IRF IRF7836PBF

PD - 97171
IRF7836PbF
HEXFET® Power MOSFET
Applications
l Synchronous MOSFET for Notebook
Processor Power
l Synchronous Rectifier MOSFET for
isolated DC-DC Converters in
Networking Systems
Benefits
l Very Low RDS(on) at 4.5V VGS
l Low Gate Charge
l Fully Characterized Avalanche Voltage
and Current
l 100% Tested for RG
l Lead-Free
VDSS
RDS(on) max
Qg
5.7m:@VGS = 10V 18nC
30V
A
A
D
S
1
8
S
2
7
D
S
3
6
D
G
4
5
D
SO-8
Top View
Absolute Maximum Ratings
Max.
Units
VDS
Drain-to-Source Voltage
Parameter
30
V
VGS
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
± 20
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
13
130
Power Dissipation
2.5
ID @ TA = 25°C
ID @ TA = 70°C
IDM
c
PD @TA = 70°C
f
Power Dissipation f
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
PD @TA = 25°C
17
A
W
1.6
0.02
-55 to + 150
W/°C
°C
Thermal Resistance
Parameter
RθJL
RθJA
g
Junction-to-Ambient fg
Junction-to-Drain Lead
Typ.
Max.
Units
–––
20
°C/W
–––
50
Notes  through … are on page 9
www.irf.com
1
01/05/06
IRF7836PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
Conditions
BVDSS
Drain-to-Source Breakdown Voltage
30
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.024
–––
V/°C Reference to 25°C, ID = 1mA
RDS(on)
Static Drain-to-Source On-Resistance
–––
4.5
5.7
mΩ
–––
5.7
7.1
V
VGS = 0V, ID = 250µA
VGS = 10V, ID = 17A
VGS = 4.5V, ID = 13A
VGS(th)
Gate Threshold Voltage
1.35
1.8
2.35
V
∆VGS(th)
Gate Threshold Voltage Coefficient
–––
-6.2
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
µA
VDS = 24V, VGS = 0V
nA
VGS = 20V
VDS = VGS, ID = 50µA
–––
–––
1.0
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
70
–––
–––
Total Gate Charge
–––
18
27
Qgs1
Pre-Vth Gate-to-Source Charge
–––
4.1
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.5
–––
Qgd
Gate-to-Drain Charge
–––
5.8
–––
ID = 13A
Qgodr
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
6.6
–––
See Fig. 17 & 18
Qsw
–––
7.3
–––
Qoss
Output Charge
–––
11
–––
nC
Rg
Gate Resistance
–––
1.0
1.7
Ω
IGSS
gfs
Qg
e
e
VDS = 24V, VGS = 0V, TJ = 125°C
VGS = -20V
S
VDS = 15V, ID = 13A
VDS = 15V
nC
VGS = 4.5V
VDS = 16V, VGS = 0V
td(on)
Turn-On Delay Time
–––
8.9
–––
VDD = 15V, VGS = 4.5V
tr
Rise Time
–––
11
–––
ID = 13A
td(off)
Turn-Off Delay Time
–––
12
–––
tf
Fall Time
–––
4.2
–––
See Fig. 15
Ciss
Input Capacitance
–––
2400
–––
VGS = 0V
Coss
Output Capacitance
–––
500
–––
Crss
Reverse Transfer Capacitance
–––
230
–––
ns
pF
Clamped Inductive Load
VDS = 15V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
d
Typ.
–––
Max.
130
Units
mJ
–––
13
A
Diode Characteristics
Parameter
Min. Typ. Max. Units
Conditions
IS
Continuous Source Current
–––
–––
3.1
A
MOSFET symbol
ISM
(Body Diode)
Pulsed Source Current
–––
–––
130
A
showing the
integral reverse
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.0
V
p-n junction diode.
TJ = 25°C, IS = 13A, VGS = 0V
trr
Reverse Recovery Time
–––
15
23
ns
Qrr
Reverse Recovery Charge
–––
17
26
nC
ton
Forward Turn-On Time
2
c
D
G
S
e
TJ = 25°C, IF = 13A, VDD = 15V
See Fig. 16
di/dt = 500A/µs
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF7836PbF
1000
1000
ID, Drain-to-Source Current (A)
100
BOTTOM
10
TOP
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
2.3V
100
1
0.1
2.3V
0.1
1
10
2.3V
1
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.01
BOTTOM
10
0.1
100
0.1
1000
1
10
100
1000
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
VGS
10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
2.3V
100
T J = 25°C
10
T J = 150°C
1
VDS = 15V
≤60µs PULSE WIDTH
0.1
ID = 17A
VGS = 10V
1.5
1.0
0.5
1
2
3
4
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
5
-60 -40 -20 0
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRF7836PbF
100000
5.0
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 13A
C, Capacitance (pF)
Coss = Cds + Cgd
10000
Ciss
1000
Coss
Crss
VDS= 24V
VDS= 15V
VDS= 6.0V
4.0
3.0
2.0
1.0
100
0.0
1
10
100
0
VDS, Drain-to-Source Voltage (V)
6
8
10 12 14 16 18 20 22
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
1000
ID, Drain-to-Source Current (A)
1000
ISD, Reverse Drain Current (A)
4
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100
T J = 150°C
T J = 25°C
10
1
100µsec
10
1msec
1
10msec
0.1
T A = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.01
0.1
0.2
0.4
0.6
0.8
1.0
1.2
1.4
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
2
1.6
0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF7836PbF
18
2.5
VGS(th) , Gate Threshold Voltage (V)
16
ID, Drain Current (A)
14
12
10
8
6
4
2
0
2.0
ID = 50µA
1.5
1.0
0.5
25
50
75
100
125
150
-75 -50 -25
T A , Ambient Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
100
D = 0.50
0.20
0.10
0.05
0.02
0.01
Thermal Response ( Z thJA )
10
1
τJ
0.1
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
R3
R3
τ3
τA
τA
τ3
Ci= τi/Ri
Ci= τi/Ri
Ri (°C/W)
τi (sec)
5.745666
0.00553
27.28631
1.1417
16.97549
46.1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Ta
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
www.irf.com
5
16
500
ID = 17A
14
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRF7836PbF
12
10
T J = 125°C
8
6
4
T J = 25°C
2
0
ID
TOP
1.0A
1.3A
BOTTOM 13A
400
300
200
100
0
0
2
4
6
8
10
12
14
16
18
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 13. Maximum Avalanche Energy
vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
LD
VDS
15V
L
VDS
VDD
DRIVER
D.U.T
D.U.T
RG
+
V
- DD
IAS
VGS
20V
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
A
0.01Ω
tp
Fig 14a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
Fig 15a. Switching Time Test Circuit
VDS
90%
10%
VGS
I AS
Fig 14b. Unclamped Inductive Waveforms
6
td(on)
tf
td(off)
tr
Fig 15b. Switching Time Waveforms
www.irf.com
IRF7836PbF
D.U.T
Driver Gate Drive
P.W.
+
ƒ
+
‚
-
-
„
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
*

RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
Period
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Qgd
Qgodr
Current Sampling Resistors
Fig 17. Gate Charge Test Circuit
www.irf.com
Fig 18. Gate Charge Waveform
7
IRF7836PbF
SO-8 Package Outline (Dimensions are shown in millimeters (inches)
'
,1&+(6
0,1
0$;
$ $ E F ' ( %$6,&
H
H %$6,&
+ . / ƒ
ƒ
\
',0
%
$
+
(
;
>@
$
H
H
;E
>@
$
$
0,//,0(7(56
0,1
0$;
%$6,&
%$6,&
ƒ
ƒ
.[ƒ
&
\
>@
;/
;F
& $ %
127(6
',0(16,21,1*72/(5$1&,1*3(5$60(<0
&21752//,1*',0(16,210,//,0(7(5
',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@
287/,1(&21)250672-('(&287/,1(06$$
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21'2(6127,1&/8'(02/'3527586,216
02/'3527586,21612772(;&(('>@
',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72
$68%675$7(
)22735,17
;>@
>@
;>@
;>@
SO-8 Part Marking
(;$03/(7+,6,6$1,5)026)(7
,17(51$7,21$/
5(&7,),(5
/2*2
;;;;
)
'$7(&2'(<::
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
< /$67',*,72)7+(<($5
:: :((.
$ $66(0%/<6,7(&2'(
/27&2'(
3$57180%(5
8
www.irf.com
IRF7836PbF
SO-8 Tape and Reel
Dimensions are shown in millimeters (inches)
TERMINAL NUMBER 1
12.3 ( .484 )
11.7 ( .461 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES:
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
330.00
(12.992)
MAX.
14.40 ( .566 )
12.40 ( .488 )
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 1.4mH, RG = 25Ω, IAS = 13A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ When mounted on 1 inch square copper board.
… Rθ is measured at TJ approximately 90°C.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.01/06
www.irf.com
9