Addressing Modes table below.
Page 2-10
Programmers Guide v1.1
2. A shift of one is done in four clock cycles, each additional shift adds two more clock cycles.
3. All clock cycle values assume zero wait-states.
4. If branch is not taken, clock cycles equal 4.
Table 2-4. Opcode Field Descriptions
Field
Description
s
Source
d
Destination
c
Condition code
o
Signed offset
v
Interrupt vector
n
Count value -1
Table 2-5. Additional Instruction Clock Cycles per Addressing Mode
Addressing Mode
5
4
3
2
1
0
Clocks
Register
0
0
r
r
r
r
0
Immediate
0
1
1
1
1
1
0
Direct
1
0
b/w
1
1
1
1
Indirect
0
1
b/w
r
r
r
1
Indirect with Auto Increment
1
0
b/w
r
r
r
2
Indirect with Index
1
1
b/w
r
r
r
3
Indirect using R15
0
1
0
1
1
1
2
b/w: '1' = byte access, '0' = word access.
Indirect with auto-increment and byte-wide indirect addressing is illegal with R15.
Chapter 2. CY16 CPU Instruction Set
Page 2-11
Programmers Guide
Page 2-12
Programmers Guide v1.1
Chapter 3
3.1
Assembly Language Reference Guide
General Information
3.1.1 Overview
The CY16 incorporated a 16-bit RSIC Processor. The processor uses two switchable banks of 16
general-purpose registers along with various memory mapped control registers. The CY16 memory space is byte addressable; however all internal operations are 16 bits.
Addressing Modes Supported
The source addressing mode:
•
Register
•
Immediate
•
Direct
•
Indirect
•
Indirect with auto Increment (byte/word)
•
Indirect with Index
The destination addressing mode:
•
Register
•
Direct
•
Indirect
•
Indirect with auto Increment (byte/word)
•
Indirect with Index
Chapter 3. Assembly Language Reference Guide
Page 3-1
Programmers Guide
Note: All Addressing Modes are available for both source and destination operands.
General Purpose Registers:
r0 – r15
Indirect Addressing Registers:
r8 – r15
Indirect Addressing Notation:
[rn]
Auto Increment Notation:
[rn++]
Preprocessor Equations:
[(nDataPtr + 5)] parentheses are not required.
Note: In the following examples nDataPtr and Table of the GNU Assembly (see the GNUPro Auxiliary Developement Tools on file 6_auxtools.pdf for more detail) are memory variables declared in
the form:
nDataPtr:
Table:
.fill
.fill
1,2,0
32,1,0
; 1 word, with value = 0
; Table of 32 bytes, fill with value 0
.fill
1,1,0
.fill
32,1,0
; 1 byte, with value = 0
; align in word boundary
; Table of 32 bytes, fill with value 0
Or
nDataPtr:
.align 2
Table:
Note: In the following examples, registers used for each example are changed from one example
to another to increase the effectiveness of the examples.
Notes: The following examples are based on the GNU Assembly language in the GNUPro Auxiliary Developement Tools.
All the calculation of the instruction cycles are based on a zero-wait state (i.e. all the code will execute in either internal RAM or internal ROM and all memory reads or memory writes are also
inside the internal RAM).
Any access from internal registers (flags, interrupt enable, GPIO registers) requires one wait state
(i.e. an extra cycle will be added in the calculation of the instruction cycles).
Page 3-2
Programmers Guide v1.1
3.2
Instruction Set Description
3.2.1 DATA MOVES
MOV dest, src
Flags Set
None.
Description
Moves 8- or 16-bit data from source to destination.
Examples
MOV r0, r2
Size:
Cycles:
(Register)
2 Bytes
5
MOV r1, 0x123
Size:
Cycles:
(Immediate)
4 Bytes
5
MOV r2, [nDataPtr]
Size:
Cycles:
4 Bytes
6
MOV [nBuffPtr], [nDataPtr]
Size:
Cycles:
(Direct)
6 Bytes
7
MOV r5, (b/w)[r10]
Size:
Cycles:
(Direct)
(InDirect)
2 Bytes
6
Chapter 3. Assembly Language Reference Guide
Page 3-3
Programmers Guide
MOV r5, (b/w)[r10++]
Size:
Cycles:
MOV (b/w)[r8], (b/w)[r10++]
Size:
Cycles:
6 Bytes
7
MOV [0x400], 0
Size:
Cycles:
(InDirect w/ Index)
4 Bytes
8
MOV [0xc024], 0
Size:
Cycles:
(InDirect w Auto Inc InDirect)
2 Bytes
8
MOV r11, (b/w)[r11 + Table]
Size:
Cycles:
(InDirect w Auto Inc both source and destination)
2 Bytes
9
MOV (b/w)[r8++], (b/w)[r10]
Size:
Cycles:
(InDirect InDirect w Auto Inc)
2 Bytes
8
MOV (b/w)[r8++], (b/w)[r10++]
Size:
Cycles:
(InDirect w Auto Inc)
2 Bytes
7
(w/ Index with Immediate)
(extra cycle for GPIO register access)
(w/ Index with Immediate)
6 Bytes
6
(0x400 is internal RAM address run at zero wait state)
Specific Code Example
.equ BlockAddr2, 0x1000
nCount:
.fill 1,1,0
.align 2
nWRP_LEN:
.short 0
nWRP_DATA:
.short 0
; Preprocessor Constant
; Variable
mov
mov
mov
mov
;
;
;
;
Page 3-4
r0,b[nCount]
[nWRP_LEN], 4
[nWRP_DATA],BlockAddr2
b[(bWRP_DATA+1)],[r12++]
Byte wise register and direct
Wordwise direct and immediate
Wordwise direct and immediate
Bytewise indirect with auto increment
Programmers Guide v1.1
3.2.2 ADDITION
ADD dest, src ... ADDC dest, src ... ADDI dest, const
Flags Set
Z, C, O, S (Based on internal 16-bit computations only).
Description
Adds source to destination using byte or word access and sets associated result flags. ADDC
also adds the carry flag for performing 32-bit addition. ADDI is immediate addition where const
must be between 1 and 8 (3 bits).
Examples
ADD r7, r2
Size:
Cycles:
(Register)
2 Bytes
5
ADDI r6, 2
Size:
Cycles:
2 Bytes
4
ADD r7, 0x123
Size:
Cycles:
(Immediate)
4 Bytes
5
ADD r2, [nDataPtr]
Size:
Cycles:
4 Bytes
6
ADD (b/w)[r12], r0
Size:
Cycles:
(InDirect w/ Auto Inc)
2 Bytes
7
ADD r10, (b/w)[r9 + Table]
Size:
Cycles:
(InDirect)
2 Bytes
6
ADD r1, (b/w)[r9++]
Size:
Cycles:
(Direct)
(InDirect w/ Index)
4 Bytes
8
Chapter 3. Assembly Language Reference Guide
Page 3-5
Programmers Guide
3.2.3 SUBTRACTION
SUB dest, src ... SUBB dest, src ... SUBI dest,const
Flags Set
Z, C, O, S (Based on internal 16-bit computations only).
Description
Subtracts the source from the destination using byte or word access and sets associated
result flags. SUBB also subtracts the carry/borrow flag for 32-bit subtraction. SUBI is immediate subtraction where const must be between 1 and 8 (3 bits).
Examples
SUB r0, r2
Size:
Cycles:
(Register)
2 Bytes
5
SUBI r6, 2
Size:
Cycles:
2 Bytes
4
SUB r3, nDataPtr
Size:
Cycles:
4 Bytes
5
SUB r1, [nDataPtr]
Size:
Cycles:
Page 3-6
(InDirect w/ Auto Inc)
2 Bytes
7
SUB r7, (b/w)[r12 + Table]
Size:
Cycles:
(InDirect)
2 Bytes
6
SUB (b/w)[r9++], r5
Size:
Cycles:
(Direct)
4 Bytes
6
SUB r10, (b/w)[r8]
Size:
Cycles:
(Immediate)
(InDirect w/ Index)
4 Bytes
8
Programmers Guide v1.1
3.2.4
COMPARISON
CMP dest, src
Flags Set
Z, C, O, S (Based on internal 16-bit computations only).
Description
Compares source and destination operands. Flags = Destination - Source.
Examples
CMP r0, r2
Size:
Cycles:
(Register)
2 Bytes
5
CMP r1, 0x123
Size:
Cycles:
(Immediate)
4 Bytes
5
CMP [nDataPtr], r4
Size:
Cycles:
4 Bytes
6
CMP r1, (b/w)[r13]
Size:
Cycles:
(InDirect w/ Auto Inc)
2 Bytes
7
CMP r1, (b/w)[r9 + Table]
Size:
Cycles:
(InDirect)
2 Bytes
6
CMP r1, (b/w)[r9++]
Size:
Cycles:
(Direct)
(InDirect w/ Index)
4 Bytes
8
Chapter 3. Assembly Language Reference Guide
Page 3-7
Programmers Guide
3.2.5 BIT TESTING
TEST dest, src
Flags Set
Z, S
Description
Bit-wise comparison of source and destination.
Examples
TEST r0, r2
Size:
Cycles:
(Register)
2 Bytes
5
TEST r1, 0x8002
TEST r1, MASK
Size:
Cycles:
4 Bytes
5
TEST [nDataPtr], r4
Size:
Cycles:
Page 3-8
(InDirect w/ Auto Inc)
2 Bytes
7
TEST r1, (b/w)[r9 + Table]
Size:
Cycles:
(InDirect)
2 Bytes
6
TEST r1, (b/w)[r9++]
Size:
Cycles:
(Direct)
4 Bytes
6
TEST r1, (b/w)[r13]
Size:
Cycles:
(Immediate)
(InDirect w/ Index)
4 Bytes
8
Programmers Guide v1.1
3.2.6 LOGICAL BIT-WISE OPERATIONS
AND dest, src ... OR dest, src ... XOR dest, src
Flags Set
Z, S (Based on internal 16-bit computations only).
Description
Performs a bit-wise AND, OR or XOR operation on the source and destination operands with
the result stored in destination.
Examples
All examples are the same for OR and XOR.
AND r0, r2
Size:
Cycles:
(Register)
2 Bytes
5
AND r1, 0xf80
Size:
Cycles:
(Immediate)
4 Bytes
5
AND r4, [nMask]
Size:
Cycles:
4 Bytes
6
AND r1, (b/w)[r9]
Size:
Cycles:
(InDirect w/ Auto Inc)
2 Bytes
7
AND r1, (b/w)[r11 + Table]
Size:
Cycles:
(InDirect)
2 Bytes
6
AND r1, (b/w)[r9++]
Size:
Cycles:
(Direct)
(InDirect w/ Index)
4 Bytes
8
Chapter 3. Assembly Language Reference Guide
Page 3-9
Programmers Guide
3.2.7 BIT SHIFTING
SHR dest, const ... SHL dest, const
Flags Set
Z, C, S (Based on internal 16-bit computations only).
Description
Performs a bit-wise shifting (right or left). The const shift value must be in the range of 1 to
8. Bits which are shifted past the MSB or LSB are lost. SHR shifts in sign bits. The C flag is
set when the last bit is shifted out of the LSB.
Examples
SHR r0, r2
(Invalid Instruction)
SHL r1, 1
(Immediate)
Size:
Cycles:
2 Bytes
2 + (const)*2 = 4
SHL r1, 2
Size:
Cycles:
(Immediate)
2 Bytes
2 + (const)*2 = 6
SHL r1, 8
Size:
Cycles:
(Immediate)
2 Bytes
2 + (const)*2 = 18
SHL (b/w)[r12], 1
Size:
Cycles:
SHR (b/w)[r9++], 1
Size:
Cycles:
Page 3-10
(InDirect w/ Auto Inc)
2 Bytes
6
SHL (b/w)[r9 + Table], 1
Size:
Cycles:
(InDirect)
2 Bytes
5
(InDirect w/ Index)
4 Bytes
7
Programmers Guide v1.1
3.2.8 BIT ROTATION
ROR dest, const ... ROL dest, const
Flags Set
Z, C, S (Based on internal 16-bit computations only).
Description
Performs a bit-wise rotation (right or left). The const shift value must be in the range of 1 to
8. Bits which are shifted past the MSB or LSB wrapped around, unlike the shift instructions.
Examples
ROR r0, r2
(Invalid instruction)
ROR r1, 1
(Immediate)
Size:
Cycles:
2 Bytes
2 + (const)*2 = 4
ROL r1, 2
Size:
Cycles:
(Immediate)
2 Bytes
2 + (const)*2 = 6
ROL r1, 8
Size:
Cycles:
(Immediate)
2 Bytes
2 + (const)*2 = 18
ROL (b/w)[r12], 1
Size:
Cycles:
ROR (b/w)[r9++], 1
Size:
Cycles:
(InDirect w/ Auto Inc)
2 Bytes
6
ROL (b/w)[r9 + Table], 1
Size:
Cycles:
(InDirect)
2 Bytes
5
(InDirect w/ Index)
4 Bytes
7
Chapter 3. Assembly Language Reference Guide
Page 3-11
Programmers Guide
3.2.9 1’s Compliment
NOT dest
Flags Set
Z, S (Based on internal 16-bit computations only).
Description
Performs a 1’s compliment on the destination data.
Examples
NOT r0
Size:
Cycles:
(Register)
2 Bytes
4
NOT (b/w)[nDataPtr]
Size:
Cycles:
4 Bytes
5
NOT (b/w)[r9++]
Size:
Cycles:
Page 3-12
(InDirect)
(InDirect w/ Auto Inc)
2 Bytes
6
Programmers Guide v1.1
3.2.10 2’s Compliment
NEG dest
Flags Set
Z, O,C,S (Based on internal 16-bit computations only).
Description
Performs a 12s compliment on the destination data.
Examples
NEG r0
Size:
Cycles:
(Register)
2 Bytes
4
NEG (b/w)[nDataPtr]
Size:
Cycles:
4 Bytes
5
NEG (b/w)[r9++]
Size:
Cycles:
(InDirect)
(InDirect w/ Auto Inc)
2 Bytes
6
Chapter 3. Assembly Language Reference Guide
Page 3-13
Programmers Guide
3.2.11 Program Branching
JMP address
Flags Set
None.
Description
Unconditional jump to address. The assembler automatically detects short and long jumps.
Addresses in range –64 to +63 are short, otherwise long is used.
Examples
JMP TestLoop
Size:
Cycles:
2 Bytes, 4 if long
3 short, 4 long
Specific Code Example
;--- Init L2P_Table to 0xfff --mov r9, L2P_Table
mov r1,[nTotalBlocks]
; For All Blocks
lp_0:
mov [r9++],0xffff
dec r1
jnz lp_0
Conditional Versions: jz, jnz, jc, jnc, js, jns, jo, jno, ja, jbe, jg, jge, jl, jle
Page 3-14
Programmers Guide v1.1
3.2.12 Subroutine Calling
CALL address
Flags Set
None.
Description
Calls an assembly subroutine.
Examples
CALL TestFunc
Size:
Cycles:
4 Bytes
7 (4 if conditional and branch not taken)
Conditional Versions: cz, cnz, cc, cnc, cs, cns, co, cno, ca, cbe, cg, cge, cl, cle
3.2.13 Subroutine Return
RET
Flags Set
None.
Description
Returns from subroutine.
Examples
RET
Size:
Cycles:
2 Bytes
6
Conditional Versions: rz, rnz, rc, rnc, rs, rns, ro, rno, ra, rbe, rg, rge, rl, rle
Chapter 3. Assembly Language Reference Guide
Page 3-15
Programmers Guide
3.2.14 Software Interrupt
INT const
Flags Set
None.
Description
Triggers software interrupt with index = const.
Examples
INT 72
Size:
Cycles:
2 Bytes
7 (4 if conditional and branch not taken)
3.2.15 Set Interrupt Enable Flag
STI
Flags Set
I
Description
Enables hardware interrupts. Any interrupts pending will be serviced immediately (clock cycle
4).
Examples
STI
Size:
Cycles:
Page 3-16
2 Bytes
3
Programmers Guide v1.1
3.2.16 Clear Interrupt Enable Flag
CLI
Flags Set
I
Description
Disables hardware interrupts. Any interrupts following will be latched.
Examples
CLI
Size:
Cycles:
2 Bytes
3
3.2.17 Set Carry Flag
STC
Flags Set
C
Description
Sets the carry flag.
Examples
STC
Size:
Cycles:
2 Bytes
3
Chapter 3. Assembly Language Reference Guide
Page 3-17
Programmers Guide
3.2.18 Clear Carry Flag
CLC
Flags Set
C
Description
Clears the carry flag.
Examples
CLC
Size:
Cycles:
Page 3-18
2 Bytes
3
Programmers Guide v1.1
Appendix A
Definitions
Term
Definition
R0-R15
CY16 Registers:
R0-R7 Data registers or general-purpose registers
R8-R14 Address/Data registers, or general-purpose registers
R15 Stack pointer register
R/W
Read/Write
CY16
The CY16 is a multiport USB1.1 controller, which provides multiple functions
on a single chip.
USB
Universal Serial Bus
Appendix A
A-1
Programmers Guide
A-2
Programmers Guide v1.1
Appendix B
Revision History
Name and Version
Date Issue
Comments
Rev 1.0
1/21/2003
boo
Rev 1.1
7/2/2003
sbn
Appendix B
C-3
Programmers Guide
C-4
Programmers Guide v1.1

				

 Open as PDF

 	Similar pages
	

										TEMIC TSC80251

	

										INFINEON XC800

	

										ETC C166SV2

	

										C500 Architecture and Instruction Set

	

										AMD64 Architecture Programmer s Manual Volume 3: General-Purpose and System Instructions

	

										C166 Family Instruction Set Manual

	

										NSC NS32CG16-15

	

										http://www.cypress.com/file/44746

	

										Assembler.book.pdf

	

										CYPRESS CS5954AM

	

										CYPRESS SL11R

	

										dm00028436

	

										AN4660 - STMicroelectronics

	

										ICHAUS IC-MDTSSOP20

	

										STMICROELECTRONICS L8229

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

