PD - 97275B IRF7862PbF HEXFET® Power MOSFET Applications l Synchronous MOSFET for Notebook Processor Power l Synchronous Rectifier MOSFET for Isolated DC-DC Converters VDSS RDS(on) max 3.3m:@VGS = 10V 30V Benefits l Very Low RDS(on) at 4.5V VGS l Ultra-Low Gate Impedance l Fully Characterized Avalanche Voltage and Current l 20V VGS Max. Gate Rating l 100% tested for Rg l Lead-Free Qg 30nC A A D S 1 8 S 2 7 D S 3 6 D G 4 5 D SO-8 Top View Absolute Maximum Ratings Parameter Max. VDS Drain-to-Source Voltage 30 VGS Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ± 20 ID @ TA = 25°C V 21 IDM Continuous Drain Current, VGS @ 10V Pulsed Drain Current 170 ID @ TA = 70°C Units 17 c PD @TA = 25°C Power Dissipation 2.5 PD @TA = 70°C Power Dissipation 1.6 TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range A W W/°C 0.02 -55 to + 150 °C Thermal Resistance Parameter RθJL Junction-to-Drain Lead RθJA Junction-to-Ambient f g Typ. Max. ––– 20 ––– 50 Units °C/W Notes through are on page 9 www.irf.com 1 06/04/09 IRF7862PbF Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) Min. Typ. Max. Units 30 ––– ––– Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance ––– ––– 0.023 3.0 ––– 3.3 Gate Threshold Voltage ––– 1.35 3.7 ––– 4.5 2.35 IDSS Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current ––– ––– -5.4 ––– ––– 1.0 IGSS Gate-to-Source Forward Leakage ––– ––– ––– ––– Gate-to-Source Reverse Leakage Forward Transconductance ––– 87 ––– ––– mV/°C VDS = VGS, ID = 250µA VDS = 24V, VGS = 0V µA VDS = 24V, VGS = 0V, TJ = 125°C 150 VGS = 20V 100 nA -100 VGS = -20V ––– S VDS = 15V, ID = 16A Total Gate Charge Pre-Vth Gate-to-Source Charge ––– ––– 30 7.5 45 ––– Post-Vth Gate-to-Source Charge Gate-to-Drain Charge ––– ––– 3.1 9.8 ––– ––– Qgodr Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– ––– 9.6 12.9 ––– ––– Qoss Rg Output Charge Gate Resistance ––– ––– 18 1.0 ––– 1.6 td(on) tr Turn-On Delay Time Rise Time ––– ––– 16 19 ––– ––– td(off) tf Turn-Off Delay Time Fall Time ––– ––– 18 11 ––– ––– Ciss Coss Input Capacitance Output Capacitance ––– ––– 4090 810 ––– ––– Crss Reverse Transfer Capacitance ––– 390 ––– VGS(th) ∆VGS(th) gfs Qg Qgs1 Qgs2 Qgd V Conditions Drain-to-Source Breakdown Voltage VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA VGS = 10V, ID = 20A mΩ VGS = 4.5V, ID = 16A V VDS = VGS, ID = 100µA e e VDS = 15V nC VGS = 4.5V ID = 16A See Figs. 15 & 16 nC Ω ns pF VDS = 16V, VGS = 0V VDD = 15V, VGS = 4.5V ID = 16A RG = 1.8Ω See Fig. 18 VGS = 0V VDS = 15V ƒ = 1.0MHz Avalanche Characteristics EAS Parameter Single Pulse Avalanche Energy IAR Avalanche Current c d Typ. ––– Max. 350 Units mJ ––– 16 A Diode Characteristics Parameter IS Continuous Source Current ISM (Body Diode) Pulsed Source Current VSD Min. Typ. Max. Units ––– ––– Conditions MOSFET symbol 3.1 A D showing the integral reverse G (Body Diode) Diode Forward Voltage ––– ––– 170 ––– ––– 1.0 V S p-n junction diode. TJ = 25°C, IS = 16A, VGS = 0V trr Qrr Reverse Recovery Time Reverse Recovery Charge ––– ––– 17 33 26 50 ns nC TJ = 25°C, IF = 16A, VDD = 15V di/dt = 430A/µs ton Forward Turn-On Time 2 c e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF7862PbF ≤60µs PULSE WIDTH Tj = 25°C 1000 TOP ID, Drain-to-Source Current (A) 100 BOTTOM 10 VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V ≤60µs PULSE WIDTH Tj = 150°C ID, Drain-to-Source Current (A) 1000 100 1 0.1 2.3V 0.01 BOTTOM VGS 10V 5.0V 4.5V 3.5V 3.0V 2.7V 2.5V 2.3V 10 2.3V 1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 1 10 100 V DS, Drain-to-Source Voltage (V) Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics 1000 1.6 VDS = 15V ≤60µs PULSE WIDTH RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) TOP 100 T J = 150°C 10 T J = 25°C 1 0.1 1.4 ID = 21A VGS = 10V 1.2 1.0 0.8 0.6 1 2 3 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 4 -60 -40 -20 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance vs. Temperature 3 IRF7862PbF 100000 5.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 16A C, Capacitance (pF) C oss = C ds + C gd 10000 Ciss Coss 1000 Crss VDS= 24V VDS= 15V 4.0 3.0 2.0 1.0 100 0.0 1 10 100 0 VDS, Drain-to-Source Voltage (V) 10 15 ID, Drain-to-Source Current (A) 1000 100 35 T J = 25°C 100µsec 1msec 10 10msec 1 T A = 25°C Tj = 150°C Single Pulse VGS = 0V 1.0 0.1 0.2 0.4 0.6 0.8 1.0 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 30 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 25 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000 T J = 150°C 20 QG, Total Gate Charge (nC) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage ISD, Reverse Drain Current (A) 5 1.2 0.1 1.0 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7862PbF 2.5 VGS(th) , Gate Threshold Voltage (V) 25 ID, Drain Current (A) 20 15 10 5 2.3 2.0 1.8 ID = 250µA 1.5 1.3 1.0 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T A , Ambient Temperature (°C) Fig 9. Maximum Drain Current vs. Ambient Temperature Fig 10. Threshold Voltage vs. Temperature 100 Thermal Response ( Z thJA ) °C/W D = 0.50 0.20 0.10 0.05 0.02 0.01 10 1 SINGLE PULSE ( THERMAL RESPONSE ) 0.1 0.01 τJ 0.001 R1 R1 τJ τ1 R2 R2 R3 R3 τA τ1 τ2 τ2 τ3 τ3 Ci= τi/Ri Ci= τi/Ri 0.0001 1E-006 Ri (°C/W) R4 R4 1E-005 0.0001 0.001 τ4 τ4 τA τi (sec) 1.242 0.000172 4.759 0.031397 28.506 1.2211 15.507 44.5 0.01 0.1 PDM t1 t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRF7862PbF 1600 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m Ω) 12 ID = 21A ID TOP 1.0A 1.4A BOTTOM 16A 1400 10 1200 1000 8 T J = 125°C 6 4 T J = 25°C 800 600 400 200 2 0 2 3 4 5 6 7 8 9 10 11 12 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage V(BR)DSS tp 15V L VDS DUT DRIVER 0 D.U.T RG IAS 20V L tp 0.01Ω + - VDD 1K 20K VCC S A I AS Fig 15. Gate Charge Test Circuit Fig 14. Unclamped Inductive Test Circuit and Waveform Id Vds Vgs Vgs(th) Qgodr Qgd Qgs2 Qgs1 Fig 16. Gate Charge Waveform 6 www.irf.com IRF7862PbF D.U.T Driver Gate Drive P.W. + + - - * D.U.T. ISD Waveform Reverse Recovery Current + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer D= Period + Re-Applied Voltage Body Diode - VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs VDS V GS RG RD VDS 90% D.U.T. + - V DD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit www.irf.com 10% VGS td(on) tr td(off) tf Fig 18b. Switching Time Waveforms 7 IRF7862PbF SO-8 Package Outline(Mosfet & Fetky) Dimensions are shown in milimeters (inches) ' ',0 % $ + >@ ( $ 0,1 $ E F ' ( H %$6,& H ; H H ;E >@ $ $ 0,//,0(7(56 0$; $ ,1&+(6 0,1 0$; %$6,& %$6,& %$6,& + . / \ .[ & \ >@ ;F ;/ & $ % )22735,17 127(6 ',0(16,21,1*72/(5$1&,1*3(5$60(<0 &21752//,1*',0(16,210,//,0(7(5 ',0(16,216$5(6+2:1,10,//,0(7(56>,1&+(6@ 287/,1(&21)250672-('(&287/,1(06$$ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21'2(6127,1&/8'(02/'3527586,216 02/'3527586,21612772(;&(('>@ ',0(16,21,67+(/(1*7+2)/($')2562/'(5,1*72 $68%675$7( ;>@ >@ ;>@ ;>@ SO-8 Part Marking Information (;$03/(7+,6,6$1,5)026)(7 ,17(51$7,21$/ 5(&7,),(5 /2*2 ;;;; ) '$7(&2'(<:: 3 ',6*1$7(6/($')5(( 352'8&7237,21$/ < /$67',*,72)7+(<($5 :: :((. $ $66(0%/<6,7(&2'( /27&2'( 3$57180%(5 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRF7862PbF SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 2.7mH, RG = 25Ω, IAS = 16A. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board. Rθ is measured at TJ of approximately 90°C. Revision History Date Comment 6/4/2009 Maximum Rds(on) at Vgs =10V changed from 3.7mΩ to 3.3mΩ. All other parameters are unchanged. Note: For the most current drawing please refer to IR website at http://www.irf.com/package Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.06/2009 www.irf.com 9