PD - 97171 IRF7836PbF HEXFET® Power MOSFET Applications l Synchronous MOSFET for Notebook Processor Power l Synchronous Rectifier MOSFET for isolated DC-DC Converters in Networking Systems Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current l 100% Tested for RG l Lead-Free VDSS RDS(on) max Qg 5.7m:@VGS = 10V 18nC 30V A A D S 1 8 S 2 7 D S 3 6 D G 4 5 D SO-8 Top View Absolute Maximum Ratings Max. Units VDS Drain-to-Source Voltage Parameter 30 V VGS Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ± 20 Continuous Drain Current, VGS @ 10V Pulsed Drain Current 13 130 Power Dissipation 2.5 ID @ TA = 25°C ID @ TA = 70°C IDM c PD @TA = 70°C f Power Dissipation f TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range PD @TA = 25°C 17 A W 1.6 0.02 -55 to + 150 W/°C °C Thermal Resistance Parameter RθJL RθJA g Junction-to-Ambient fg Junction-to-Drain Lead Typ. Max. Units ––– 20 °C/W ––– 50 Notes through are on page 9 www.irf.com 1 01/05/06 IRF7836PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.024 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 4.5 5.7 mΩ ––– 5.7 7.1 V VGS = 0V, ID = 250µA VGS = 10V, ID = 17A VGS = 4.5V, ID = 13A VGS(th) Gate Threshold Voltage 1.35 1.8 2.35 V ∆VGS(th) Gate Threshold Voltage Coefficient ––– -6.2 ––– mV/°C IDSS Drain-to-Source Leakage Current µA VDS = 24V, VGS = 0V nA VGS = 20V VDS = VGS, ID = 50µA ––– ––– 1.0 ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 70 ––– ––– Total Gate Charge ––– 18 27 Qgs1 Pre-Vth Gate-to-Source Charge ––– 4.1 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.5 ––– Qgd Gate-to-Drain Charge ––– 5.8 ––– ID = 13A Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 6.6 ––– See Fig. 17 & 18 Qsw ––– 7.3 ––– Qoss Output Charge ––– 11 ––– nC Rg Gate Resistance ––– 1.0 1.7 Ω IGSS gfs Qg e e VDS = 24V, VGS = 0V, TJ = 125°C VGS = -20V S VDS = 15V, ID = 13A VDS = 15V nC VGS = 4.5V VDS = 16V, VGS = 0V td(on) Turn-On Delay Time ––– 8.9 ––– VDD = 15V, VGS = 4.5V tr Rise Time ––– 11 ––– ID = 13A td(off) Turn-Off Delay Time ––– 12 ––– tf Fall Time ––– 4.2 ––– See Fig. 15 Ciss Input Capacitance ––– 2400 ––– VGS = 0V Coss Output Capacitance ––– 500 ––– Crss Reverse Transfer Capacitance ––– 230 ––– ns pF Clamped Inductive Load VDS = 15V ƒ = 1.0MHz Avalanche Characteristics EAS Parameter Single Pulse Avalanche Energy IAR Avalanche Current c d Typ. ––– Max. 130 Units mJ ––– 13 A Diode Characteristics Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 3.1 A MOSFET symbol ISM (Body Diode) Pulsed Source Current ––– ––– 130 A showing the integral reverse VSD (Body Diode) Diode Forward Voltage ––– ––– 1.0 V p-n junction diode. TJ = 25°C, IS = 13A, VGS = 0V trr Reverse Recovery Time ––– 15 23 ns Qrr Reverse Recovery Charge ––– 17 26 nC ton Forward Turn-On Time 2 c D G S e TJ = 25°C, IF = 13A, VDD = 15V See Fig. 16 di/dt = 500A/µs e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF7836PbF 1000 1000 ID, Drain-to-Source Current (A) 100 BOTTOM 10 TOP ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V 100 1 0.1 2.3V 0.1 1 10 2.3V 1 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.01 BOTTOM 10 0.1 100 0.1 1000 1 10 100 1000 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V 100 T J = 25°C 10 T J = 150°C 1 VDS = 15V ≤60µs PULSE WIDTH 0.1 ID = 17A VGS = 10V 1.5 1.0 0.5 1 2 3 4 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 5 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance vs. Temperature 3 IRF7836PbF 100000 5.0 VGS = 0V, f = 1 MHZ Ciss = C gs + Cgd, C ds SHORTED Crss = C gd VGS, Gate-to-Source Voltage (V) ID= 13A C, Capacitance (pF) Coss = Cds + Cgd 10000 Ciss 1000 Coss Crss VDS= 24V VDS= 15V VDS= 6.0V 4.0 3.0 2.0 1.0 100 0.0 1 10 100 0 VDS, Drain-to-Source Voltage (V) 6 8 10 12 14 16 18 20 22 Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 1000 ID, Drain-to-Source Current (A) 1000 ISD, Reverse Drain Current (A) 4 QG, Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100 T J = 150°C T J = 25°C 10 1 100µsec 10 1msec 1 10msec 0.1 T A = 25°C Tj = 150°C Single Pulse VGS = 0V 0.01 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 2 1.6 0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7836PbF 18 2.5 VGS(th) , Gate Threshold Voltage (V) 16 ID, Drain Current (A) 14 12 10 8 6 4 2 0 2.0 ID = 50µA 1.5 1.0 0.5 25 50 75 100 125 150 -75 -50 -25 T A , Ambient Temperature (°C) 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 100 D = 0.50 0.20 0.10 0.05 0.02 0.01 Thermal Response ( Z thJA ) 10 1 τJ 0.1 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 R3 R3 τ3 τA τA τ3 Ci= τi/Ri Ci= τi/Ri Ri (°C/W) τi (sec) 5.745666 0.00553 27.28631 1.1417 16.97549 46.1 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Ta 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 1000 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 16 500 ID = 17A 14 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m Ω) IRF7836PbF 12 10 T J = 125°C 8 6 4 T J = 25°C 2 0 ID TOP 1.0A 1.3A BOTTOM 13A 400 300 200 100 0 0 2 4 6 8 10 12 14 16 18 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage LD VDS 15V L VDS VDD DRIVER D.U.T D.U.T RG + V - DD IAS VGS 20V VGS Pulse Width < 1µs Duty Factor < 0.1% A 0.01Ω tp Fig 14a. Unclamped Inductive Test Circuit V(BR)DSS tp Fig 15a. Switching Time Test Circuit VDS 90% 10% VGS I AS Fig 14b. Unclamped Inductive Waveforms 6 td(on) tf td(off) tr Fig 15b. Switching Time Waveforms www.irf.com IRF7836PbF D.U.T Driver Gate Drive P.W. + + - - • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Qgd Qgodr Current Sampling Resistors Fig 17. Gate Charge Test Circuit www.irf.com Fig 18. Gate Charge Waveform 7 IRF7836PbF SO-8 Package Outline (Dimensions are shown in millimeters (inches) ' ,1&+(6 0,1 0$; $ $ E F ' ( %$6,& H H %$6,& + . / \ ',0 % $ + ( ; >@ $ H H ;E >@ $ $ 0,//,0(7(56 0,1 0$; %$6,& %$6,& .[ & \ >@ ;/ ;F & $ % 127(6 ',0(16,21,1*72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7( )22735,17 ;>@ >@ ;>@ ;>@ SO-8 Part Marking (;$03/(7+,6,6$1,5)026)(7 ,17(51$7,21$/ 5(&7,),(5 /2*2 ;;;; ) '$7(&2'(<:: 3 '(6,*1$7(6/($')5(( 352'8&7237,21$/ < /$67',*,72)7+(<($5 :: :((. $ $66(0%/<6,7(&2'( /27&2'( 3$57180%(5 8 www.irf.com IRF7836PbF SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 1.4mH, RG = 25Ω, IAS = 13A. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board. Rθ is measured at TJ approximately 90°C. Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.01/06 www.irf.com 9