FM3, MB9A150RB Series, 32-bit ARM® Cortex®-M3 based Microcontroller Datasheet.pdf

MB9AF154MB/NB/RB
MB9AF155MB/NB/RB
MB9AF156MB/NB/RB
FM3, MB9A150RB Series, 32-bit ARM®
Cortex®-M3 based Microcontroller Datasheet
The MB9A150RB Series are highly integrated 32-bit microcontrollers dedicated for embedded controllers with low-power
consumption mode and competitive cost.
These series are based on the ARM Cortex-M3 Processor with on-chip Flash memory and SRAM, and have peripheral functions
2
such as various timers, ADCs, and Communication Interfaces (UART, CSIO, I C).
The products which are described in this data sheet are placed into TYPE8 product categories in FM3 Family Peripheral Manual.
Note: ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.
Features
32-bit ARM Cortex-M3 Core
External Bus Interface
 Processor version: r2p1
 Supports SRAM, NOR NAND Flash memory device
 Up to 40 MHz Frequency Operation
 Up to 8 chip selects
 Integrated Nested Vectored Interrupt Controller (NVIC): 1
NMI (non-maskable interrupt) and
48 peripheral interrupts and 16 priority levels
 8-/16-bit Data width
 24-bit System timer (Sys Tick): System timer for OS task
management
 Up to 25-bit Address bit
 Maximum area size: Up to 256 Mbytes
 Supports Address/Data multiplex
 Supports external RDY function
On-chip Memories
Multi-function Serial Interface (Max 16 channels)
[Flash memory]
 16 channels with 16 steps×9-bit FIFO
 Dual operation Flash memory

Dual Operation Flash memory has the upper bank and
the lower bank.
So, this series could implement erase, write and read
operations
for each bank simultaneously.
 Operation mode is selectable from the followings for each
channel.

UART

CSIO
2

IC
 Main area: Up to 512 Kbytes (Upto 496 Kbytes upper bank
+ 16 Kbytes lower bank)
[UART]
 Work area: 32 Kbytes (lower bank)
 Full-duplex double buffer
 Read cycle: 0 wait-cycle
 Selection with or without parity supported
 Security function for code protection
 Built-in dedicated baud rate generator
[SRAM]
This Series on-chip SRAM is composed of two independent
SRAM (SRAM0, SRAM1). SRAM0 is connected to I-code
bus and D-code bus of Cortex-M3 core. SRAM1 is
connected to System bus.
 Hardware Flow control: Automatically control the
transmission/reception by CTS/RTS (only ch.4)
 External clock available as a serial clock
 SRAM0: Up to 32 Kbytes
 SRAM1: Up to 32 Kbytes
 Various error detection functions available (parity errors,
framing errors, and overrun errors)
[CSIO]
 Full-duplex double buffer
 Built-in dedicated baud rate generator
 Overrun error detection function available
CONFIDENTIAL - RELEASED ONLY UNDER NONDISCLOSURE AGREEMENT (NDA)
• 408-943-2600
Cypress Semiconductor Corporation
• 198 Champion Court • San Jose, CA 95134-1709
Document Number: 002-05646 Rev.*A
Revised May 9, 2016
MB9A150RB Series
2
[I C]
Dual Timer (32-/16-bit Down Counter)
Standard-mode (Max 100 kbps) / Fast-mode (Max 400 kbps)
supported
The Dual Timer consists of two programmable 32-/16-bit
down counters.
Operation mode is selectable from the followings for each
channel.
DMA Controller (8channels)
The DMA Controller has an independent bus from the CPU,
so CPU and DMA Controller can process simultaneously.
 8 independently configured and operated channels
 Free-running
 Periodic (=Reload)
 One-shot
 Transfer can be started by software or request from the
built-in peripherals
Multi-function Timer
 Transfer address area: 32-bit (4 Gbytes)
The Multi-function timer is composed of the following blocks.
 Transfer mode: Block transfer/Burst transfer/Demand
transfer
 16-bit free-run timer × 3ch.
 Transfer data type: byte/half-word/word
 Transfer block count: 1 to 16
 Number of transfers: 1 to 65536
A/D Converter (Max 24 channels)
[12-bit A/D Converter]
 Successive Approximation type
 Built-in 2 units
 Conversion time: 2.0 μs @ 2.7 V to 3.6 V
 Priority conversion available (priority at 2 levels)
 Scanning conversion mode
 Built-in FIFO for conversion data storage (for SCAN
conversion: 16 steps, for Priority conversion: 4 steps)
 Input capture × 4ch.
 Output compare × 6ch.
 A/D activation compare × 2ch.
 Waveform generator × 3ch.
 16-bit PPG timer × 3ch.
The following function can be used to achieve the motor
control.
 PWM signal output function
 DC chopper waveform output function
 Dead time function
 Input capture function
 A/D convertor activate function
 DTIF (Motor emergency stop) interrupt function
Base Timer (Max 16channels)
Quadrature Position/Revolution Counter (QPRC)
Operation mode is selectable from the followings for each
channel.
The Quadrature Position/Revolution Counter (QPRC) is
 16-bit PWM timer
Moreover, it is possible to use as the up/down counter.
 16-bit PPG timer
 16-/32-bit reload timer
 The detection edge of the three external event input pins
AIN, BIN and ZIN is configurable.
 16-/32-bit PWC timer
 16-bit position counter
used to measure the position of the position encoder.
 16-bit revolution counter
General-Purpose I/O Port
 Two 16-bit compare registers
This series can use its pins as general-purpose I/O ports
when they are not used for external bus or peripherals.
Moreover, the port relocate function is built in. It can set
which I/O port the peripheral function can be allocated to.
HDMI-CEC/Remote Control Reception (Up to
2channels)
 Capable of pull-up control per pin
 Capable of reading pin level directly
 Built-in the port relocate function
 Up to 103 high-speed general-purpose I/O Ports@120 pin
Package
 Some ports are 5 V tolerant I/O
HDMI-CEC transmission
 Header block automatic transmission by judging Signal free
 Generating status interrupt by detecting Arbitration lost
 Generating START, EOM, ACK automatically to output CEC
transmission by setting 1 byte data
 Generating transmission status interrupt when transmitting
1 block (1 byte data and EOM/ACK)
See List of Pin Function and I/O Circuit Type to confirm the
corresponding pins.
Document Number: 002-05646 Rev.*A
Page 2 of 145
MB9A150RB Series
HDMI-CEC reception
 Automatic ACK reply function available
Clock and Reset
 Line error detection function available
[Clocks]
Remote control reception
built-in CR oscillators, and Main PLL).
 4 bytes reception buffer
 Main Clock: 4 MHz to 48 MHz
 Repeat code detection function available
 Sub Clock: 32.768 kHz
Real-time clock (RTC)
The Real-time clock can count
Year/Month/Day/Hour/Minute/Second/A day of the week from
Selectable from five clock sources (2 external oscillators, 2
 Built-in High-speed CR Clock: 4 MHz
 Built-in Low-speed CR Clock: 100 kHz
 Main PLL Clock
01 to 99.
[Resets]
 The interrupt function with specifying date and time
(Year/Month/Day/Hour/Minute/Second/A day of the week.)
is available. This function is also available by specifying
only Year, Month, Day, Hour or Minute.
 Reset requests from INITX pin
 Timer interrupt function after set time or each set time.
 Watchdog timers reset
 Capable of rewriting the time with continuing the time count.
 Low-voltage detection reset
 Leap year automatic count is available.
 Clock Super Visor reset
Watch Counter
Clock Super Visor (CSV)
The Watch counter is used for wake up from sleep and timer
mode.
Clocks generated by built-in CR oscillators are used to
supervise abnormality of the external clocks.
Interval timer: up to 64 s (Max) @ Sub Clock : 32.768 kHz
 If external clock failure (clock stop) is detected, reset is
asserted.
External Interrupt Controller Unit
 If external frequency anomaly is detected, interrupt or reset
is asserted.
 Up to 24 external interrupt input pins
 Include one non-maskable interrupt (NMI) input pin
Watchdog Timer (Two channels)
A watchdog timer can generate interrupts or a reset when a
time-out value is reached.
This series consists of two different watchdogs, a
"Hardware" watchdog and a "Software" watchdog.
The Hardware watchdog timer is clocked by the built-in Lowspeed CR oscillator. Therefore, the Hardware watchdog is
active in any low-power consumption modes except RTC,
Stop, Deep Standby RTC and Deep Standby Stop modes.
 Power-on reset
 Software reset
Low-Voltage Detector (LVD)
This Series includes 2-stage monitoring of voltage on the
VCC pins. When the voltage falls below the voltage that has
been set, Low-Voltage Detector generates an interrupt or
reset.
 LVD1: error reporting via interrupt
 LVD2: auto-reset operation
Low-Power Consumption Mode
Six low-power consumption modes supported.
 Sleep
 Timer
CRC (Cyclic Redundancy Check) Accelerator
 RTC
The CRC accelerator calculates the CRC which has a heavy
software processing load, and achieves a reduction of the
integrity check processing load for reception data and
storage.
 Stop
CCITT CRC16 and IEEE-802.3 CRC32 are supported.
 Deep Standby RTC (selectable between keeping the value
of RAM and not)
 Deep Standby Stop (selectable between keeping the value
of RAM and not)
 CCITT CRC16 Generator Polynomial: 0x1021
 IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7
Document Number: 002-05646 Rev.*A
Page 3 of 145
MB9A150RB Series
Debug
Unique ID
 Serial Wire JTAG Debug Port (SWJ-DP)
Unique value of the device (41-bit) is set.
 Embedded Trace Macrocells (ETM).*
*: MB9AF154MB, F155MB and F156MB support only SWJ-
Power Supply
DP.
Document Number: 002-05646 Rev.*A
Wide range voltage: VCC = 1.65 V to 3.6 V
Page 4 of 145
MB9A150RB Series
Contents
1.
1.1
1.2
2.
3.
3.1
3.2
3.3
3.4
3.5
4.
4.1
4.2
5.
6.
6.1
6.2
6.3
7.
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
Product Lineup ............................................................................................................................................................. 7
Memory size................................................................................................................................................................... 7
Function ......................................................................................................................................................................... 7
Packages
............................................................................................................................................................. 9
Pin Assignment ........................................................................................................................................................... 10
FPT-120P-M37 ............................................................................................................................................................ 10
FPT-100P-M23 ............................................................................................................................................................ 11
FPT-80P-M37 .............................................................................................................................................................. 12
BGA-112P-M04 ............................................................................................................................................................ 13
BGA-96P-M07 .............................................................................................................................................................. 14
List of Pin Function ..................................................................................................................................................... 15
List of Pin Numbers ...................................................................................................................................................... 15
List of Pin Functions ..................................................................................................................................................... 37
I/O Circuit Type ........................................................................................................................................................... 61
Handling Precautions .................................................................................................................................................. 66
Precautions for Product Design ................................................................................................................................... 66
Precautions for Package Mounting .............................................................................................................................. 67
Precautions for Use Environment ................................................................................................................................ 69
Handling Devices ......................................................................................................................................................... 70
Power Supply Pins ....................................................................................................................................................... 70
Stabilizing Power Supply Voltage ................................................................................................................................ 70
Crystal Oscillator Circuit ............................................................................................................................................... 70
Sub Crystal Oscillator .................................................................................................................................................. 70
Using an external clock ................................................................................................................................................ 71
2
Handling when using Multi-function serial pin as I C pin .............................................................................................. 71
C pin ............................................................................................................................................................................ 71
Mode pins (MD0) ......................................................................................................................................................... 71
Notes on power-on ....................................................................................................................................................... 72
Serial Communication .................................................................................................................................................. 72
Differences in features among the products with different memory sizes and between Flash memory products
and MASK products ..................................................................................................................................................... 72
7.12 Pull-Up function of 5 V tolerant I/O............................................................................................................................... 72
8.
Block Diagram ........................................................................................................................................................... 73
9.
Memory Size
........................................................................................................................................................... 73
10. Memory Map
........................................................................................................................................................... 74
10.1 Memory Map (1)........................................................................................................................................................... 74
10.2 Memory Map (2)........................................................................................................................................................... 75
10.3 Peripheral Address Map .............................................................................................................................................. 76
11. Pin Status in Each CPU State ..................................................................................................................................... 77
11.1 List of Pin Status .......................................................................................................................................................... 78
12. Electrical Characteristics ............................................................................................................................................ 86
12.1 Absolute Maximum Ratings ......................................................................................................................................... 86
12.2 Recommended Operating Conditions .......................................................................................................................... 87
12.3 DC Characteristics ....................................................................................................................................................... 88
12.3.1 Current rating ............................................................................................................................................................... 88
12.3.2 Pin Characteristics ....................................................................................................................................................... 91
Document Number: 002-05646 Rev.*A
Page 5 of 145
MB9A150RB Series
12.4 AC Characteristics ....................................................................................................................................................... 92
12.4.1 Main Clock Input Characteristics .................................................................................................................................. 92
12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 93
12.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 94
12.4.4 Operating Conditions of Main PLL ............................................................................................................................... 95
12.4.5 Reset Input Characteristics .......................................................................................................................................... 96
12.4.6 Power-on Reset Timing................................................................................................................................................ 96
12.4.7 External Bus Timing ..................................................................................................................................................... 97
12.4.8 Base Timer Input Timing ............................................................................................................................................ 108
12.4.9 CSIO/UART Timing .................................................................................................................................................... 109
12.4.10 External Input Timing ............................................................................................................................................... 117
12.4.11 Quadrature Position/Revolution Counter timing ....................................................................................................... 118
2
12.4.12 I C Timing ................................................................................................................................................................ 121
12.4.13 ETM Timing .............................................................................................................................................................. 122
12.4.14 JTAG Timing ............................................................................................................................................................ 123
12.5 12-bit A/D Converter .................................................................................................................................................. 124
12.5.1 Electrical Characteristics for the A/D Converter ......................................................................................................... 124
12.5.2 Definition of 12-bit A/D Converter Terms ................................................................................................................... 126
12.6 Low-Voltage Detection Characteristics ...................................................................................................................... 127
12.6.1 Low-Voltage Detection Reset ..................................................................................................................................... 127
12.6.2 Interrupt of Low-Voltage Detection ............................................................................................................................. 129
12.7 Flash Memory Write/Erase Characteristics ................................................................................................................ 130
12.7.1 Write / Erase time....................................................................................................................................................... 130
12.7.2 Write cycles and data hold time ................................................................................................................................. 130
12.8 Return Time from Low-Power Consumption Mode .................................................................................................... 131
12.8.1 Return Factor: Interrupt/WKUP .................................................................................................................................. 131
12.8.2 Return Factor: Reset .................................................................................................................................................. 133
13. Ordering Information ................................................................................................................................................. 135
14. Package Dimensions ................................................................................................................................................. 136
15. Major Changes ......................................................................................................................................................... 141
Document History
......................................................................................................................................................... 144
Document Number: 002-05646 Rev.*A
Page 6 of 145
MB9A150RB Series
1. Product Lineup
1.1
Memory size
Product name
MB9AF154MB/NB/RB
MB9AF155MB/NB/RB
MB9AF156MB/NB/RB
On-chip
Main area
256 Kbytes
384 Kbytes
512 Kbytes
Flash memory
Work area
32 Kbytes
32 Kbytes
32 Kbytes
SRAM0
16 Kbytes
24 Kbytes
32 Kbytes
SRAM1
16 Kbytes
24 Kbytes
32 Kbytes
Total
32 Kbytes
48 Kbytes
64 Kbytes
On-chip SRAM
1.2
Function
Product name
MB9AF154MB
MB9AF154NB
MB9AF154RB
MB9AF155MB
MB9AF155NB
MB9AF155RB
MB9AF156MB
Pin count
80/96
MB9AF156NB
MB9AF156RB
100/112
120
Addr: 21-bit (Max)
Addr: 25-bit (Max)
Addr: 25-bit (Max)
Cortex-M3
CPU
Freq.
40 MHz
Power supply voltage range
1.65V to 3.6V
DMAC
8ch.
External Bus Interface
R/W Data: 8-bit (Max)
R/W Data: 8-/16-bit (Max)
R/W Data: 8-/16-bit (Max)
CS: 4 (Max)
CS: 8 (Max)
CS: 8 (Max)
Support: SRAM, NOR Flash
Support: SRAM,
Support: SRAM,
memory
NOR Flash memory
NOR Flash memory,
14ch. (Max)
16ch. (Max)
Enabled channels :
Enabled channels : ch.0 to
ch.0 to ch.13
ch.15
NAND Flash memory
10ch. (Max)
Multi-function Serial Interface
Enabled channels :
2
(UART/CSIO/I C)
ch.0 to ch.7, ch.10, ch.11
Base Timer
16ch. (Max)
(PWC/Reload timer/PWM/PPG)
A/D activation
compare
Input capture
MFTimer
Free-run timer
Output compare
Waveform generator
PPG
2ch
.
4ch
.
3ch
.
6ch
1 unit (Max)
.
3ch
.
3ch
.
QPRC
2ch. (Max)
Dual Timer
1 unit
HDMI-CEC/ Remote Control
Reception
Document Number: 002-05646 Rev.*A
2ch. (Max)
Page 7 of 145
MB9A150RB Series
Product name
MB9AF154MB
MB9AF154NB
MB9AF154RB
MB9AF155MB
MB9AF155NB
MB9AF155RB
MB9AF156MB
MB9AF156NB
MB9AF156RB
Real-Time Clock
1 unit
Watch Counter
1 unit
CRC Accelerator
Yes
Watchdog timer
1ch. (SW) + 1ch. (HW)
External Interrupts
23 pins (Max) + NMI × 1
24 pins (Max) + NMI × 1
I/O ports
66 pins (Max)
83 pins (Max)
12-bit A/D converter
17ch. (2 units)
24ch. (2 units)
CSV (Clock Super Visor)
Yes
LVD (Low-Voltage Detector)
2ch.
High-speed
4 MHz
Low-speed
100 kHz
103 pins (Max)
Built-in CR
Debug Function
SWJ-DP
Unique ID
Yes
SWJ-DP/ETM
Note:
All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to
use the port relocate function of the I/O port according to your function use.
See Electrical Characteristics13.4 AC Characteristics 13.4.3 Built-in CR Oscillation Characteristics for accuracy of built-in
CR.
Document Number: 002-05646 Rev.*A
Page 8 of 145
MB9A150RB Series
2. Packages
MB9AF154MB
MB9AF154NB
MB9AF154RB
MB9AF155MB
MB9AF155NB
MB9AF155RB
MB9AF156MB
MB9AF156NB
MB9AF156RB
LQFP: FPT-80P-M37 (0.5 mm pitch)

-
-
BGA: BGA-96P-M07 (0.5 mm pitch)

-
-
LQFP: FPT-100P-M23 (0.5 mm pitch)
-

-
BGA: BGA-112P-M04 (0.8 mm pitch)
-

-
LQFP: FPT-120P-M37 (0.5 mm pitch)
-
-

Product name
Package
: Supported
Note:
See Package Dimensions for detailed information on each package.
Document Number: 002-05646 Rev.*A
Page 9 of 145
MB9A150RB Series
3. Pin Assignment
3.1
FPT-120P-M37
VCC
VSS
P81/TIOA15_0/INT17_1
P80/TIOB15_0/INT16_1
VCC
P60/SIN5_0/IGTRG_1/TIOA2_2/INT15_1/WKUP3/CEC1_0/MRDY_0
P61/SOT5_0/TIOB2_2
P62/ADTG_3/SCK5_0/TIOA15_1/INT07_1/MOEX_0
P63/SIN5_1/TIOB15_1/INT03_0/MWEX_0
P64/SOT5_1/TIOA7_0/INT10_2
P65/SCK5_1/TIOB7_0/TIOB12_2/INT23_0
P66/SIN3_0/TIOA12_2/INT11_2
P67/SOT3_0/TIOA7_2/INT22_0
P68/SCK3_0/TIOB7_2/INT12_2
P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0
P0E/CTS4_0/TIOB3_2/INT21_0/MDQM1_0
P0D/RTS4_0/TIOA3_2/INT20_0/MDQM0_0
P0C/SCK4_0/TIOA6_1/INT19_0/MALE_0
P0B/SOT4_0/TIOB6_1/INT18_0/CEC0_1/MCSX0_0
P0A/SIN4_0/INT00_2/WKUP5/MCSX1_0
P09/TRACECLK/RTS4_2/TIOB0_2/INT17_0/MCSX2_0
P08/AN23/TRACED3/CTS4_2/TIOA0_2/INT16_0/MCSX3_0
P07/AN22/ADTG_0/TRACED2/SCK4_2/INT23_1/MCLKOUT_0
P06/AN21/TRACED1/SOT4_2/TIOB5_2/INT01_1/MCSX4_0
P05/AN20/TRACED0/SIN8_0/SIN4_2/TIOA5_2/INT00_1/MCSX5_0
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI/SOT8_0/TIOB14_2/MCSX6_0
P01/TCK/SWCLK
P00/TRSTX/SCK8_0/TIOA14_2/MCSX7_0
VCC
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
(TOP VIEW)
1
90
VSS
P50/SIN3_1/AIN0_2/TIOB8_0/INT00_0/MADATA00_0
2
89
P20/AN19/CROUT_0/AIN1_1/TIOA10_2/INT05_0/MAD24_0
P51/SOT3_1/BIN0_2/TIOB9_0/INT01_0/MADATA01_0
3
88
P21/AN18/SIN0_0/BIN1_1/TIOB10_2/INT06_1/WKUP2
4
87
P22/AN17/SOT0_0/ZIN1_1/TIOB7_1
P53/SIN6_0/TIOB11_0/TIOA1_2/INT07_2/MADATA03_0
5
86
P23/AN16/SCK0_0/RTO00_1/TIOA7_1
P54/SOT6_0/TIOB12_0/TIOB1_2/INT18_1/MADATA04_0
P52/SCK3_1/ZIN0_2/TIOB10_0/INT02_0/MADATA02_0
6
85
P24/SIN2_1/RTO01_1/TIOB14_1/INT01_2
P55/ADTG_1/SCK6_0/TIOB13_0/INT19_1/MADATA05_0
7
84
P25/SOT2_1/RTO02_1/TIOA14_1/TIOB11_2
P56/SIN1_0/TIOA8_0/INT08_2/CEC1_1/MADATA06_0
8
83
P26/SCK2_1/RTO03_1/TIOA11_2
P57/SOT1_0/TIOA9_0/MADATA07_0
9
82
P27/SIN15_0/RTO04_1/TIOA6_2/INT02_2
P58/SCK1_0/TIOA10_0/MADATA08_0
10
81
P28/ADTG_4/SOT15_0/RTO05_1/TIOB6_2
P59/SIN7_0/TIOA11_0/INT09_2/MADATA09_0
11
80
P1F/AN15/ADTG_5/SCK15_0/FRCK0_1/TIOB9_2/MAD23_0
P5A/SOT7_0/TIOA12_0/INT16_2/MADATA10_0
12
79
P1E/AN14/RTS4_1/DTTI0X_1/TIOA9_2/INT23_2/MAD22_0
P5B/SCK7_0/TIOA13_0/INT17_2/MADATA11_0
13
78
P1D/AN13/CTS4_1/IC03_1/TIOA13_1/INT22_2/MAD21_0
P30/AIN0_0/TIOB0_1/TIOA13_2/INT03_2/WKUP4/MADATA12_0
14
77
P1C/AN12/SCK4_1/IC02_1/TIOA12_1/INT21_2/MAD20_0
P31/SCK6_1/BIN0_0/TIOB1_1/TIOB13_2/INT04_2/MADATA13_0
15
76
P1B/AN11/SOT4_1/IC01_1/TIOA11_1/INT20_2/MAD19_0
P32/SOT6_1/ZIN0_0/TIOB2_1/INT05_2/MADATA14_0
16
75
P1A/AN10/SIN4_1/IC00_1/TIOA10_1/INT05_1/MAD18_0
P33/ADTG_6/SIN9_0/SIN6_1/TIOB3_1/INT04_0/MADATA15_0
17
74
P19/AN09/SCK2_2/TIOA9_1/MAD17_0
P34/SOT9_0/FRCK0_0/TIOB4_1/TIOA15_2/MNALE_0
18
73
P18/AN08/SOT2_2/TIOA8_1/MAD16_0
P35/SCK9_0/IC03_0/TIOB5_1/TIOB15_2/INT08_1/MNCLE_0
19
72
AVSS
LQFP - 120
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
P4A/SCK3_2/BIN0_1/TIOB1_0/INT21_1/MAD04_0
P4B/IGTRG_0/ZIN0_1/TIOB2_0/INT22_1/MAD05_0
P4C/SCK7_1/AIN1_2/TIOB3_0/INT12_0/CEC0_0/MAD06_0
P4D/SOT7_1/BIN1_2/TIOB4_0/INT13_0/MAD07_0
P4E/SIN14_0/SIN7_1/ZIN1_2/TIOB5_0/INT06_2/MAD08_0
P70/SOT14_0/TIOA4_2
P71/SCK14_0/TIOB4_2/INT13_2
P72/SIN2_0/TIOA6_0/INT14_2
P73/SOT2_0/TIOB6_0/INT15_2
P74/SCK2_0
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
VCC
P49/SOT3_2/AIN0_1/TIOB0_0/INT20_1/MAD03_0
P10/AN00
61
44
62
30
P48/SIN3_2/INT14_1/MAD02_0
29
VSS
43
P11/AN01/SIN1_1/FRCK0_2/TIOB8_1/INT02_1/WKUP1/MAD09_0
P3F/RTO05_0/TIOA5_1
INITX
63
42
28
P47/X1A
P12/AN02/SOT1_1/IC00_2/TIOB9_1/MAD10_0
P3E/SCK11_0/RTO04_0/TIOA4_1/INT19_2
41
64
P46/X0A
27
40
P13/AN03/SCK1_1/IC01_2/TIOB10_1/RTCCO_1/SUBOUT_1/MAD11_0
P3D/SOT11_0/RTO03_0/TIOA3_1
39
65
VSS
26
VCC
P14/AN04/SIN0_1/IC02_2/TIOB11_1/INT03_1/MAD12_0
P3C/SIN11_0/RTO02_0/TIOA2_1/INT18_2
38
66
37
25
C
P15/AN05/SOT0_1/IC03_2/TIOB12_1/INT14_0/MAD13_0
P3B/SCK10_0/RTO01_0/TIOA1_1
P45/SCK13_0/TIOA5_0/INT11_0/MAD01_0
67
36
24
P44/SOT13_0/TIOA4_0/INT10_0/MAD00_0
P16/AN06/SCK0_1/TIOB13_1/INT15_0/MAD14_0
P3A/SOT10_0/RTO00_0/TIOA0_1/INT07_0/RTCCO_2/SUBOUT_2
35
68
P43/ADTG_7/SIN13_0/TIOA3_0/INT09_0
23
34
P17/AN07/SIN2_2/INT04_1/MAD15_0
P39/ADTG_2/SIN10_0/DTTI0X_0/TIOB8_2/INT06_0
P42/SCK12_0/TIOA2_0/INT08_0
69
33
22
32
AVCC
P38/SCK5_2/IC00_0/TIOA8_2/INT11_1
31
AVRH
70
VCC
71
21
P40/SIN12_0/TIOA0_0/INT12_1
20
P41/SOT12_0/TIOA1_0/INT13_1
P36/SIN5_2/IC02_0/TIOB14_0/INT09_1/MNWEX_0
P37/SOT5_2/IC01_0/TIOA14_0/INT10_1/MNREX_0
Note:
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For
these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function
register (EPFR) to select the pin.
Document Number: 002-05646 Rev.*A
Page 10 of 145
MB9A150RB Series
3.2
FPT-100P-M23
VSS
P81/TIOA15_0/INT17_1
P80/TIOB15_0/INT16_1
VCC
P60/SIN5_0/IGTRG_1/TIOA2_2/INT15_1/WKUP3/CEC1_0/MRDY_0
P61/SOT5_0/TIOB2_2
P62/ADTG_3/SCK5_0/TIOA15_1/INT07_1/MOEX_0
P63/TIOB15_1/INT03_0/MWEX_0
P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0
P0E/CTS4_0/TIOB3_2/INT21_0/MDQM1_0
P0D/RTS4_0/TIOA3_2/INT20_0/MDQM0_0
P0C/SCK4_0/TIOA6_1/INT19_0/MALE_0
P0B/SOT4_0/TIOB6_1/INT18_0/CEC0_1/MCSX0_0
P0A/SIN4_0/INT00_2/WKUP5/MCSX1_0
P09/TRACECLK/RTS4_2/TIOB0_2/INT17_0/MCSX2_0
P08/AN23/TRACED3/CTS4_2/TIOA0_2/INT16_0/MCSX3_0
P07/AN22/ADTG_0/TRACED2/SCK4_2/INT23_1/MCLKOUT_0
P06/AN21/TRACED1/SOT4_2/TIOB5_2/INT01_1/MCSX4_0
P05/AN20/TRACED0/SIN8_0/SIN4_2/TIOA5_2/INT00_1/MCSX5_0
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI/SOT8_0/TIOB14_2/MCSX6_0
P01/TCK/SWCLK
P00/TRSTX/SCK8_0/TIOA14_2/MCSX7_0
VCC
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
(TOP VIEW)
VCC
1
75
VSS
P50/SIN3_1/AIN0_2/TIOB8_0/INT00_0/MADATA00_0
2
74
P20/AN19/CROUT_0/AIN1_1/TIOA10_2/INT05_0/MAD24_0
P51/SOT3_1/BIN0_2/TIOB9_0/INT01_0/MADATA01_0
3
73
P21/AN18/SIN0_0/BIN1_1/TIOB10_2/INT06_1/WKUP2
P52/SCK3_1/ZIN0_2/TIOB10_0/INT02_0/MADATA02_0
4
72
P22/AN17/SOT0_0/ZIN1_1/TIOB7_1
5
71
P23/AN16/SCK0_0/TIOA7_1
P54/SOT6_0/TIOB12_0/TIOB1_2/INT18_1/MADATA04_0
6
70
P1F/AN15/ADTG_5/FRCK0_1/TIOB9_2/MAD23_0
P55/ADTG_1/SCK6_0/TIOB13_0/INT19_1/MADATA05_0
P53/SIN6_0/TIOB11_0/TIOA1_2/INT07_2/MADATA03_0
7
69
P1E/AN14/RTS4_1/DTTI0X_1/TIOA9_2/INT23_2/MAD22_0
P56/INT08_2/CEC1_1/MADATA06_0
8
68
P1D/AN13/CTS4_1/IC03_1/TIOA13_1/INT22_2/MAD21_0
P30/AIN0_0/TIOB0_1/TIOA13_2/INT03_2/WKUP4/MADATA07_0
9
67
P31/SCK6_1/BIN0_0/TIOB1_1/TIOB13_2/INT04_2/MADATA08_0
10
66
P1B/AN11/SOT4_1/IC01_1/TIOA11_1/INT20_2/MAD19_0
P32/SOT6_1/ZIN0_0/TIOB2_1/INT05_2/MADATA09_0
11
65
P1A/AN10/SIN4_1/IC00_1/TIOA10_1/INT05_1/MAD18_0
LQFP - 100
P1C/AN12/SCK4_1/IC02_1/TIOA12_1/INT21_2/MAD20_0
P33/ADTG_6/SIN9_0/SIN6_1/TIOB3_1/INT04_0/MADATA10_0
12
64
P19/AN09/SCK2_2/TIOA9_1/MAD17_0
P34/SOT9_0/FRCK0_0/TIOB4_1/TIOA15_2/MADATA11_0
13
63
P18/AN08/SOT2_2/TIOA8_1/MAD16_0
P35/SCK9_0/IC03_0/TIOB5_1/TIOB15_2/INT08_1/MADATA12_0
14
62
AVSS
P36/SIN5_2/IC02_0/TIOB14_0/INT09_1/MADATA13_0
15
61
AVRH
P37/SOT5_2/IC01_0/TIOA14_0/INT10_1/MADATA14_0
16
60
AVCC
P38/SCK5_2/IC00_0/TIOA8_2/INT11_1/MADATA15_0
17
59
P17/AN07/SIN2_2/INT04_1/MAD15_0
P39/ADTG_2/SIN10_0/DTTI0X_0/TIOB8_2/INT06_0
18
58
P16/AN06/SCK0_1/TIOB13_1/INT15_0/MAD14_0
P3A/SOT10_0/RTO00_0/TIOA0_1/INT07_0/RTCCO_2/SUBOUT_2
19
57
P15/AN05/SOT0_1/IC03_2/TIOB12_1/INT14_0/MAD13_0
P3B/SCK10_0/RTO01_0/TIOA1_1
20
56
P14/AN04/SIN0_1/IC02_2/TIOB11_1/INT03_1/MAD12_0
P3C/SIN11_0/RTO02_0/TIOA2_1/INT18_2
21
55
P13/AN03/SCK1_1/IC01_2/TIOB10_1/RTCCO_1/SUBOUT_1/MAD11_0
P3D/SOT11_0/RTO03_0/TIOA3_1
22
54
P12/AN02/SOT1_1/IC00_2/TIOB9_1/MAD10_0
P3E/SCK11_0/RTO04_0/TIOA4_1/INT19_2
23
53
P11/AN01/SIN1_1/FRCK0_2/TIOB8_1/INT02_1/WKUP1/MAD09_0
49
50
PE3/X1
VSS
46
PE0/MD1
48
45
P4E/SIN7_1/ZIN1_2/TIOB5_0/INT06_2/MAD08_0
47
44
P4D/SOT7_1/BIN1_2/TIOB4_0/INT13_0/MAD07_0
MD0
43
P4C/SCK7_1/AIN1_2/TIOB3_0/INT12_0/CEC0_0/MAD06_0
PE2/X0
42
39
P48/SIN3_2/INT14_1/MAD02_0
P4B/IGTRG_0/ZIN0_1/TIOB2_0/INT22_1/MAD05_0
38
INITX
41
37
P47/X1A
40
36
P46/X0A
P49/SOT3_2/AIN0_1/TIOB0_0/INT20_1/MAD03_0
35
VCC
P4A/SCK3_2/BIN0_1/TIOB1_0/INT21_1/MAD04_0
34
32
P45/SCK13_0/TIOA5_0/INT11_0/MAD01_0
33
31
P44/SOT13_0/TIOA4_0/INT10_0/MAD00_0
C
30
VSS
29
P42/SCK12_0/TIOA2_0/INT08_0
P43/ADTG_7/SIN13_0/TIOA3_0/INT09_0
28
P41/SOT12_0/TIOA1_0/INT13_1
VCC
27
P10/AN00
51
26
52
25
VCC
24
VSS
P40/SIN12_0/TIOA0_0/INT12_1
P3F/RTO05_0/TIOA5_1
Note:
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For
these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function
register (EPFR) to select the pin.
Document Number: 002-05646 Rev.*A
Page 11 of 145
MB9A150RB Series
3.3
FPT-80P-M37
VSS
P81/TIOA15_0/INT17_1
P80/TIOB15_0/INT16_1
VCC
P60/SIN5_0/IGTRG_1/TIOA2_2/INT15_1/WKUP3/CEC1_0/MRDY_0
P61/SOT5_0/TIOB2_2
P62/ADTG_3/SCK5_0/TIOA15_1/INT07_1/MOEX_0
P63/TIOB15_1/INT03_0/MWEX_0
P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/WKUP0
P0E/CTS4_0/TIOB3_2/INT21_0/MDQM1_0
P0D/RTS4_0/TIOA3_2/INT20_0/MDQM0_0
P0C/SCK4_0/TIOA6_1/INT19_0/MALE_0
P0B/SOT4_0/TIOB6_1/INT18_0/CEC0_1/MCSX0_0
P0A/SIN4_0/INT00_2/WKUP5/MCSX1_0
P07/AN22/ADTG_0/INT23_1/MCLKOUT_0
P04/TDO/SWO
P03/TMS/SWDIO
P02/TDI/TIOB14_2/MCSX6_0
P01/TCK/SWCLK
P00/TRSTX/TIOA14_2/MCSX7_0
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
(TOP VIEW)
VCC
1
60
P20/AN19/CROUT_0/AIN1_1/TIOA10_2/INT05_0/MAD24_0
P50/SIN3_1/AIN0_2/TIOB8_0/INT00_0/MADATA00_0
2
59
P21/AN18/SIN0_0/BIN1_1/TIOB10_2/INT06_1/WKUP2
P51/SOT3_1/BIN0_2/TIOB9_0/INT01_0/MADATA01_0
3
58
P22/AN17/SOT0_0/ZIN1_1/TIOB7_1
P52/SCK3_1/ZIN0_2/TIOB10_0/INT02_0/MADATA02_0
4
57
P23/AN16/SCK0_0/TIOA7_1
P53/SIN6_0/TIOB11_0/TIOA1_2/INT07_2/MADATA03_0
5
56
P1B/AN11/SOT4_1/IC01_1/TIOA11_1/INT20_2/MAD19_0
P54/SOT6_0/TIOB12_0/TIOB1_2/INT18_1/MADATA04_0
6
55
P1A/AN10/SIN4_1/IC00_1/TIOA10_1/INT05_1/MAD18_0
P55/ADTG_1/SCK6_0/TIOB13_0/INT19_1/MADATA05_0
7
54
P19/AN09/SCK2_2/TIOA9_1/MAD17_0
P56/INT08_2/CEC1_1/MADATA06_0
8
53
P18/AN08/SOT2_2/TIOA8_1/MAD16_0
P30/AIN0_0/TIOB0_1/TIOA13_2/INT03_2/WKUP4/MADATA07_0
9
52
AVSS
P31/SCK6_1/BIN0_0/TIOB1_1/TIOB13_2/INT04_2/MADATA08_0
10
51
AVRH
P32/SOT6_1/ZIN0_0/TIOB2_1/INT05_2/MADATA09_0
LQFP - 80
11
50
AVCC
P33/ADTG_6/SIN6_1/TIOB3_1/INT04_0/MADATA10_0
12
49
P17/AN07/SIN2_2/INT04_1/MAD15_0
P39/ADTG_2/SIN10_0/DTTI0X_0/INT06_0
13
48
P16/AN06/SCK0_1/TIOB13_1/INT15_0/MAD14_0
P3A/SOT10_0/RTO00_0/TIOA0_1/INT07_0/RTCCO_2/SUBOUT_2
14
47
P15/AN05/SOT0_1/IC03_2/TIOB12_1/INT14_0/MAD13_0
P3B/SCK10_0/RTO01_0/TIOA1_1
15
46
P14/AN04/SIN0_1/IC02_2/TIOB11_1/INT03_1/MAD12_0
P3C/SIN11_0/RTO02_0/TIOA2_1/INT18_2
16
45
P13/AN03/SCK1_1/IC01_2/TIOB10_1/RTCCO_1/SUBOUT_1/MAD11_0
P3D/SOT11_0/RTO03_0/TIOA3_1
17
44
P12/AN02/SOT1_1/IC00_2/TIOB9_1/MAD10_0
P3E/SCK11_0/RTO04_0/TIOA4_1/INT19_2
18
43
P11/AN01/SIN1_1/FRCK0_2/TIOB8_1/INT02_1/WKUP1/MAD09_0
30
31
32
33
34
35
36
37
38
39
40
P4A/SCK3_2/BIN0_1/TIOB1_0/INT21_1/MAD04_0
P4B/IGTRG_0/ZIN0_1/TIOB2_0/INT22_1/MAD05_0
P4C/SCK7_1/AIN1_2/TIOB3_0/INT12_0/CEC0_0/MAD06_0
P4D/SOT7_1/BIN1_2/TIOB4_0/INT13_0/MAD07_0
P4E/SIN7_1/ZIN1_2/TIOB5_0/INT06_2/MAD08_0
PE0/MD1
MD0
PE2/X0
PE3/X1
VSS
27
P47/X1A
29
26
P46/X0A
P49/SOT3_2/AIN0_1/TIOB0_0/INT20_1/MAD03_0
25
VCC
28
24
INITX
23
VSS
P48/SIN3_2/INT14_1/MAD02_0
22
VCC
21
P10/AN00
41
C
42
20
P45/TIOA5_0/INT11_0/MAD01_0
19
VSS
P44/TIOA4_0/INT10_0/MAD00_0
P3F/RTO05_0/TIOA5_1
Note:
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For
these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function
register (EPFR) to select the pin.
Document Number: 002-05646 Rev.*A
Page 12 of 145
MB9A150RB Series
3.4
BGA-112P-M04
(TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
A
VSS
P81
P80
VCC
P0E
P0B
P07
TMS/
SWDIO
TRSTX
VCC
VSS
B
VCC
VSS
P52
P61
P0F
P0C
P08
TDO/
SWO
TCK/
SWCLK
VSS
TDI
C
P50
P51
VSS
P60
P62
P0D
P09
P05
VSS
P20
P21
D
P53
P54
P55
VSS
P56
P63
P0A
VSS
P06
P23
AN15
E
P30
P31
P32
P33
Index
P22
AN14
AN12
AN11
F
P34
P35
P36
P39
AN13
AN10
AN09
AVRH
G
P37
P38
P3A
P3D
AN08
AN07
AN06
AVSS
H
P3B
P3C
P3E
VSS
P44
P4C
AN05
VSS
AN04
AN03
AVCC
J
VCC
P3F
VSS
P40
P43
P49
P4D
AN02
VSS
AN01
AN00
K
VCC
VSS
X1A
INITX
P42
P48
P4B
P4E
MD1
VSS
VCC
L
VSS
C
X0A
VSS
P41
P45
P4A
MD0
X0
X1
VSS
Note:
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For
these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function
register (EPFR) to select the pin.
Document Number: 002-05646 Rev.*A
Page 13 of 145
MB9A150RB Series
3.5
BGA-96P-M07
(TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
A
VSS
P81
P80
VCC
VSS
P0F
VSS
P07
TMS/
SWDIO
TRSTX
VSS
B
VCC
VSS
P52
P61
P63
P0D
P0C
TDO/
SWO
TCK/
SWCLK
VSS
TDI
C
P50
P51
VSS
P60
P62
P0E
P0B
P0A
VSS
P20
P21
D
P53
P54
P55
Index
P22
P23
VSS
E
P56
P30
P31
AN11
AN10
AN09
F
VSS
VSS
VSS
AN08
AN07
AVRH
G
P32
P33
P39
AN06
AN05
AVSS
H
P3A
P3B
P3C
AN04
AN03
AVCC
J
P3D
P3E
VSS
P3F
P48
P4A
P4D
AN02
VSS
AN01
AN00
K
VCC
VSS
X1A
INITX
P45
P49
P4C
P4E
MD1
VSS
VCC
L
VSS
C
X0A
VSS
P44
VSS
P4B
MD0
X0
X1
VSS
Note:
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For
these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function
register (EPFR) to select the pin.
Document Number: 002-05646 Rev.*A
Page 14 of 145
MB9A150RB Series
4. List of Pin Function
4.1
List of Pin Numbers
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR)
to select the pin.
Pin No
LQFP-120
1
Pin Name
LQFP-100
BGA-112
LQFP-80
BGA-96
1
B1
1
B1
I/O
Circuit
Pin State
Type
Type
VCC
-
P50
SIN3_1
AIN0_2
2
2
C1
2
C1
E
K
E
K
E
K
E
K
TIOB8_0
INT00_0
MADATA00_0
P51
SOT3_1
(SDA3_1)
3
3
C2
3
C2
BIN0_2
TIOB9_0
INT01_0
MADATA01_0
P52
SCK3_1
(SCL3_1)
4
4
B3
4
B3
ZIN0_2
TIOB10_0
INT02_0
MADATA02_0
P53
SIN6_0
TIOB11_0
5
5
D1
5
D1
TIOA1_2
INT07_2
MADATA03_0
Document Number: 002-05646 Rev.*A
Page 15 of 145
MB9A150RB Series
Pin No
LQFP-120
Pin Name
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O
Circuit
Type
Pin State
Type
P54
SOT6_0
(SDA6_0)
6
6
D2
6
D2
TIOB12_0
E
K
E
K
H[1]
R
H[1]
J
H[1]
J
TIOB1_2
INT18_1
MADATA04_0
P55
ADTG_1
SCK6_0
7
7
D3
7
D3
(SCL6_0)
TIOB13_0
INT19_1
MADATA05_0
P56
INT08_2
8
D5
8
E1
CEC1_1
8
MADATA06_0
SIN1_0
-
-
-
TIOA8_0
P57
SOT1_0
9
-
-
-
-
(SDA1_0)
TIOA9_0
MADATA07_0
P58
SCK1_0
10
-
-
-
-
(SCL1_0)
TIOA10_0
MADATA08_0
Document Number: 002-05646 Rev.*A
Page 16 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O
Circuit
Type
Pin State
Type
P59
SIN7_0
11
-
-
-
-
TIOA11_0
E
K
E
K
E
K
E
S
E
S
INT09_2
MADATA09_0
P5A
SOT7_0
(SDA7_0)
12
-
-
-
TIOA12_0
INT16_2
MADATA10_0
P5B
SCK7_0
(SCL7_0)
13
-
-
-
TIOA13_0
INT17_2
MADATA11_0
P30
AIN0_0
TIOB0_1
14
-
-
-
-
TIOA13_2
INT03_2
WKUP4
MADATA12_0
P30
AIN0_0
TIOB0_1
-
9
E1
9
E2
TIOA13_2
INT03_2
WKUP4
MADATA07_0
Document Number: 002-05646 Rev.*A
Page 17 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
E
K
E
K
E
K
E
K
E
K
P31
SCK6_1
(SCL6_1)
BIN0_0
15
-
-
-
-
TIOB1_1
TIOB13_2
INT04_2
MADATA13_0
P31
SCK6_1
(SCL6_1)
BIN0_0
-
10
E2
10
E3
TIOB1_1
TIOB13_2
INT04_2
MADATA08_0
P32
SOT6_1
(SDA6_1)
16
-
-
-
-
ZIN0_0
TIOB2_1
INT05_2
MADATA14_0
P32
SOT6_1
(SDA6_1)
-
11
E3
11
G1
ZIN0_0
TIOB2_1
INT05_2
MADATA09_0
P33
ADTG_6
SIN9_0
17
-
-
-
-
SIN6_1
TIOB3_1
INT04_0
MADATA15_0
Document Number: 002-05646 Rev.*A
Page 18 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
E
K
E
J
E
J
E
K
E
K
P33
ADTG_6
SIN6_1
12
-
12
G2
E4
TIOB3_1
INT04_0
MADATA10_0
-
-
SIN9_0
P34
SOT9_0
(SDA9_0)
18
-
-
-
-
FRCK0_0
TIOB4_1
TIOA15_2
MNALE_0
P34
SOT9_0
(SDA9_0)
-
13
F1
-
-
FRCK0_0
TIOB4_1
TIOA15_2
MADATA11_0
P35
SCK9_0
(SCL9_0)
IC03_0
19
-
-
-
-
TIOB5_1
TIOB15_2
INT08_1
MNCLE_0
P35
SCK9_0
(SCL9_0)
IC03_0
-
14
F2
-
TIOB5_1
TIOB15_2
INT08_1
MADATA12_0
Document Number: 002-05646 Rev.*A
Page 19 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
E
K
E
K
P36
SIN5_2
IC02_0
20
-
-
-
TIOB14_0
INT09_1
MNWEX_0
P36
SIN5_2
IC02_0
-
15
F3
-
TIOB14_0
INT09_1
MADATA13_0
-
-
-
-
F1
VSS
-
-
-
-
-
F2
VSS
-
-
-
-
-
F3
VSS
-
P37
SOT5_2
(SDA5_2)
21
-
-
-
-
IC01_0
E
K
E
K
TIOA14_0
INT10_1
MNREX_0
P37
SOT5_2
(SDA5_2)
-
16
G1
-
-
IC01_0
TIOA14_0
INT10_1
MADATA14_0
Document Number: 002-05646 Rev.*A
Page 20 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
E
K
E
K
E
K
E
J
E
K
P38
SCK5_2
(SCL5_2)
22
17
G2
-
-
IC00_0
TIOA08_2
INT11_1
-
MADATA15_0
P39
ADTG_2
13
23
18
G3
SIN10_0
F4
DTTI0X_0
INT06_0
-
-
TIOB8_2
P3A
SOT10_0
(SDA10_0)
RTO00_0
24
19
G3
14
H1
TIOA0_1
INT07_0
RTCCO_2
SUBOUT_2
P3B
SCK10_0
25
20
H1
15
H2
(SCL10_0)
RTO01_0
TIOA1_1
P3C
SIN11_0
26
21
H2
16
H3
RTO02_0
TIOA2_1
INT18_2
Document Number: 002-05646 Rev.*A
Page 21 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
E
J
P3D
SOT11_0
27
22
G4
17
J1
(SDA11_0)
RTO03_0
TIOA3_1
-
-
B2
-
B2
VSS
-
P3E
SCK11_0
(SCL11_0)
28
23
H3
18
J2
E
K
E
J
RTO04_0
TIOA4_1
INT19_2
P3F
29
24
J2
19
J4
RTO05_0
TIOA5_1
30
25
L1
20
L1
VSS
-
31
26
J1
-
-
VCC
-
P40
SIN12_0
32
27
J4
-
-
E
K
E
K
E
K
TIOA0_0
INT12_1
P41
SOT12_0
33
28
L5
-
-
(SDA12_0)
TIOA1_0
INT13_1
P42
SCK12_0
(SCL12_0)
34
29
K5
-
TIOA2_0
INT08_0
Document Number: 002-05646 Rev.*A
Page 22 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
E
K
E
K
E
K
P43
ADTG_7
35
30
J5
-
-
SIN13_0
TIOA3_0
INT09_0
21
L5
-
-
P44
SOT13_0
(SDA13_0)
36
31
H5
TIOA4_0
21
L5
INT10_0
MAD00_0
37
32
22
K5
P45
-
-
SCK13_0
L6
TIOA5_0
22
K5
INT11_0
MAD01_0
-
-
K2
-
K2
VSS
-
-
-
J3
-
J3
VSS
-
-
-
H4
-
-
VSS
-
-
-
-
-
L6
VSS
-
38
33
L2
23
L2
C
-
39
34
L4
24
L4
VSS
-
40
35
K1
25
K1
VCC
-
41
36
L3
26
L3
P46
D
F
D
G
B
C
E
K
X0A
P47
42
37
K3
27
K3
X1A
43
38
K4
28
K4
INITX
P48
SIN3_2
44
39
K6
29
J5
INT14_1
MAD02_0
Document Number: 002-05646 Rev.*A
Page 23 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
E
K
E
K
E
K
H[1]
R
P49
SOT3_2
(SDA3_2)
45
40
J6
30
K6
AIN0_1
TIOB0_0
INT20_1
MAD03_0
P4A
SCK3_2
(SCL3_2)
46
41
L7
31
J6
BIN0_1
TIOB1_0
INT21_1
MAD04_0
P4B
IGTRG_0
ZIN0_1
47
42
K7
32
L7
TIOB2_0
INT22_1
MAD05_0
P4C
SCK7_1
(SCL7_1)
AIN1_2
48
43
H6
33
K7
TIOB3_0
INT12_0
CEC0_0
MAD06_0
Document Number: 002-05646 Rev.*A
Page 24 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
H[1]
K
H[1]
K
E
J
E
K
E
K
E
K
P4D
SOT7_1
(SDA7_1)
49
44
J7
34
J7
BIN1_2
TIOB4_0
INT13_0
MAD07_0
P4E
SIN7_1
ZIN1_2
45
K8
35
K8
50
TIOB5_0
INT06_2
MAD08_0
-
-
-
-
SIN14_0
P70
SOT14_0
51
-
-
-
(SDA14_0)
TIOA4_2
P71
SCK14_0
52
-
-
-
-
(SCL14_0)
TIOB4_2
INT13_2
P72
SIN2_0
53
-
-
-
TIOA6_0
INT14_2
P73
SOT2_0
54
-
-
-
-
(SDA2_0)
TIOB6_0
INT15_2
Document Number: 002-05646 Rev.*A
Page 25 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
E
J
C
E
G
D
A
A
A
B
P74
55
-
-
-
-
SCK2_0
(SCL2_0)
MD1
56
46
K9
36
K9
PE0
57
47
L8
37
L8
58
48
L9
38
L9
MD0
X0
PE2
X1
59
49
L10
39
L10
PE3
60
50
L11
40
L11
VSS
-
61
51
K11
41
K11
VCC
-
62
52
J11
42
J11
P10
F
L
F
P
F
L
AN00
P11
AN01
SIN1_1
FRCK0_2
63
53
J10
43
J10
TIOB8_1
INT02_1
WKUP1
MAD09_0
P12
AN02
SOT1_1
64
54
J8
44
J8
(SDA1_1)
IC00_2
TIOB9_1
MAD10_0
-
-
K10
-
K10
-
-
J9
-
J9
Document Number: 002-05646 Rev.*A
VSS
VSS
-
Page 26 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
F
L
F
M
F
M
P13
AN03
SCK1_1
(SCL1_1)
65
55
H10
45
H10
IC01_2
TIOB10_1
RTCCO_1
SUBOUT_1
MAD11_0
P14
AN04
SIN0_1
66
56
H9
46
H9
IC02_2
TIOB11_1
INT03_1
MAD12_0
P15
AN05
SOT0_1
(SDA0_1)
67
57
H7
47
G10
IC03_2
TIOB12_1
INT14_0
MAD13_0
Document Number: 002-05646 Rev.*A
Page 27 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
F
M
F
M
P16
AN06
SCK0_1
68
58
G10
48
G9
(SCL0_1)
TIOB13_1
INT15_0
MAD14_0
P17
AN07
69
59
G9
49
F10
SIN2_2
INT04_1
MAD15_0
70
60
H11
50
H11
AVCC
-
71
61
F11
51
F11
AVRH
-
72
62
G11
52
G11
AVSS
-
P18
AN08
SOT2_2
73
63
G8
53
F9
F
L
F
L
(SDA2_2)
TIOA8_1
MAD16_0
P19
AN09
74
64
F10
54
E11
SCK2_2
(SCL2_2)
TIOA9_1
MAD17_0
-
-
H8
-
-
VSS
-
P1A
AN10
SIN4_1
75
65
F9
55
E10
IC00_1
F
M
TIOA10_1
INT05_1
MAD18_0
Document Number: 002-05646 Rev.*A
Page 28 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
F
M
F
M
F
M
F
M
F
L
P1B
AN11
SOT4_1
(SDA4_1)
76
66
E11
56
E9
IC01_1
TIOA11_1
INT20_2
MAD19_0
P1C
AN12
SCK4_1
(SCL4_1)
77
67
E10
-
-
IC02_1
TIOA12_1
INT21_2
MAD20_0
P1D
AN13
CTS4_1
78
68
F8
-
-
IC03_1
TIOA13_1
INT22_2
MAD21_0
P1E
AN14
RTS4_1
79
69
E9
-
-
DTTI0X_1
TIOA9_2
INT23_2
MAD22_0
P1F
AN15
ADTG_5
70
D11
-
-
FRCK0_1
80
TIOB9_2
MAD23_0
SCK15_0
-
-
-
(SCL15_0)
-
-
Document Number: 002-05646 Rev.*A
B10
-
B10
VSS
Page 29 of 145
MB9A150RB Series
Pin No
Pin Name
BGA-96
I/O Circuit
Pin State
Type
Type
LQFP-120
LQFP-100
BGA-112
LQFP-80
-
-
C9
-
C9
VSS
-
-
-
-
-
D11
VSS
-
P28
ADTG_4
SOT15_0
81
-
-
-
-
(SDA15_0)
E
J
E
K
E
J
E
J
E
K
F
L
RTO05_1
TIOB6_2
P27
SIN15_0
82
-
-
-
-
RTO04_1
TIOA6_2
INT02_2
P26
SCK2_1
83
-
-
-
-
(SCL2_1)
RTO03_1
TIOA11_2
P25
SOT2_1
(SDA2_1)
84
-
-
-
RTO02_1
TIOA14_1
TIOB11_2
P24
SIN2_1
85
-
-
-
-
RTO01_1
TIOB14_1
INT01_2
P23
AN16
71
D10
57
D10
SCK0_0
86
(SCL0_0)
TIOA7_1
-
Document Number: 002-05646 Rev.*A
-
-
-
RTO00_1
Page 30 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
F
L
F
P
F
M
P22
AN17
87
72
E8
58
D9
SOT0_0
(SDA0_0)
ZIN1_1
TIOB7_1
P21
AN18
SIN0_0
88
73
C11
59
C11
BIN1_1
TIOB10_2
INT06_1
WKUP2
P20
AN19
CROUT_0
89
74
C10
60
C10
AIN1_1
TIOA10_2
INT05_0
MAD24_0
90
75
A11
-
A11
VSS
-
91
76
A10
-
-
VCC
-
P00
TRSTX
61
A10
TIOA14_2
92
77
A9
E
I
E
I
E
I
MCSX7_0
SCK8_0
-
(SCL8_0)
P01
93
78
B9
62
B9
TCK
SWCLK
P02
TDI
63
94
79
B11
TIOB14_2
B11
MCSX6_0
-
Document Number: 002-05646 Rev.*A
-
SOT8_0
Page 31 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
E
I
E
I
F
O
P03
95
80
A8
64
A9
TMS
SWDIO
P04
96
81
B8
65
B8
TDO
SWO
P05
AN20
TRACED0
SIN8_0
97
82
C8
-
SIN4_2
TIOA5_2
INT00_1
MCSX5_0
-
-
D8
-
-
VSS
-
P06
AN21
TRACED1
SOT4_2
98
83
D9
-
-
F
O
F
O
(SDA4_2)
TIOB5_2
INT01_1
MCSX4_0
P07
AN22
66
A8
ADTG_0
MCLKOUT_0
99
84
A7
INT23_1
TRACED2
-
-
SCK4_2
(SCL4_2)
-
-
Document Number: 002-05646 Rev.*A
-
-
A7
VSS
-
Page 32 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
F
O
E
N
H[1]
S
H[1]
R
H[1]
K
P08
AN23
TRACED3
100
85
B7
-
-
CTS4_2
TIOA0_2
INT16_0
MCSX3_0
P09
TRACECLK
RTS4_2
101
86
C7
-
TIOB0_2
INT17_0
MCSX2_0
P0A
SIN4_0
102
87
D7
67
C8
INT00_2
WKUP5
MCSX1_0
P0B
SOT4_0
(SDA4_0)
103
88
A6
68
C7
TIOB6_1
INT18_0
CEC0_1
MCSX0_0
P0C
SCK4_0
(SCL4_0)
104
89
B6
69
B7
TIOA6_1
INT19_0
MALE_0
-
-
Document Number: 002-05646 Rev.*A
D4
-
-
VSS
-
Page 33 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
-
-
C3
-
C3
I/O Circuit
Pin State
Type
Type
VSS
-
P0D
RTS4_0
105
90
C6
70
B6
TIOA3_2
E
K
E
K
INT20_0
MDQM0_0
P0E
CTS4_0
106
91
A5
71
C6
TIOB3_2
INT21_0
MDQM1_0
-
-
-
-
A5
VSS
-
P0F
NMIX
CROUT_1
107
92
B5
72
A6
E
H
RTCCO_0
SUBOUT_0
WKUP0
P68
SCK3_0
108
-
-
-
-
(SCL3_0)
E
K
TIOB7_2
INT12_2
P67
SOT3_0
109
-
-
-
-
(SDA3_0)
E
K
E
K
TIOA7_2
INT22_0
P66
SIN3_0
110
-
-
-
-
TIOA12_2
INT11_2
Document Number: 002-05646 Rev.*A
Page 34 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
I/O Circuit
Pin State
Type
Type
E
K
E
K
E
K
E
K
E
J
H[1]
Q
P65
SCK5_1
(SCL5_1)
111
-
-
-
TIOB7_0
TIOB12_2
INT23_0
P64
SOT5_1
112
-
-
-
-
(SDA5_1)
TIOA7_0
INT10_2
P63
TIOB15_1
93
D6
73
B5
113
INT03_0
MWEX_0
-
-
-
-
SIN5_1
P62
ADTG_3
SCK5_0
114
94
C5
74
C5
(SCL5_0)
TIOA15_1
INT07_1
MOEX_0
P61
SOT5_0
115
95
B4
75
B4
(SDA5_0)
TIOB2_2
P60
SIN5_0
IGTRG_1
TIOA2_2
116
96
C4
76
C4
INT15_1
WKUP3
CEC1_0
MRDY_0
Document Number: 002-05646 Rev.*A
Page 35 of 145
MB9A150RB Series
Pin No
Pin Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
117
97
A4
77
A4
I/O Circuit
Pin State
Type
Type
VCC
-
P80
118
98
A3
78
A3
TIOB15_0
E
K
E
K
INT16_1
P81
119
99
A2
79
A2
TIOA15_0
INT17_1
120
100
A1
80
A1
VSS
-
[1]. 5V tolerant I/O
Document Number: 002-05646 Rev.*A
Page 36 of 145
MB9A150RB Series
4.2
List of Pin Functions
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR)
to select the pin.
Pin No
Pin
Function
Pin
Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
ADC
ADTG_0
99
84
A7
66
A8
ADTG_1
7
7
D3
7
D3
ADTG_2
23
18
F4
13
G3
114
94
C5
74
C5
81
-
-
-
-
ADTG_5
80
70
D11
-
-
ADTG_6
17
12
E4
12
G2
ADTG_7
35
30
J5
-
-
ADTG_8
-
-
-
-
-
AN00
62
52
J11
42
J11
AN01
63
53
J10
43
J10
AN02
64
54
J8
44
J8
AN03
65
55
H10
45
H10
AN04
66
56
H9
46
H9
AN05
67
57
H7
47
G10
AN06
68
58
G10
48
G9
AN07
69
59
G9
49
F10
AN08
73
63
G8
53
F9
AN09
74
64
F10
54
E11
AN10
75
65
F9
55
E10
Function Description
ADTG_3
ADTG_4
A/D converter external trigger
input pin
AN11
A/D converter analog input pin.
76
66
E11
56
E9
AN12
ANxx describes ADC ch.xx.
77
67
E10
-
-
AN13
78
68
F8
-
-
AN14
79
69
E9
-
-
AN15
80
70
D11
-
-
AN16
86
71
D10
57
D10
AN17
87
72
E8
58
D9
AN18
88
73
C11
59
C11
AN19
89
74
C10
60
C10
AN20
97
82
C8
-
-
AN21
98
83
D9
-
-
AN22
99
84
A7
66
A8
AN23
100
85
B7
-
-
Document Number: 002-05646 Rev.*A
Page 37 of 145
MB9A150RB Series
Pin Function
Base Timer 0
Pin
Name
LQFP-100
BGA-112
LQFP-80
BGA-96
32
27
J4
-
-
24
19
G3
14
H1
TIOA0_2
100
85
B7
-
-
TIOB0_0
45
40
J6
30
K6
14
9
E1
9
E2
TIOB0_2
101
86
C7
-
-
TIOA1_0
33
28
L5
-
-
25
20
H1
15
H2
TIOA1_2
5
5
D1
5
D1
TIOB1_0
46
41
L7
31
J6
15
10
E2
10
E3
TIOB1_2
6
6
D2
6
D2
TIOA2_0
34
29
K5
-
-
26
21
H2
16
H3
TIOA2_2
116
96
C4
76
C4
TIOB2_0
47
42
K7
32
L7
16
11
E3
11
G1
TIOB2_2
115
95
B4
75
B4
TIOA3_0
35
30
J5
-
-
27
22
G4
17
J1
TIOA3_2
105
90
C6
70
B6
TIOB3_0
48
43
H6
33
K7
17
12
E4
12
G2
106
91
A5
71
C6
36
31
H5
21
L5
28
23
H3
18
J2
TIOA4_2
51
-
-
-
-
TIOB4_0
49
44
J7
34
J7
18
13
F1
-
-
TIOB4_2
52
-
-
-
-
TIOA5_0
37
32
L6
22
K5
29
24
J2
19
J4
TIOA0_0
TIOB0_1
TIOA1_1
TIOB1_1
Base Timer 2
TIOA2_1
TIOB2_1
Base Timer 3
TIOA3_1
TIOB3_1
Base timer ch.0 TIOA pin
Base timer ch.0 TIOB pin
Base timer ch.1 TIOA pin
Base timer ch.1 TIOB pin
Base timer ch.2 TIOA pin
Base timer ch.2 TIOB pin
Base timer ch.3 TIOA pin
Base timer ch.3 TIOB pin
TIOB3_2
Base Timer 4
TIOA4_0
TIOA4_1
TIOB4_1
Base Timer 5
Pin No
LQFP-120
TIOA0_1
Base Timer 1
Function
Description
TIOA5_1
Base timer ch.4 TIOA pin
Base timer ch.4 TIOB pin
Base timer ch.5 TIOA pin
TIOA5_2
97
82
C8
-
-
TIOB5_0
50
45
K8
35
K8
19
14
F2
-
-
98
83
D9
-
-
TIOB5_1
Base timer ch.5 TIOB pin
TIOB5_2
Document Number: 002-05646 Rev.*A
Page 38 of 145
MB9A150RB Series
Pin Function
Base Timer 6
Pin
Name
LQFP-120
53
-
-
-
-
Base timer ch.6 TIOA pin
104
89
B6
69
B7
TIOA6_2
82
-
-
-
-
TIOB6_0
54
-
-
-
-
103
88
A6
68
C7
TIOB6_2
81
-
-
-
-
TIOA7_0
112
-
-
-
-
86
71
D10
57
D10
TIOA7_2
109
-
-
-
-
TIOB7_0
111
-
-
-
-
87
72
E8
58
D9
TIOB7_2
108
-
-
-
-
TIOA8_0
8
8
D5
8
E1
73
63
G8
53
F9
TIOA8_2
22
17
G2
-
-
TIOB8_0
2
2
C1
2
C1
63
53
J10
43
J10
TIOB8_2
23
18
F4
-
-
TIOA9_0
9
-
-
-
-
74
64
F10
54
E11
TIOA9_2
79
69
E9
-
-
TIOB9_0
3
3
C2
3
C2
64
54
J8
44
J8
80
70
D11
-
-
TIOA6_0
TIOA6_1
TIOB6_1
Base Timer 7
TIOA7_1
TIOB7_1
Base Timer 8
TIOA8_1
TIOB8_1
Base Timer 9
TIOA9_1
TIOB9_1
Base timer ch.6 TIOB pin
Base timer ch.7 TIOA pin
Base timer ch.7 TIOB pin
Base timer ch.8 TIOA pin
Base timer ch.8 TIOB pin
Base timer ch.9 TIOA pin
Base timer ch.9 TIOB pin
TIOB9_2
Base Timer 10
TIOA10_0
TIOA10_1
Base timer ch.10 TIOA
pin
TIOA10_2
TIOB10_0
TIOB10_1
Base timer ch.10 TIOB
pin
TIOB10_2
Base Timer 11
Pin No
Function
Description
TIOA11_0
TIOA11_1
Base timer ch.11 TIOA
pin
TIOA11_2
TIOB11_0
TIOB11_1
Base timer ch.11 TIOB
TIOB11_2
Document Number: 002-05646 Rev.*A
pin
LQFP-100
BGA-112
LQFP-80
BGA-96
10
-
-
-
-
75
65
F9
55
E10
89
74
C10
60
C10
4
4
B3
4
B3
65
55
H10
45
H10
88
73
C11
59
C11
11
-
-
-
-
76
66
E11
56
E9
83
-
-
-
-
5
5
D1
5
D1
66
56
H9
46
H9
84
-
-
-
-
Page 39 of 145
MB9A150RB Series
Pin Function
Base Timer 12
Pin
Name
Function
Description
TIOA12_0
TIOA12_1
Base timer ch.12 TIOA
pin
TIOA12_2
TIOB12_0
TIOB12_1
Base timer ch.12 TIOB
pin
TIOB12_2
Base Timer 13
TIOA13_0
TIOA13_1
Base timer ch.13 TIOA
pin
TIOA13_2
TIOB13_0
TIOB13_1
Base timer ch.13 TIOB
pin
TIOB13_2
Base Timer 14
TIOA14_0
TIOA14_1
Base timer ch.14 TIOA
pin
TIOA14_2
TIOB14_0
TIOB14_1
Base timer ch.14 TIOB
pin
TIOB14_2
Base Timer 15
TIOA15_0
TIOA15_1
Base timer ch.15 TIOA
pin
TIOA15_2
TIOB15_0
TIOB15_1
Base timer ch.15 TIOB
TIOB15_2
Document Number: 002-05646 Rev.*A
pin
Pin No
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
12
-
-
-
-
77
67
E10
-
-
110
-
-
-
-
6
6
D2
6
D2
67
57
H7
47
G10
111
-
-
-
-
13
-
-
-
-
78
68
F8
-
-
14
9
E1
9
E2
7
7
D3
7
D3
68
58
G10
48
G9
15
10
E2
10
E3
21
16
G1
-
-
84
-
-
-
-
92
77
A9
61
A10
20
15
F3
-
-
85
-
-
-
-
94
79
B11
63
B11
119
99
A2
79
A2
114
94
C5
74
C5
18
13
F1
-
-
118
98
A3
78
A3
113
93
D6
73
B5
19
14
F2
-
-
Page 40 of 145
MB9A150RB Series
Pin Function
Pin Name
SWCLK
SWDIO
SWO
TCK
TDI
Debugger
TDO
Function Description
Serial wire debug interface
BGA-112
LQFP-80 BGA-96
78
B9
62
B9
95
80
A8
64
A9
96
81
B8
65
B8
J-TAG test clock input pin
93
78
B9
62
B9
J-TAG test data input pin
94
79
B11
63
B11
96
81
B8
65
B8
95
80
A8
64
A9
101
86
C7
-
-
97
82
C8
-
-
98
83
D9
-
-
99
84
A7
-
-
100
85
B7
-
A10
Serial wire debug interface
data input / output pin
Serial wire viewer output
pin
J-TAG debug data output
pin
J-TAG test mode state
input/output pin
Trace CLK output pin of
ETM
TRACED0
TRACED1
Trace data output pin of
TRACED2
ETM
TRACED3
TRSTX
LQFP-100
93
clock input pin
TMS
TRACECLK
Pin No
LQFP-120
92
77
A9
61
External
MAD00_0
J-TAG test reset input pin
36
31
H5
21
L5
Bus
MAD01_0
37
32
L6
22
K5
MAD02_0
44
39
K6
29
J5
MAD03_0
45
40
J6
30
K6
MAD04_0
46
41
L7
31
J6
MAD05_0
47
42
K7
32
L7
MAD06_0
48
43
H6
33
K7
MAD07_0
49
44
J7
34
J7
MAD08_0
50
45
K8
35
K8
MAD09_0
63
53
J10
43
J10
MAD10_0
64
54
J8
44
J8
MAD11_0
65
55
H10
45
H10
H9
46
H9
MAD12_0
External bus interface
66
56
MAD13_0
address bus
67
57
H7
47
G10
68
58
G10
48
G9
MAD14_0
MAD15_0
69
59
G9
49
F10
MAD16_0
73
63
G8
53
F9
MAD17_0
74
64
F10
54
E11
MAD18_0
75
65
F9
55
E10
MAD19_0
76
66
E11
56
E9
MAD20_0
77
67
E10
-
-
MAD21_0
78
68
F8
-
-
MAD22_0
79
69
E9
-
-
MAD23_0
80
70
D11
-
-
MAD24_0
89
74
C10
60
C10
Document Number: 002-05646 Rev.*A
Page 41 of 145
MB9A150RB Series
Pin Function
Pin Name
Function Description
Pin No
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
MCSX0_0
103
88
A6
68
C7
MCSX1_0
102
87
D7
67
C8
MCSX2_0
101
86
C7
-
-
MCSX3_0
External bus interface chip
100
85
B7
-
-
MCSX4_0
select output pin
98
83
D9
-
-
MCSX5_0
97
82
C8
-
-
MCSX6_0
94
79
B11
63
B11
MCSX7_0
92
77
A9
61
A10
MDQM0_0
External bus interface byte
105
90
C6
70
B6
MDQM1_0
mask signal output pin
106
91
A5
71
C6
114
94
C5
74
C5
113
93
D6
73
B5
18
-
-
-
-
19
-
-
-
-
21
-
-
-
-
20
-
-
-
-
MADATA00_0
2
2
C1
2
C1
MADATA01_0
3
3
C2
3
C2
MADATA02_0
4
4
B3
4
B3
MADATA03_0
5
5
D1
5
D1
MADATA04_0
6
6
D2
6
D2
MADATA05_0
7
7
D3
7
D3
8
8
D5
8
E1
9
9
E1
9
E2
10
10
E2
10
E3
MOEX_0
MWEX_0
External bus interface read
enable signal for SRAM
External bus interface write
enable signal for SRAM
External bus interface ALE
MNALE_0
signal to control NAND
Flash memory output pin
External bus interface CLE
MNCLE_0
signal to control NAND
External Bus
Flash memory output pin
External bus interface read
MNREX_0
enable signal to control
NAND Flash memory
External bus interface write
MNWEX_0
enable signal to control
NAND Flash memory
MADATA06_0
External bus interface data
MADATA07_0
MADATA08_0
bus
MADATA09_0
11
11
E3
11
G1
MADATA10_0
12
12
E4
12
G2
MADATA11_0
13
13
F1
-
-
MADATA12_0
14
14
F2
-
-
Document Number: 002-05646 Rev.*A
Page 42 of 145
MB9A150RB Series
Pin No
Pin Function
External Bus
Pin Name
LQFP-100
BGA-112
LQFP-80 BGA-96
15
15
F3
-
-
MADATA14_0
16
16
G1
-
-
MADATA15_0
17
17
G2
-
-
104
89
B6
69
B7
116
96
C4
76
C4
99
84
A7
66
A8
2
2
C1
2
C1
MALE_0
MCLKOUT_0
INT00_0
INT00_1
INT00_2
INT01_0
INT01_1
INT01_2
INT02_0
INT02_1
INT02_2
INT03_0
INT03_1
INT03_2
INT04_0
INT04_1
INT04_2
INT05_0
INT05_1
Interrupt
LQFP-120
MADATA13_0
MRDY_0
External
Function Description
INT05_2
INT06_0
INT06_1
INT06_2
INT07_0
INT07_1
INT07_2
INT08_0
INT08_1
INT08_2
Latch enable signal for
multiplex
External RDY input signal
External bus clock output
pin
External interrupt request
00 input pin
External interrupt request
01 input pin
External interrupt request
02 input pin
External interrupt request
03 input pin
External interrupt request
04 input pin
External interrupt request
05 input pin
External interrupt request
06 input pin
External interrupt request
07 input pin
External interrupt request
08 input pin
INT09_0
INT09_1
External interrupt request
09 input pin
INT09_2
INT10_0
INT10_1
INT10_2
External interrupt request
10 input pin
INT11_0
INT11_1
INT11_2
Document Number: 002-05646 Rev.*A
External interrupt request
11 input pin
97
82
C8
-
-
102
87
D7
67
C8
C2
3
3
C2
3
98
83
D9
-
-
85
-
-
-
-
4
4
B3
4
B3
63
53
J10
43
J10
82
-
-
-
-
113
93
D6
73
B5
66
56
H9
46
H9
14
9
E1
9
E2
17
12
E4
12
G2
69
59
G9
49
F10
15
10
E2
10
E3
89
74
C10
60
C10
75
65
F9
55
E10
16
11
E3
11
G1
23
18
F4
13
G3
88
73
C11
59
C11
50
45
K8
35
K8
24
19
G3
14
H1
114
94
C5
74
C5
5
5
D1
5
D1
34
29
K5
-
-
19
14
F2
-
-
8
8
D5
8
E1
35
30
J5
-
-
20
15
F3
-
-
11
-
-
-
-
36
31
H5
21
L5
21
16
G1
-
-
112
-
-
-
-
37
32
L6
22
K5
22
17
G2
-
-
110
-
-
-
-
Page 43 of 145
MB9A150RB Series
Pin No
Pin Function
Pin Name
Function Description
INT12_0
INT12_1
External interrupt request 12
input pin
INT12_2
INT13_0
INT13_1
External interrupt request 13
input pin
INT13_2
INT14_0
INT14_1
External interrupt request 14
input pin
INT14_2
INT15_0
INT15_1
External interrupt request 15
input pin
INT15_2
INT16_0
INT16_1
External interrupt request 16
input pin
INT16_2
INT17_0
INT17_1
External interrupt request 17
input pin
INT17_2
INT18_0
INT18_1
External
Interrupt
External interrupt request 18
input pin
INT18_2
INT19_0
INT19_1
External interrupt request 19
input pin
INT19_2
INT20_0
INT20_1
External interrupt request 20
input pin
INT20_2
INT21_0
INT21_1
External interrupt request 21
input pin
INT21_2
INT22_0
INT22_1
External interrupt request 22
input pin
INT22_2
INT23_0
INT23_1
External interrupt request 23
input pin
INT23_2
NMIX
Document Number: 002-05646 Rev.*A
Non-Maskable Interrupt
input pin
LQFP-120 LQFP-100
BGA-112
LQFP-80 BGA-96
48
43
H6
33
K7
32
27
J4
-
-
108
-
-
-
-
49
44
J7
34
J7
33
28
L5
-
-
52
-
-
-
-
67
57
H7
47
G10
44
39
K6
29
J5
53
-
-
-
-
68
58
G10
48
G9
116
96
C4
76
C4
54
-
-
-
-
100
85
B7
-
-
118
98
A3
78
A3
12
-
-
-
-
101
86
C7
-
-
119
99
A2
79
A2
13
-
-
-
-
103
88
A6
68
C7
6
6
D2
6
D2
26
21
H2
16
H3
104
89
B6
69
B7
7
7
D3
7
D3
28
23
H3
18
J2
105
90
C6
70
B6
45
40
J6
30
K6
76
66
E11
56
E9
106
91
A5
71
C6
46
41
L7
31
J6
77
67
E10
-
-
109
-
-
-
-
47
42
K7
32
L7
78
68
F8
-
-
111
-
-
-
-
99
84
A7
66
A8
79
69
E9
-
-
107
92
B5
72
A6
Page 44 of 145
MB9A150RB Series
Pin Function
Pin
Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
P00
92
77
A9
61
P01
93
78
B9
62
B9
P02
94
79
B11
63
B11
P03
95
80
A8
64
A9
P04
96
81
B8
65
B8
P05
97
82
C8
-
-
P06
98
83
D9
-
-
P07
99
84
A7
66
A8
-
P08
GPIO
Pin No
Function Description
General-purpose I/O port 0
A10
100
85
B7
-
P09
101
86
C7
-
-
P0A
102
87
D7
67
C8
P0B
103
88
A6
68
C7
P0C
104
89
B6
69
B7
P0D
105
90
C6
70
B6
P0E
106
91
A5
71
C6
P0F
107
92
B5
72
A6
P10
62
52
J11
42
J11
P11
63
53
J10
43
J10
P12
64
54
J8
44
J8
P13
65
55
H10
45
H10
P14
66
56
H9
46
H9
P15
67
57
H7
47
G10
P16
68
58
G10
48
G9
P17
69
59
G9
49
F10
P18
General-purpose I/O port 1
73
63
G8
53
F9
P19
74
64
F10
54
E11
P1A
75
65
F9
55
E10
E9
P1B
76
66
E11
56
P1C
77
67
E10
-
-
P1D
78
68
F8
-
-
P1E
79
69
E9
-
-
P1F
80
70
D11
-
-
P20
89
74
C10
60
C10
P21
88
73
C11
59
C11
P22
87
72
E8
58
D9
P23
86
71
D10
57
D10
85
-
-
-
-
P25
84
-
-
-
-
P26
83
-
-
-
-
P27
82
-
-
-
-
P28
81
-
-
-
-
P24
General-purpose I/O port 2
Document Number: 002-05646 Rev.*A
Page 45 of 145
MB9A150RB Series
Pin Function
Pin
Name
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
P30
14
9
E1
9
E2
P31
15
10
E2
10
E3
P32
16
11
E3
11
G1
P33
17
12
E4
12
G2
P34
18
13
F1
-
-
P35
19
14
F2
-
-
P36
20
15
F3
-
-
P37
21
16
G1
-
-
P38
GPIO
Pin No
Function Description
General-purpose I/O port 3
22
17
G2
-
-
P39
23
18
F4
13
G3
P3A
24
19
G3
14
H1
P3B
25
20
H1
15
H2
P3C
26
21
H2
16
H3
P3D
27
22
G4
17
J1
P3E
28
23
H3
18
J2
P3F
29
24
J2
19
J4
P40
32
27
J4
-
-
P41
33
28
L5
-
-
P42
34
29
K5
-
-
P43
35
30
J5
-
-
P44
36
31
H5
21
L5
P45
37
32
L6
22
K5
41
36
L3
26
L3
42
37
K3
27
K3
P48
44
39
K6
29
J5
P49
45
40
J6
30
K6
P4A
46
41
L7
31
J6
P46
P47
General-purpose I/O port 4
P4B
47
42
K7
32
L7
P4C
48
43
H6
33
K7
P4D
49
44
J7
34
J7
P4E
50
45
K8
35
K8
P50
2
2
C1
2
C1
P51
3
3
C2
3
C2
P52
4
4
B3
4
B3
P53
5
5
D1
5
D1
P54
6
6
D2
6
D2
7
7
D3
7
D3
8
8
D5
8
E1
P57
9
-
-
-
-
P58
10
-
-
-
-
P59
11
-
-
-
-
P5A
12
-
-
-
-
P5B
13
-
-
-
-
P55
P56
General-purpose I/O port 5
Document Number: 002-05646 Rev.*A
Page 46 of 145
MB9A150RB Series
Pin Function
Pin Name
Pin No
Function Description
LQFP-120
GPIO
LQFP-100
BGA-112
LQFP-80
BGA-96
P60
116
96
C4
76
C4
P61
115
95
B4
75
B4
P62
114
94
C5
74
C5
P63
113
93
D6
73
B5
112
-
-
-
-
P65
111
-
-
-
-
P66
110
-
-
-
-
P67
109
-
-
-
-
P68
108
-
-
-
-
P70
51
-
-
-
-
P71
52
-
-
-
-
53
-
-
-
-
P73
54
-
-
-
-
P74
55
-
-
-
-
118
98
A3
78
A3
P81
119
99
A2
79
A2
PE0
56
46
K9
36
K9
58
48
L9
38
L9
59
49
L10
39
L10
P64
P72
General-purpose I/O port 6
General-purpose I/O port 7
GPIO
P80
General-purpose I/O port 8
PE2
General-purpose I/O port E
PE3
Document Number: 002-05646 Rev.*A
Page 47 of 145
MB9A150RB Series
Pin Function
Pin No
Pin
Name
Function Description
SIN0_0
Multi-function serial
88
73
C11
59
C11
SIN0_1
interface ch.0 input pin
66
56
H9
46
H9
SOT0_0
interface ch.0 output pin.
(SDA0_0)
87
72
E8
58
D9
This pin operates as SOT0
67
57
H7
47
G10
86
71
D10
57
D10
68
58
G10
48
G9
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
Multi-function serial
when it is used in a
UART/CSIO (operation
Multi- function
SOT0_1
modes 0 to 2) and as
(SDA0_1)
SDA0 when it is used in an
Serial 0
I2C (operation mode 4).
Multi-function serial
SCK0_0
interface ch.0 clock I/O pin.
(SCL0_0)
This pin operates as SCK0
when it is used in a
UART/CSIO (operation
SCK0_1
modes 0 to 2) and as
(SCL0_1)
SCL0 when it is used in an
I2C (operation mode 4).
SIN1_0
Multi-function serial
8
-
-
-
-
SIN1_1
interface ch.1 input pin
63
53
J10
43
J10
SOT1_0
interface ch.1 output pin.
(SDA1_0)
9
-
-
-
-
This pin operates as SOT1
64
54
J8
44
J8
10
-
-
-
-
65
55
H10
45
H10
Multi-function serial
when it is used in a
UART/CSIO (operation
Multi- function
SOT1_1
modes 0 to 2) and as
(SDA1_1)
SDA1 when it is used in an
Serial 1
I2C (operation mode 4).
Multi-function serial
SCK1_0
interface ch.1 clock I/O pin.
(SCL1_0)
This pin operates as SCK1
when it is used in a
UART/CSIO (operation
SCK1_1
modes 0 to 2) and as
(SCL1_1)
SCL1 when it is used in an
I2C (operation mode 4).
Document Number: 002-05646 Rev.*A
Page 48 of 145
MB9A150RB Series
Pin Function
Pin
Name
LQFP-120
SIN2_0
SIN2_1
SIN2_2
Pin No
Function Description
Multi-function serial
interface ch.2 input pin
SOT2_0
Multi-function serial
(SDA2_0)
interface ch.2 output pin.
LQFP-100
BGA-112
LQFP-80
BGA-96
53
-
-
-
85
-
-
-
-
69
59
G9
49
F10
54
-
-
-
-
84
-
-
-
-
73
63
G8
53
F9
55
-
-
-
-
83
-
-
-
-
74
64
F10
54
E11
This pin operates as SOT2
SOT2_1
when it is used in a
(SDA2_1)
UART/CSIO (operation
Multi- function
SOT2_2
Serial 2
(SDA2_2)
modes 0 to 2) and as
SDA2 when it is used in an
I2C (operation mode 4).
SCK2_0
Multi-function serial
(SCL2_0)
interface ch.2 clock I/O pin.
This pin operates as SCK2
SCK2_1
(SCL2_1)
SCK2_2
(SCL2_2)
when it is used in a
UART/CSIO (operation
modes 0 to 2) and as
SCL2 when it is used in an
2
I C (operation mode 4).
SIN3_0
SIN3_1
SIN3_2
Multi-function serial
interface ch.3 input pin
SOT3_0
Multi-function serial
(SDA3_0)
interface ch.3 output pin.
110
-
-
-
-
2
2
C1
2
C1
44
39
K6
29
J5
109
-
-
-
-
3
3
C2
3
C2
45
40
J6
30
K6
108
-
-
-
-
4
4
B3
4
B3
46
41
L7
31
J6
This pin operates as SOT3
SOT3_1
when it is used in a
(SDA3_1)
UART/CSIO (operation
Multi- function
SOT3_2
Serial 3
(SDA3_2)
modes 0 to 2) and as
SDA3 when it is used in an
I2C (operation mode 4).
SCK3_0
Multi-function serial
(SCL3_0)
interface ch.3 clock I/O pin.
This pin operates as SCK3
SCK3_1
(SCL3_1)
SCK3_2
(SCL3_2)
when it is used in a
UART/CSIO (operation
modes 0 to 2) and as
SCL3 when it is used in an
I2C (operation mode 4).
Document Number: 002-05646 Rev.*A
Page 49 of 145
MB9A150RB Series
Pin Function
Pin
Name
LQFP-120
SIN4_0
SIN4_1
SIN4_2
Pin No
Function Description
Multi-function serial
interface ch.4 input pin
SOT4_0
Multi-function serial
(SDA4_0)
interface ch.4 output pin.
LQFP-100
BGA-112
LQFP-80
BGA-96
102
87
D7
67
C8
75
65
F9
55
E10
97
82
C8
-
-
103
88
A6
68
C7
76
66
E11
56
E9
98
83
D9
-
-
104
89
B6
69
B7
77
67
E10
-
-
99
84
A7
-
-
This pin operates as SOT4
SOT4_1
when it is used in a
(SDA4_1)
UART/CSIO (operation
SOT4_2
(SDA4_2)
Multi- function
Serial 4
modes 0 to 2) and as
SDA4 when it is used in an
I2C (operation mode 4).
SCK4_0
Multi-function serial
(SCL4_0)
interface ch.4 clock I/O pin.
This pin operates as SCK4
SCK4_1
(SCL4_1)
SCK4_2
(SCL4_2)
when it is used in a
UART/CSIO (operation
modes 0 to 2) and as
SCL4 when it is used in an
2
I C (operation mode 4).
RTS4_0
Multi-function serial
105
90
C6
70
B6
RTS4_1
interface ch.4 RTS output
79
69
E9
-
-
RTS4_2
pin
101
86
C7
-
-
CTS4_0
Multi-function serial
106
91
A5
71
C6
CTS4_1
interface ch.4 CTS input
78
68
F8
-
-
CTS4_2
pin
100
85
B7
-
-
116
96
C4
76
C4
113
-
-
-
-
20
15
F3
-
-
115
95
B4
75
B4
112
-
-
-
-
21
16
G1
-
-
114
94
C5
74
C5
111
-
-
-
-
22
17
G2
-
-
SIN5_0
SIN5_1
Multi-function serial
interface ch.5 input pin
SIN5_2
SOT5_0
Multi-function serial
(SDA5_0)
interface ch.5 output pin.
SOT5_1
(SDA5_1)
Multi- function
Serial 5
This pin operates as SOT5
when it is used in a
UART/CSIO (operation
modes 0 to 2) and as
SOT5_2
(SDA5_2)
SDA5 when it is used in an
I2C (operation mode 4).
SCK5_0
Multi-function serial
(SCL5_0)
interface ch.5 clock I/O pin.
SCK5_1
(SCL5_1)
This pin operates as SCK5
when it is used in a
UART/CSIO (operation
modes 0 to 2) and as
SCK5_2
SCL5 when it is used in an
(SCL5_2)
I2C (operation mode 4).
Document Number: 002-05646 Rev.*A
Page 50 of 145
MB9A150RB Series
Pin Function
Pin
Name
Pin No
Function Description
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
SIN6_0
Multi-function serial
5
5
D1
5
D1
SIN6_1
interface ch.6 input pin
17
12
E4
12
G2
6
6
D2
6
D2
16
11
E3
11
G1
7
7
D3
7
D3
15
10
E2
10
E3
11
-
-
-
-
50
45
K8
35
K8
12
-
-
-
-
49
44
J7
34
J7
13
-
-
-
-
48
43
H6
33
K7
Multi-function serial
SOT6_0
interface ch.6 output pin.
(SDA6_0)
This pin operates as SOT6
when it is used in a
UART/CSIO (operation
Multi- function
SOT6_1
modes 0 to 2) and as
(SDA6_1)
SDA6 when it is used in an
I2C (operation mode 4).
Serial 6
Multi-function serial
SCK6_0
interface ch.6 clock I/O pin.
(SCL6_0)
This pin operates as SCK6
when it is used in a
UART/CSIO (operation
SCK6_1
modes 0 to 2) and as
(SCL6_1)
SCL6 when it is used in an
I2C (operation mode 4).
SIN7_0
Multi-function serial
SIN7_1
interface ch.7 input pin
SOT7_0
Multi-function serial
(SDA7_0)
interface ch.7 output pin.
This pin operates as SOT7
when it is used in a
SOT7_1
UART/CSIO (operation
(SDA7_1)
modes 0 to 2) and as
Multi- function
SDA7 when it is used in an
Serial 7
I2C (operation mode 4).
SCK7_0
Multi-function serial
(SCL7_0)
interface ch.7 clock I/O pin.
This pin operates as SCK7
when it is used in a
SCK7_1
UART/CSIO (operation
(SCL7_1)
modes 0 to 2) and as
SCL7 when it is used in an
I2C (operation mode 4).
Document Number: 002-05646 Rev.*A
Page 51 of 145
MB9A150RB Series
Pin Function
Pin
Name
SIN8_0
Pin No
Function Description
Multi-function serial
interface ch.8 input pin
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
97
82
C8
-
-
94
79
B11
-
-
92
77
A9
-
-
17
12
E4
-
-
18
13
F1
-
-
19
14
F2
-
-
Multi-function serial
interface ch.8 output pin.
This pin operates as SOT8
SOT8_0
when it is used in a
(SDA8_0)
UART/CSIO (operation
modes 0 to 2) and as
Multi- function
SDA8 when it is used in an
Serial 8
I2C (operation mode 4).
Multi-function serial
interface ch.8 clock I/O pin.
This pin operates as SCK8
SCK8_0
when it is used in a
(SCL8_0)
UART/CSIO (operation
modes 0 to 2) and as
SCL8 when it is used in an
I2C (operation mode 4).
SIN9_0
Multi-function serial
interface ch.9 input pin
Multi-function serial
interface ch.9 output pin.
This pin operates as SOT9
SOT9_0
when it is used in a
(SDA9_0)
UART/CSIO (operation
modes 0 to 2) and as
Multi- function
SDA9 when it is used in an
Serial 9
I2C (operation mode 4).
Multi-function serial
interface ch.9 clock I/O pin.
This pin operates as SCK9
SCK9_0
when it is used in a
(SCL9_0)
UART/CSIO (operation
modes 0 to 2) and as
SCL9 when it is used in an
I2C (operation mode 4).
Document Number: 002-05646 Rev.*A
Page 52 of 145
MB9A150RB Series
Pin No
Pin Function
Pin Name
SIN10_0
Function Description
Multi-function serial
interface ch.10 input pin
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
23
18
F4
13
G3
24
19
G3
14
H1
25
20
H1
15
H2
26
21
H2
16
H3
27
22
G4
17
J1
28
23
H3
18
J2
Multi-function serial
interface ch.10 output pin.
This pin operates as
SOT10_0
(SDA10_0)
SOT10 when it is used in
a UART/CSIO (operation
modes 0 to 2) and as
SDA10 when it is used in
an I2C (operation mode
Multi- function
4).
Serial 10
Multi-function serial
interface ch.10 clock I/O
pin.
This pin operates as
SCK10_0
SCK10 when it is used in
(SCL10_0)
a UART/CSIO (operation
modes 0 to 2) and as
SCL10 when it is used in
an I2C (operation mode
4).
SIN11_0
Multi-function serial
interface ch.11 input pin
Multi-function serial
interface ch.11 output pin.
This pin operates as
SOT11_0
(SDA11_0)
SOT11 when it is used in
a UART/CSIO (operation
modes 0 to 2) and as
SDA11 when it is used in
an I2C (operation mode
Multi- function
4).
Serial 11
Multi-function serial
interface ch.11 clock I/O
pin.
This pin operates as
SCK11_0
SCK11 when it is used in
(SCL11_0)
a UART/CSIO (operation
modes 0 to 2) and as
SCL11 when it is used in
an I2C (operation mode
4).
Document Number: 002-05646 Rev.*A
Page 53 of 145
MB9A150RB Series
Pin No
Pin Function
Pin Name
SIN12_0
Function Description
Multi-function serial interface ch.12
input pin
LQFP-120
LQFP-100 BGA-112 LQFP-80 BGA-96
32
27
J4
-
-
33
28
L5
-
-
34
29
K5
-
-
35
30
J5
-
-
36
31
H5
-
-
37
32
L6
-
-
Multi-function serial interface ch.12
output pin.
SOT12_0
(SDA12_0)
This pin operates as SOT12 when it
is used in a UART/CSIO (operation
modes 0 to 2) and as SDA12 when
it is used in an I2C (operation mode
Multi- function
Serial 12
4).
Multi-function serial interface ch.12
clock I/O pin.
SCK12_0
(SCL12_0)
This pin operates as SCK12 when it
is used in a UART/CSIO (operation
modes 0 to 2) and as SCL12 when
it is used in an I2C (operation mode
4).
SIN13_0
Multi-function serial interface ch.13
input pin
Multi-function serial interface ch.13
output pin.
SOT13_0
(SDA13_0)
This pin operates as SOT13 when it
is used in a UART/CSIO (operation
modes 0 to 2) and as SDA13 when
Multi- function
it is used in an I2C (operation mode
Serial 13
4).
Multi-function serial interface ch.13
clock I/O pin.
SCK13_0
(SCL13_0)
This pin operates as SCK13 when it
is used in a UART/CSIO (operation
modes 0 to 2) and as SCL13 when
it is used in an I2C (operation mode
4).
Document Number: 002-05646 Rev.*A
Page 54 of 145
MB9A150RB Series
Pin No
Pin Function
Pin Name
SIN14_0
Function Description
Multi-function serial
interface ch.14 input pin
LQFP-120 LQFP-100
BGA-112
LQFP-80
BGA-96
50
-
-
-
-
51
-
-
-
-
52
-
-
-
-
82
-
-
-
81
-
-
-
80
-
-
-
Multi-function serial
interface ch.14 output pin.
This pin operates as
SOT14_0
(SDA14_0)
SOT14 when it is used in
a UART/CSIO (operation
modes 0 to 2) and as
SDA14 when it is used in
an I2C (operation mode
Multi- function
4).
Serial 14
Multi-function serial
interface ch.14 clock I/O
pin.
This pin operates as
SCK14_0
SCK14 when it is used in
(SCL14_0)
a UART/CSIO (operation
modes 0 to 2) and as
SCL14 when it is used in
an I2C (operation mode
4).
SIN15_0
Multi-function serial
interface ch.15 input pin
Multi-function serial
interface ch.15 output pin.
This pin operates as
SOT15_0
(SDA15_0)
SOT15 when it is used in
a UART/CSIO (operation
modes 0 to 2) and as
SDA15 when it is used in
an I2C (operation mode
Multi- function
4).
Serial 15
Multi-function serial
interface ch.15 clock I/O
pin.
This pin operates as
SCK15_0
SCK15 when it is used in
(SCL15_0)
a UART/CSIO (operation
modes 0 to 2) and as
SCL15 when it is used in
an I2C (operation mode
4).
Document Number: 002-05646 Rev.*A
Page 55 of 145
MB9A150RB Series
Pin No
Pin Function
Pin Name
Function Description
DTTI0X_0
Input signal of waveform
LQFP-120
LQFP-100
BGA-112
LQFP-80
BGA-96
23
18
F4
13
G3
79
69
E9
-
-
18
13
F1
-
-
80
70
D11
-
-
FRCK0_2
63
53
J10
43
J10
generator to control outputs
DTTI0X_1
RTO00 to RTO05 of multifunction timer 0.
FRCK0_0
FRCK0_1
16-bit free-run timer ch.0
external clock input pin
IC00_0
22
17
G2
-
-
Multi- function
IC00_1
75
65
F9
55
E10
Timer 0
IC00_2
64
54
J8
44
J8
IC01_0
21
16
G1
-
-
IC01_1
16-bit input capture input pin
76
66
E11
56
E9
IC01_2
of multi-function timer 0.
65
55
H10
45
H10
IC02_0
ICxx describes channel
20
15
F3
-
-
IC02_1
number.
77
67
E10
-
-
IC02_2
66
56
H9
46
H9
IC03_0
19
14
F2
-
-
IC03_1
78
68
F8
-
-
IC03_2
67
57
H7
47
G10
Document Number: 002-05646 Rev.*A
Page 56 of 145
MB9A150RB Series
Pin No
Pin Function
Pin Name
Function Description
LQFP-120
RTO00_0
Waveform generator output
(PPG00_0)
pin of multi-function timer 0.
LQFP-100
BGA-112
LQFP-80
BGA-96
24
19
G3
14
H1
86
71
D10
57
D10
25
20
H1
15
H2
85
-
-
-
-
26
21
H2
16
H3
84
-
-
-
-
27
22
G4
17
J1
83
-
-
-
-
28
23
H3
18
J2
82
-
-
-
-
29
24
J2
19
J4
81
-
-
-
-
This pin operates as PPG00
RTO00_1
(PPG00_1)
when it is used in PPG0
output mode.
RTO01_0
Waveform generator output
(PPG00_0)
pin of multi-function timer 0.
This pin operates as PPG00
RTO01_1
(PPG00_1)
when it is used in PPG0
output mode.
RTO02_0
Waveform generator output
(PPG02_0)
pin of multi-function timer 0.
This pin operates as PPG02
RTO02_1
(PPG02_1)
Multi- function
when it is used in PPG0
output mode.
RTO03_0
Waveform generator output
(PPG02_0)
pin of multi-function timer 0.
Timer 0
This pin operates as PPG02
RTO03_1
(PPG02_1)
when it is used in PPG0
output mode.
RTO04_0
Waveform generator output
(PPG04_0)
pin of multi-function timer 0.
This pin operates as PPG04
RTO04_1
(PPG04_1)
when it is used in PPG0
output mode.
RTO05_0
Waveform generator output
(PPG04_0)
pin of multi-function timer 0.
This pin operates as PPG04
RTO05_1
when it is used in PPG0
(PPG04_1)
output mode.
IGTRG_0
PPG IGMT mode external
46
41
L7
31
J6
IGTRG_1
trigger input pin
116
96
C4
76
C4
Document Number: 002-05646 Rev.*A
Page 57 of 145
MB9A150RB Series
Pin Function
Pin
Name
Quadrature
AIN0_0
Position/
AIN0_1
Revolution
AIN0_2
Counter 0
BIN0_0
BIN0_1
LQFP-120
QPRC ch.0 AIN input pin
QPRC ch.0 BIN input pin
BIN0_2
ZIN0_0
ZIN0_1
Pin No
Function Description
QPRC ch.0 ZIN input pin
LQFP-100
BGA-112
LQFP-80
BGA-96
14
9
E1
9
45
40
J6
30
E2
K6
2
2
C1
2
C1
15
10
E2
10
E3
46
41
L7
31
J6
3
3
C2
3
C2
16
11
E3
11
G1
47
42
K7
32
L7
ZIN0_2
4
4
B3
4
B3
Quadrature
AIN1_1
89
74
C10
60
C10
Position/
AIN1_2
48
43
H6
33
K7
Revolution
BIN1_1
88
73
C11
59
C11
Counter 1
BIN1_2
49
44
J7
34
J7
87
72
E8
58
D9
ZIN1_1
ZIN1_2
Real-time clock
RTCCO_0
RTCCO_1
RTCCO_2
QPRC ch.1 AIN input pin
QPRC ch.1 BIN input pin
QPRC ch.1 ZIN input pin
0.5 seconds pulse output
pin of Real-time clock
SUBOUT_
0
SUBOUT_
Sub clock output pin
1
SUBOUT_
2
Low-Power
Consumption
Mode
WKUP0
WKUP1
WKUP2
WKUP3
WKUP4
WKUP5
HDMI-
Deep standby mode
return signal input pin 0
Deep standby mode
return signal input pin 1
Deep standby mode
return signal input pin 2
Deep standby mode
return signal input pin 3
Deep standby mode
return signal input pin 4
Deep standby mode
return signal input pin 5
HDMI-CEC/Remote
CEC0_0
CEC/ Remote
50
45
K8
35
K8
107
92
B5
72
A6
65
55
H10
45
H10
24
19
G3
14
H1
107
92
B5
72
A6
65
55
H10
45
H10
24
19
G3
14
H1
107
92
B5
72
A6
63
53
J10
43
J10
88
73
C11
59
C11
116
96
C4
76
C4
14
9
E1
9
E2
102
87
D7
67
C8
48
43
H6
33
K7
Control Reception ch.0
Control
CEC0_1
input/output pin
103
88
A6
68
C7
Reception
CEC1_0
HDMI-CEC/Remote
116
96
C4
76
C4
8
8
D5
8
E1
Control Reception ch.1
CEC1_1
Document Number: 002-05646 Rev.*A
input/output pin
Page 58 of 145
MB9A150RB Series
Pin function
Pin name
Pin No
Function description
LQFP-120
Reset
LQFP-100
BGA-112
LQFP-80
BGA-96
External Reset Input pin.
INITX
A reset is valid when
43
38
K4
28
K4
57
47
L8
37
L8
56
46
K9
36
K9
B1
INITX=L.
Mode
Mode 0 pin.
During normal operation,
MD0=L must be input.
MD0
During serial
programming to Flash
memory, MD0=H must be
input.
Mode 1 pin.
During serial
MD1
programming to Flash
memory, MD1=L must be
input.
Power
GND
VCC
Power supply pin
1
1
B1
1
VCC
Power supply pin
31
26
J1
-
-
VCC
Power supply pin
40
35
K1
25
K1
VCC
Power supply pin
61
51
K11
41
K11
VCC
Power supply pin
91
76
A10
-
-
VCC
Power supply pin
117
97
A4
77
A4
VSS
GND pin
-
-
-
-
F1
VSS
GND pin
-
-
-
-
F2
VSS
GND pin
-
-
-
-
F3
VSS
GND pin
-
-
B2
-
B2
VSS
GND pin
30
25
L1
20
L1
VSS
GND pin
-
-
K2
-
K2
VSS
GND pin
-
-
J3
-
J3
VSS
GND pin
-
-
H4
-
-
VSS
GND pin
-
-
-
-
L6
VSS
GND pin
39
34
L4
24
L4
VSS
GND pin
60
50
L11
40
L11
VSS
GND pin
-
-
K10
-
K10
VSS
GND pin
-
-
J9
-
J9
VSS
GND pin
-
-
H8
-
-
VSS
GND pin
-
-
B10
-
B10
VSS
GND pin
-
-
C9
-
C9
VSS
GND pin
-
-
-
-
D11
VSS
GND pin
90
75
A11
-
A11
VSS
GND pin
-
-
D8
-
-
VSS
GND pin
-
-
-
-
A7
VSS
GND pin
-
-
D4
-
-
VSS
GND pin
-
-
C3
-
C3
VSS
GND pin
-
-
-
-
A5
VSS
GND pin
120
100
A1
80
A1
Document Number: 002-05646 Rev.*A
Page 59 of 145
MB9A150RB Series
Pin Function
Clock
Pin
Name
X0
X0A
X1
X1A
ADC Power
Pin No
Function Description
LQFP-120
Main clock (oscillation)
input pin
Sub clock (oscillation)
input pin
Main clock (oscillation)
I/O pin
Sub clock (oscillation) I/O
pin
LQFP-100
BGA-112
LQFP-80
BGA-96
58
48
L9
38
L9
41
36
L3
26
L3
59
49
L10
39
L10
42
37
K3
27
K3
CROUT_0
Built-in High-speed CR-
89
74
C10
60
C10
CROUT_1
osc clock output port
107
92
B5
72
A6
70
60
H11
50
H11
71
61
F11
51
F11
72
62
G11
52
G11
38
33
L2
23
L2
AVCC
A/D converter analog
power supply pin
A/D converter analog
AVRH
reference voltage input
pin
ADC
AVSS
A/D converter GND pin
GND
C pin
C
Document Number: 002-05646 Rev.*A
Power stabilization
capacity pin
Page 60 of 145
MB9A150RB Series
5. I/O Circuit Type
Type
Circuit
Remarks
A
It is possible to select the main oscillation / GPIO
function
When the main oscillation is selected.
 Oscillation feedback resistor:
Pull-up
Approximately 1 MΩ
resistor
 With standby mode control
P-ch
P-ch
Digital output
X1
When the GPIO is selected.
 CMOS level output.
 CMOS level hysteresis input
 With pull-up resistor control
N-ch
Digital output
 With standby mode control
 Pull-up resistor: Approximately 33 kΩ
R
 IOH= -4 mA, IOL= 4 mA
Pull-up resistor
control
Digital input
Standby mode
control
Clock input
Feedback
resistor
Standby mode control
Digital input
Standby mode control
Pull-up
resistor
R
P-ch
P-ch
Digital output
X0
N-ch
Digital output
Pull-up resistor
control
Document Number: 002-05646 Rev.*A
Page 61 of 145
MB9A150RB Series
Type
Circuit
Remarks
 CMOS level hysteresis input
B
 Pull-up resistor: Approximately 33 kΩ
Pull-up resistor
Digital input
 Open drain output
C
Digital input
 CMOS level hysteresis input
Digital output
N-ch
Document Number: 002-05646 Rev.*A
Page 62 of 145
MB9A150RB Series
Type
Circuit
Remarks
D
It is possible to select the sub oscillation / GPIO
function
Pull-up
When the sub oscillation is selected.
resistor
 Oscillation feedback resistor
: Approximately 5MΩ
P-ch
P-ch
Digital output
X1A
 With standby mode control
When the GPIO is selected.
 CMOS level output.
 CMOS level hysteresis input
N-ch
Digital output
 With pull-up resistor control
 With standby mode control
R
 Pull-up resistor: Approximately 33 kΩ
Pull-up resistor control
 IOH= -4 mA, IOL= 4 mA
Digital input
Standby mode control
Clock input
Feedback
resistor
Standby mode control
Digital input
Standby mode control
Pull-up
resistor
R
P-ch
P-ch
Digital output
X0A
N-ch
Digital output
Pull-up resistor control
Document Number: 002-05646 Rev.*A
Page 63 of 145
MB9A150RB Series
Type
Circuit
Remarks
 CMOS level output
E
 CMOS level hysteresis input
 With pull-up resistor control
 With standby mode control
P-ch
P-ch
Digital output
 Pull-up resistor
: Approximately 33 kΩ
 IOH= -4 mA, IOL= 4 mA
 When this pin is used as an I2C pin, the
digital output
P-ch transistor is always off
N-ch
Digital output
R
Pull-up resistor control
Digital input
Standby mode control
 CMOS level output
F
 CMOS level hysteresis input
 With input control
 Analog input
P-ch
P-ch
Digital output
 With pull-up resistor control
 With standby mode control
 Pull-up resistor
: Approximately 33 kΩ
 IOH= -4 mA, IOL= 4 mA
N-ch
Digital output
 When this pin is used as an I2C pin, the
digital output
P-ch transistor is always off
R
Pull-up resistor control
Digital input
Standby mode control
Analog input
Input control
Document Number: 002-05646 Rev.*A
Page 64 of 145
MB9A150RB Series
Type
Circuit
Remarks
G
CMOS level hysteresis input
Mode input
 CMOS level output
H
 CMOS level hysteresis input
 5 V tolerant
 With pull-up resistor control
P-ch
P-ch
Digital output
 With standby mode control
 Pull-up resistor: Approximately 33 kΩ
 IOH= -4 mA, IOL= 4 mA
 Available to control PZR registers.
 When this pin is used as an I2C pin, the
N-ch
Digital output
digital output
P-ch transistor is always off
R
Pull-up resistor control
Digital input
Standby mode control
Document Number: 002-05646 Rev.*A
Page 65 of 145
MB9A150RB Series
6. Handling Precautions
Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions
in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be
observed to minimize the chance of failure and to obtain higher reliability from your Spansion semiconductor devices.
6.1
Precautions for Product Design
This section describes precautions when designing electronic equipment using semiconductor devices.
 Absolute Maximum Ratings
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of
certain established limits, called absolute maximum ratings. Do not exceed these ratings.
 Recommended Operating Conditions
Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical
characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may
adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users
considering application outside the listed conditions are advised to contact their sales representative beforehand.
 Processing and Protection of Pins
These precautions must be followed when handling the pins which connect semiconductor devices to power supply and
input/output functions.
1.
Preventing Over-Voltage and Over-Current Conditions
Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device,
and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at
the design stage.
2.
Protection of Output Pins
Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows.
Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.
3.
Handling of Unused Input Pins
Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be
connected through an appropriate resistance to a power supply pin or ground pin.
 Latch-up
Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to
abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current
levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.
CAUTION:
The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from
high heat, smoke or flame. To prevent this from happening, do the following:
1.
2.
Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to
abnormal noise, surge levels, etc.
Be sure that abnormal current flows do not occur during the power-on sequence.
Document Number: 002-05646 Rev.*A
Page 66 of 145
MB9A150RB Series
 Observance of Safety Regulations and Standards
Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic
interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.
 Fail-Safe Design
Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such
failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating conditions.
 Precautions Related to Usage of Devices
Spansion semiconductor devices are intended for use in standard applications (computers, office automation and other office
equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special applications where failure or abnormal operation may directly affect
human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as
aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.)
are requested to consult with sales representatives before such use. The company will not be responsible for damages arising
from such use without prior approval.
6.2
Precautions for Package Mounting
Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering,
you should only mount under Spansion's recommended conditions. For detailed information about mount conditions, contact
your sales representative.
 Lead Insertion Type
Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board,
or mounting by using a socket.
Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow
soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be
subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to
Spansion recommended mounting conditions.
If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact
deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be
verified before mounting.
 Surface Mount Type
Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily
deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open
connections caused by deformed pins, or shorting due to solder bridges.
You must use appropriate mounting techniques. Spansion Inc. recommends the solder reflow method, and has established a
ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Spansion ranking of
recommended conditions.
Document Number: 002-05646 Rev.*A
Page 67 of 145
MB9A150RB Series
 Lead-Free Packaging
CAUTION:
When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be
reduced under some conditions of use.
 Storage of Semiconductor Devices
Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause
absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to
peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:
1.
2.
3.
4.
Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in
locations where temperature changes are slight.
Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between
5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity.
When necessary, Spansion Inc. packages semiconductor devices in highly moisture-resistant aluminum laminate bags,
with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
Avoid storing packages where they are exposed to corrosive gases or high levels of dust.
 Baking
Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Spansion recommended
conditions for baking.
Condition: 125°C/24 h
 Static Electricity
Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following
precautions:
1.
2.
3.
4.
5.
Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may
be needed to remove electricity.
Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level
of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock
loads is recommended.
Ground all fixtures and instruments, or protect with anti-static measures.
Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.
Document Number: 002-05646 Rev.*A
Page 68 of 145
MB9A150RB Series
6.3
Precautions for Use Environment
Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.
For reliable performance, do the following:
1.
Humidity
Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are
anticipated, consider anti-humidity processing.
2.
Discharge of Static Electricity
When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use
anti-static measures or processing to prevent discharges.
3.
Corrosive Gases, Dust, or Oil
Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you
use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
4.
Radiation, Including Cosmic Radiation
Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide
shielding as appropriate.
5.
Smoke, Flame
CAUTION:
Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to
smoke or burn, there is danger of the release of toxic gases.
Customers considering the use of Spansion products in other special environmental conditions should consult with sales
representatives.
Document Number: 002-05646 Rev.*A
Page 69 of 145
MB9A150RB Series
7. Handling Devices
7.1
Power Supply Pins
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order
to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or
ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the
rise in the ground level, and to conform to the total output current rating.
Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also
advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin
and GND pin, between AVCC pin and AVSS pin near this device.
7.2
Stabilizing Power Supply Voltage
A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the
recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage
fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed
10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs
when there is a momentary fluctuation on switching the power supply.
7.3
Crystal Oscillator Circuit
Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1,
X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.
It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by
ground plane as this is expected to produce stable operation.
Evaluate oscillation of your using crystal oscillator by your mount board.
7.4
Sub Crystal Oscillator
This series sub oscillator circuit is low gain to keep the low current consumption.
The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator
to stabilize the oscillation.
 Surface mount type
Size : More than 3.2 mm × 1.5 mm
Load capacitance : Approximately 6 pF to 7 pF
 Lead type
Load capacitance : Approximately 6 pF to 7 pF
Document Number: 002-05646 Rev.*A
Page 70 of 145
MB9A150RB Series
7.5
Using an external clock
When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0.
X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set
X0A/X1A to the external clock input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port.
Example of Using an External Clock
Device
X0(X0A)
Can be used as
general-purpose
I/O ports.
7.6
Set as
External clock
input
X1(PE3),
X1A (P47)
2
Handling when using Multi-function serial pin as I C pin
2
2
If it is using the multi-function serial pin as I C pins, P-ch transistor of digital output is always disabled. However, I C pins need to
2
keep the electrical characteristic like other pins and not to connect to the external I C bus system with power OFF.
7.7
C pin
This series contains the regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between the C pin and the
GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.
However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F
characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to
use by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about 4.7uF would be recommended
for this series.
C
Device
CS
VSS
GND
7.8
Mode pins (MD0)
Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistor stays
low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection
impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is
because of preventing the device erroneously switching to test mode due to noise.
Document Number: 002-05646 Rev.*A
Page 71 of 145
MB9A150RB Series
7.9
Notes on power-on
Turn power on/off in the following order or at the same time.
If not using the A/D converter, connect AVCC = VCC and AVSS = VSS.
Turning on : VCC →AVCC → AVRH
Turning off : AVRH → AVCC → VCC
7.10 Serial Communication
There is a possibility to receive wrong data due to the noise or other causes on the serial communication.
Therefore, design a printed circuit board so as to avoid noise.
Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the
end. If an error is detected, retransmit the data.
7.11 Differences in features among the products with different memory sizes and between Flash memory
products and MASK products
The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics
among the products with different memory sizes and between Flash memory products and MASK products are different because
chip layout and memory structures are different.
If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.
7.12 Pull-Up function of 5 V tolerant I/O
Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O.
Document Number: 002-05646 Rev.*A
Page 72 of 145
MB9A150RB Series
8. Block Diagram
TRSTX,TCK,
TDI,TMS
TDO
SWJ-DP
ETM*
TRACEDx,
TRACECLK
TPIU*
ROM
Table
SRAM0
16/24/32 Kbyte
D
NVIC
Sys
AHB-APB Bridge:
APB0(Max 40 MHz)
Dual-Timer
WatchDog Timer
(Software)
Clock Reset
Generator
INITX
WatchDog Timer
(Hardware)
SRAM1
16/24/32 Kbyte
Multi-layer AHB (Max 40 MHz)
Cortex-M3 Core I
@40 MHz(Max)
Flash I/F
Security
On-Chip Flash
256+32 Kbyte/
384+32 Kbyte/
512+32 Kbyte
DMAC
8ch.
CSV
X0
X1
X0A
X1A
CROUT
AVCC,
AVSS,
AVRH
Main
Osc
Sub
Osc
Source Clock
PLL
CR
4 MHz
AHB-AHB
Bridge
CLK
CR
100 kHz
MADx
External Bus I/F
12-bit A/D Converter
Unit 0
ANxx
Unit 1
Power-On
Reset
ADTGx
LVD Ctrl
TIOAx
TIOBx
MADATAx
Base Timer
16-bit 16ch./
32-bit 8ch.
IRQ-Monitor
MCSXx,MDQMx,
MOEX,MWEX,
MALE,MRDY,
MNALE,MNCLE,
MNWEX,MNREX,
MCLKOUT
LVD
Regulator
C
QPRC
2ch.
A/D Activation Compare
2ch.
IC0x
FRCK0
16-bit Input Capture
4ch.
16-bit Free-run Timer
3ch.
16-bit Output Compare
6ch.
AHB-APB Bridge : APB2 (Max 40 MHz)
AINx
BINx
ZINx
AHB-APB Bridge : APB1 (Max 40 MHz)
CRC Accelerator
Watch Counter
Deep Standby Ctrl
WKUPx
HDMI-CEC/
Remote Reciver Control
CEC0,
CEC1
Real-Time Clock
RTCCO,
SUBOUT
External Interrupt
Controller
24-pin + NMI
INTx
NMIX
MODE-Ctrl
MD0,
MD1
DTTI0X
RTO0x
P0x,
P1x,
Waveform Generator
3ch.
GPIO
PIN-Function-Ctrl
.
.
.
PEx
16-bit PPG
3ch.
IGTRG
Multi-function Timer × 1
Multi-Function Serial I/F
16ch.
HW flow control(ch.4)
SCKx
SINx
SOTx
CTS4
RTS4
*:For the MB9AF154MB, MB9AF155MB, and MB9AF156MB, ETM is not available.
9.
Memory Size
See Memory size in Product Lineup to confirm the memory size.
Document Number: 002-05646 Rev.*A
Page 73 of 145
MB9A150RB Series
10. Memory Map
10.1 Memory Map (1)
Peripherals Area
0x41FF_FFFF
Reserved
0xFFFF_FFFF
Reserved
0xE010_0000
0xE000_0000
Cortex-M3 Private
Peripherals
0x4006_1000
0x4006_0000
0x4004_0000
0x4003_F000
Reserved
0x4003_C000
0x4003_B000
0x4003_A000
0x7000_0000
0x6000_0000
0x4003_9000
External Device
Area
0x4003_8000
0x4003_6000
Reserved
0x4400_0000
0x4200_0000
0x4000_0000
32Mbytes
Bit band alias
Peripherals
0x4003_5000
0x2400_0000
0x2200_0000
0x4003_2000
0x4003_1000
0x4002_F000
0x4002_E000
32Mbytes
Bit band alias
0x4002_8000
0x4002_7000
Reserved
0x2008_0000
0x2000_0000
0x1FF8_0000
0x0020_8000
0x0020_0000
See "Memory Map (2)"
for the memory size
details.
0x0010_4000
0x0010_0000
0x4002_6000
0x4002_5000
SRAM1
SRAM0
Reserved
Flash(Work area)
Reserved
Security/CR Trim
0x4002_4000
0x4002_0000
0x4001_3000
0x4001_2000
0x4001_1000
0x4001_0000
0x4000_1000
0x4000_0000
Document Number: 002-05646 Rev.*A
Reserved
LVD/DS mode
Reserved
Int-Req.Read
EXTI
Reserved
CR Trim
Reserved
A/DC
QPRC
Base Timer
PPG
Reserved
0x4001_5000
0x0000_0000
EXT-bus I/F
Reserved
RTC
Watch Counter
CRC
MFS
0x4002_1000
0x4001_6000
Flash(Main area)
Reserved
HDMI-CEC/
0x4003_4000 Remote Control Receiver
GPIO
0x4003_3000
0x4003_0000
Reserved
DMAC
MFT Unit0
Reserved
Dual Timer
Reserved
SW WDT
HW WDT
Clock/Reset
Reserved
Flash I/F
Page 74 of 145
MB9A150RB Series
10.2 Memory Map (2)
MB9AF156MB/NB/RB
0x2008_0000
MB9AF155MB/NB/RB
0x2008_0000
Reserved
MB9AF154MB/NB/RB
0x2008_0000
Reserved
Reserved
0x2000_8000
0x2000_6000
SRAM1
32 Kbytes
0x2000_4000
SRAM1
24 Kbytes
0x2000_0000
0x2000_0000
SRAM0
24 Kbytes
SRAM0
32 Kbytes
0x2000_0000
SRAM1
16 Kbytes
0x1FFF_C000
SRAM0
16 Kbytes
0x1FFF_A000
0x1FFF_8000
0x0020_0000
Reserved
0x0010_0000
0x0020_8000
0x0020_0000
Reserved
0x0010_4000
0x0010_2000
SA7(8KB)
SA6(8KB)
SA5(8KB)
SA4(8KB)
Reserved
0x0010_4000
CR trimming
Security
0x0010_2000
0x0010_0000
SA7(8KB)
SA6(8KB)
SA5(8KB)
SA4(8KB)
Flash(Work area)
32 Kbytes
0x0020_8000
Flash(Work area)
32 Kbytes
0x0020_0000
SA7(8KB)
SA6(8KB)
SA5(8KB)
SA4(8KB)
Flash(Work area)
32 Kbytes
0x0020_8000
Reserved
Reserved
Reserved
0x0010_4000
CR trimming
Security
0x0010_2000
0x0010_0000
CR trimming
Security
Reserved
Reserved
0x0008_0000
Reserved
SA15(64KB)
SA14(64KB)
0x0006_0000
SA13(64KB)
0x0000_0000
0x0004_0000
SA11(64KB)
SA10(64KB)
SA9(64KB)
SA9(64KB)
SA8(48KB)
SA8(48KB)
SA3(8KB)
SA2(8KB)
0x0000_0000
SA3(8KB)
SA2(8KB)
SA11(64KB)
SA10(64KB)
SA9(64KB)
SA8(48KB)
0x0000_0000
Flash(Main area)
256 Kbytes
SA10(64KB)
SA12(64KB)
Flash(Main area)
384 Kbytes
SA11(64KB)
Flash(Main area)
512 Kbytes
SA12(64KB)
SA13(64KB)
SA3(8KB)
SA2(8KB)
For more information about Flash (Main area)/Flash (Work area),
see MB9AB40N/A40N/340N/140N/150R, MB9B520M/320M/120M Series Flash Programming Manual.
Document Number: 002-05646 Rev.*A
Page 75 of 145
MB9A150RB Series
10.3 Peripheral Address Map
Start address
End address
0x4000_0000
0x4000_0FFF
Bus
Peripherals
Flash memory I/F register
AHB
0x4000_1000
0x4000_FFFF
Reserved
0x4001_0000
0x4001_0FFF
Clock/Reset Control
0x4001_1000
0x4001_1FFF
Hardware Watchdog timer
0x4001_2000
0x4001_2FFF
Software Watchdog timer
APB0
0x4001_3000
0x4001_4FFF
Reserved
0x4001_5000
0x4001_5FFF
Dual Timer
0x4001_6000
0x4001_FFFF
Reserved
0x4002_0000
0x4002_0FFF
Multi-function timer unit0
0x4002_1000
0x4002_3FFF
Reserved
0x4002_4000
0x4002_4FFF
PPG
0x4002_5000
0x4002_5FFF
Base Timer
0x4002_6000
0x4002_6FFF
0x4002_7000
0x4002_7FFF
A/D Converter
0x4002_8000
0x4002_DFFF
Reserved
0x4002_E000
0x4002_EFFF
Built-in CR trimming
0x4002_F000
0x4002_FFFF
Reserved
0x4003_0000
0x4003_0FFF
External Interrupt
0x4003_1000
0x4003_1FFF
Interrupt Source Check Register
0x4003_2000
0x4003_2FFF
Reserved
0x4003_3000
0x4003_3FFF
GPIO
0x4003_4000
0x4003_4FFF
HDMI-CEC/Remote control Reception
0x4003_5000
0x4003_57FF
Low-Voltage Detector
0x4003_5800
0x4003_5FFF
APB1
Quadrature Position/Revolution Counter
Deep standby mode Controller
APB2
0x4003_6000
0x4003_7FFF
Reserved
0x4003_8000
0x4003_8FFF
Multi-function serial
0x4003_9000
0x4003_9FFF
CRC
0x4003_A000
0x4003_AFFF
Watch Counter
0x4003_B000
0x4003_BFFF
Real-time clock
0x4003_C000
0x4003_EFFF
Reserved
0x4003_F000
0x4003_FFFF
External bus interface
0x4004_0000
0x4005_FFFF
Reserved
0x4006_0000
0x4006_0FFF
0x4006_1000
0x41FF_FFFF
Document Number: 002-05646 Rev.*A
AHB
DMAC register
Reserved
Page 76 of 145
MB9A150RB Series
11. Pin Status in Each CPU State
The terms used for pin status have the following meanings.
 INITX=0
This is the period when the INITX pin is the L level.
 INITX=1
This is the period when the INITX pin is the H level.
 SPL=0
This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0.
 SPL=1
This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1.
 Input enabled
Indicates that the input function can be used.
 Internal input fixed at 0
This is the status that the input function cannot be used. Internal input is fixed at L.
 Hi-Z
Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.
 Setting disabled
Indicates that the setting is disabled.
 Maintain previous state
Maintains the state that was immediately prior to entering the current mode.
If a built-in peripheral function is operating, the output follows the peripheral function.
If the pin is being used as a port, that output is maintained.
 Analog input is enabled
Indicates that the analog input is enabled.
 Trace output
Indicates that the trace function can be used.
 GPIO selected
In Deep standby mode, pins switch to the general-purpose I/O port.
Document Number: 002-05646 Rev.*A
Page 77 of 145
MB9A150RB Series
11.1 List of Pin Status
Pin status type
Power-on
Function
group
reset or low-
INITX
voltage
input
detection
state
state
Device
internal
reset
state
Power
supply
Return
Run
mode or
Timer mode,
Sleep
RTC mode, or
mode
Stop mode state
Deep standby Rtc
from
mode or Deep
Deep
standby Stop mode
standby
state
mode
state
state
Power
Power supply stable
unstable
supply
Power
Power supply stable
Power supply stable
stable
-
INITX = 0
INITX = 1
INITX = 1
-
-
-
-
supply
stable
INITX = 1
SPL = 0
SPL = 1
INITX = 1
SPL = 0
INITX = 1
SPL = 1
-
GPIO
GPIO
Setting
Setting
Setting
selected
disabled
disabled
disabled
Maintain
Maintain
previous
previous
state
state
Hi-Z /
selected
Internal
input
fixed at 0
Internal
input
Hi-Z /
Internal
GPIO
input
selected
fixed at 0
fixed at 0
A
Main crystal
oscillator
input pin/
External
main clock
Input
Input
Input
Input
Input
Input
Input
Input
Input
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
Maintain
Maintain
previous
previous
state
state
input
selected
GPIO
Setting
Setting
Setting
selected
disabled
disabled
disabled
External
main clock
Setting
Setting
Setting
input
disabled
disabled
disabled
selected
B
Hi-Z /
Main crystal
Internal input
oscillator
fixed at 0/
output pin
or Input
enable
C
INITX
input pin
Hi-Z /
Internal
input
fixed at 0
Hi-Z /
GPIO
selected
Internal
input
fixed at 0
GPIO
input
selected
fixed at 0
Hi-Z /
Maintain
Maintain
previous
previous
state
state
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
previous
previous
previous
previous
previous
previous
state/
state/
state/
state/
state/
state/
Internal
input
fixed at 0
Maintain
Hi-Z /
Internal
previous
state
Maintain
Internal
previous
input
fixed at 0
state
Hi-Z /
Hi-Z /
When
When
When
When
When
When
Internal
Internal
oscillation
oscillatio
oscillatio
oscillatio
oscillatio
oscillatio
input
input
stops[1],
n stops[1],
n stops[1],
n stops[1],
n stops[1],
n stops[1],
fixed at 0
fixed at 0
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
Internal
input fixed
input
input
input
input
input
at 0
fixed at 0
fixed at 0
fixed at 0
fixed at 0
fixed at 0
Pull-up /
Pull-up /
Pull-up /
Pull-up /
Pull-up /
Pull-up /
Pull-up /
Pull-up /
Pull-up /
Input
Input
Input
Input
Input
Input
Input
Input
Input
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
Document Number: 002-05646 Rev.*A
Page 78 of 145
MB9A150RB Series
Pin status type
Power-on
Function
group
reset or low-
INITX
voltage
input
detection
state
state
Device
internal
reset
state
Power
supply
Timer mode,
Sleep
RTC mode, or
mode
Stop mode state
from
mode or Deep
Deep
standby Stop mode
standby
state
mode
state
supply
state
Power
Power supply stable
Power supply stable
supply
INITX = 1
INITX = 1
INITX = 1
stable
-
INITX = 0
INITX = 1
INITX = 1
-
-
-
-
stable
SPL = 0
SPL = 1
SPL = 0
SPL = 1
-
Mode
Input
Input
Input
Input
Input
Input
Input
Input
Input
input pin
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
Mode
Input
Input
Input
Input
Input
Input
Input
Input
Input
input pin
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
GPIO
Setting
Setting
Setting
Maintain
Maintain
Hi-Z /
selected
disabled
disabled
disabled
previous
previous
Input
state
state
enabled
Maintain
Maintain
previous
previous
state
state
E
F
mode or
Deep standby Rtc
Power
Power supply stable
unstable
D
Return
Run
GPIO
Setting
Setting
Setting
selected
disabled
disabled
disabled
Hi-Z /
Internal
input
fixed at 0
GPIO
selected
GPIO
selected
Internal
input
fixed at 0
Hi-Z /
GPIO
Input
selected
enabled
Hi-Z /
Internal
GPIO
input
selected
fixed at 0
Sub crystal
oscillator
input pin /
Input
Input
Input
Input
Input
Input
Input
Input
Input
External sub
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
enabled
clock input
selected
Document Number: 002-05646 Rev.*A
Page 79 of 145
MB9A150RB Series
Poweron reset
Pin status type
or lowvoltage
Function
group
detectio
INITX
input
state
Device
internal
reset
state
n state
Power
supply
Return
Run
mode or
Timer mode,
Deep standby Rtc mode
Sleep
RTC mode, or
or Deep standby Stop
mode
Stop mode state
mode state
state
Power supply stable
supply
INITX = 0
INITX = 1
INITX = 1
-
-
-
-
mode
Power
Power supply stable
Power supply stable
supply
INITX = 1
INITX = 1
INITX = 1
stable
-
standby
state
Power
unstable
from
Deep
stable
SPL = 0
SPL = 1
SPL = 0
SPL = 1
-
GPIO
GPIO
Setting
Setting
Setting
selected
disabled
disabled
disabled
Maintain
Maintain
previous
previous
state
state
Hi-Z /
selected
Internal
input fixed
at 0
Internal
input fixed
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
at 0
External
G
sub clock
Setting
Setting
Setting
input
disabled
disabled
disabled
selected
Maintain
Maintain
previous
previous
state
state
Hi-Z /
Internal
Sub
crystal
oscillator
input
fixed at
0/
output pin
or Input
Hi-Z /
Hi-Z /
Internal
Internal
input
input
fixed at 0
fixed at 0
Maintain
previous
state
enable
NMIX
Setting
Setting
Setting
selected
disabled
disabled
disabled
Resource
H
other than
above
selected
Hi-Z
Hi-Z /
Hi-Z /
Input
Input
enabled
enabled
GPIO
Hi-Z /
Internal
input fixed
at 0
Maintain
previous
state
Maintain
Maintain
Maintain
previous
previous
previous
state/
state/
state/When
When
When
oscillation
oscillation
oscillation
stops[2], Hi-
stops[2],
stops[2],
Z / Internal
Hi-Z /
Hi-Z/
input fixed
Internal
Internal
at 0
input fixed
input fixed
at 0
at 0
Hi-Z/
Internal
input fixed
at 0
Maintain
previous
state/When
oscillation
stops[2],
Hi-Z/
Internal
input fixed
at 0
Maintain
previous
state
Maintain
previous
state/
When
oscillation
stops[2],
Hi-Z/
Internal
input fixed
at 0
Maintain
previous
state
Maintain
Maintain
previous
previous
Hi-Z /
input
state
state
Internal
enabled
WKUP
Hi-Z /
WKUP
GPIO
input
selected
enabled
input fixed
at 0
selected
Document Number: 002-05646 Rev.*A
Page 80 of 145
MB9A150RB Series
Poweron reset
INITX
Pin status type
or low-
internal
input
voltage
Function
group
Device
detectio
mode or
reset
state
state
Power
selected
I
Power supply stable
GPIO
Sleep
RTC mode, or
or Deep standby Stop
mode
Stop mode state
mode state
supply
from
Deep
standby
mode
state
Power
Power supply stable
Power supply stable
supply
INITX = 1
INITX = 1
INITX = 1
stable
stable
-
INITX = 0
INITX = 1
INITX = 1
-
-
-
-
Pull-up /
Pull-up /
Maintain
Maintain
Maintain
Maintain
Input
Input
previous
previous
previous
previous
enabled
enabled
state
state
state
state
Hi-Z
Resource
selected
Deep standby Rtc mode
Power
unstable
JTAG
Timer mode,
state
n state
supply
Return
Run
Setting
Setting
Setting
disabled
disabled
disabled
SPL = 0
Maintain
Maintain
previous
previous
state
state
SPL = 1
Hi-Z /
Internal
input fixed
at 0
selected
SPL = 0
SPL = 1
-
GPIO
selected
Internal
input fixed
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
at 0
Resource
GPIO
selected
J
Hi-Z
GPIO
Hi-Z /
Hi-Z /
Maintain
Maintain
Input
Input
previous
previous
enabled
enabled
state
state
Hi-Z /
Internal
input fixed
at 0
Internal
input fixed
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
at 0
selected
External
interrupt
Setting
Setting
Setting
enabled
disabled
disabled
disabled
Maintain
previous
state
selected
GPIO
Resource
K
selected
other than
Maintain
Maintain
selected
above
previous
previous
Internal
state
state
selected
Hi-Z
Hi-Z /
input fixed
Internal
at 0
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
Hi-Z /
Hi-Z /
Input
Input
enabled
enabled
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
Internal
Internal
input
input
input
input fixed
input fixed
input fixed
input fixed
fixed at 0
fixed at 0
fixed at 0
at 0 /
at 0 /
at 0 /
at "0" /
/
/
/
Analog
Analog
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input fixed
at 0
GPIO
selected
Analog
L
input
selected
Hi-Z
Document Number: 002-05646 Rev.*A
Hi-Z /
Internal
input fixed
at 0 /
Analog
Page 81 of 145
MB9A150RB Series
Poweron reset
INITX
Pin status type
or low-
internal
input
voltage
Function
group
Device
detectio
mode or
reset
state
state
Power
Deep standby Rtc mode
Sleep
RTC mode, or
or Deep standby Stop
mode
Stop mode state
mode state
Power supply stable
supply
-
INITX = 1
-
-
-
input
input
enabled
enabled
enabled
mode
Power supply stable
Power supply stable
supply
INITX = 1
INITX = 1
INITX = 1
stable
INITX = 1
input
standby
Power
stable
INITX = 0
from
Deep
state
Power
unstable
-
Timer mode,
state
n state
supply
Return
Run
SPL = 0
enabled
SPL = 1
enabled
SPL = 0
enabled
SPL = 1
enabled
input
enabled
Resource
GPIO
other than
above
Setting
Setting
Setting
selected
disabled
disabled
disabled
Maintain
Maintain
previous
previous
state
state
GPIO
Hi-Z /
selected
Internal
input fixed
at 0
Internal
input fixed
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
at 0
selected
Analog
input
Hi-Z
selected
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
input
input
input
fixed at 0
fixed at 0
fixed at 0
/
/
/
Analog
Analog
Analog
input
input
input
enabled
enabled
enabled
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
input fixed
input fixed
input fixed
input fixed
input fixed
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input
enabled
enabled
enabled
enabled
enabled
External
M
Hi-Z /
Maintain
interrupt
previous
enabled
state
selected
Resource
Setting
Setting
Setting
other than
disabled
disabled
disabled
above
GPIO
Maintain
Maintain
selected
previous
previous
Internal
state
state
Hi-Z /
Internal
selected
input fixed
GPIO
at 0
input fixed
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
at 0
selected
Analog
N
input
selected
Hi-Z
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
Internal
input
input
input
input fixed
input fixed
input fixed
fixed at 0
fixed at 0
fixed at 0
at 0 /
at 0
at 0 /
/Analog
/Analog
/Analog
Analog
/Analog
Analog
input
input
input
input
input
input
enabled
enabled
enabled
enabled
enabled
enabled
Document Number: 002-05646 Rev.*A
Hi-Z /
Internal
input fixed
at 0 /Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0 /
Analog
input
enabled
Page 82 of 145
MB9A150RB Series
Poweron reset
INITX
Pin status type
or low-
internal
input
voltage
Function
group
Device
detectio
mode or
reset
state
state
Timer mode,
Deep standby Rtc mode
Sleep
RTC mode, or
or Deep standby Stop
mode
Stop mode state
mode state
state
n state
Power
supply
Return
Run
Power supply stable
supply
INITX = 0
INITX = 1
INITX = 1
-
-
-
-
mode
Power
Power supply stable
Power supply stable
supply
INITX = 1
INITX = 1
INITX = 1
stable
-
standby
state
Power
unstable
from
Deep
stable
SPL = 0
SPL = 1
Trace
Trace
selected
output
SPL = 0
SPL = 1
-
GPIO
Resource
other than
Setting
Setting
Setting
above
disabled
disabled
disabled
selected
Maintain
Maintain
previous
previous
state
state
selected
Hi-Z /
Internal
input fixed
Internal
input fixed
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
at 0
at 0
GPIO
selected
Analog
input
Hi-Z
selected
O
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
input
input
input
fixed at 0
fixed at 0
fixed at 0
/Analog
/Analog
/Analog
input
input
input
enabled
enabled
enabled
Hi-Z /
Internal
input fixed
at 0 /Analog
input
enabled
Hi-Z /
Hi-Z /
Internal
Internal
input fixed
input fixed
at 0
at 0
/Analog
/Analog
input
input
enabled
enabled
Trace
Trace
selected
output
External
Hi-Z /
Internal
input fixed
at 0 /Analog
input
enabled
Hi-Z /
Internal
input fixed
at 0
/Analog
input
enabled
Maintain
interrupt
enabled
selected
Setting
Setting
Setting
Resource
disabled
disabled
disabled
previous
GPIO
state
selected
Maintain
Maintain
previous
previous
Internal
state
state
input fixed
other than
Hi-Z /
above
Internal
selected
input fixed
GPIO
at 0
at 0
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
selected
Analog
P
input
selected
Hi-Z
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
input
input
input
fixed at 0
fixed at 0
fixed at 0
/
/
/
Analog
Analog
Analog
input
input
input
enabled
enabled
enabled
Document Number: 002-05646 Rev.*A
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Hi-Z /
Internal
Internal
Internal
Internal
Internal
input fixed
input fixed
input fixed
input fixed
input fixed
at 0 /
at 0 /
at 0 /
at 0 /
at 0 /
Analog
Analog
Analog
Analog
Analog
input
input
input
input
input
enabled
enabled
enabled
enabled
enabled
Page 83 of 145
MB9A150RB Series
Poweron reset
Pin status type
or lowvoltage
Function
group
detectio
INITX
input
state
Device
internal
reset
state
n state
Power
supply
Return
Run
mode or
Timer mode,
Deep standby Rtc mode
Sleep
RTC mode, or
or Deep standby Stop
mode
Stop mode state
mode state
state
Power supply stable
supply
INITX = 0
INITX = 1
INITX = 1
-
-
-
-
mode
Power
Power supply stable
Power supply stable
supply
INITX = 1
INITX = 1
INITX = 1
stable
-
standby
state
Power
unstable
from
Deep
stable
SPL = 0
SPL = 1
SPL = 0
WKUP
WKUP
input
enabled
Maintain
enabled
previous
External
SPL = 1
-
Hi-Z /
WKUP
input
enabled
state
interrupt
enabled
Setting
Setting
Setting
selected
disabled
disabled
disabled
Resource
Maintain
Maintain
previous
previous
GPIO
state
state
selected
other than
Hi-Z /
above
Internal
selected
input fixed
GPIO
at 0
Internal
input fixed
at 0
GPIO
Hi-Z /
selected
Internal
input fixed
at 0
selected
CEC
Setting
Setting
Setting
enabled
disabled
disabled
disabled
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
previous
previous
previous
previous
previous
previous
state
state
state
state
state
state
WKUP
WKUP
input
enabled
External
Q
Setting
Setting
Setting
disabled
disabled
disabled
interrupt
enabled
selected
Maintain
selected
Hi-Z /
Hi-Z /
Input
Input
enabled
enabled
Setting
Setting
Setting
disabled
disabled
disabled
Hi-Z
GPIO
input
enabled
state
Maintain
Maintain
previous
previous
GPIO
state
state
selected
Internal
other than
WKUP
previous
Resource
above
enabled
Hi-Z /
Hi-Z /
Internal
input fixed
GPIO
Hi-Z /
selected
Internal
input fixed
at 0
at 0
input fixed
at 0
selected
R
CEC
enabled
Document Number: 002-05646 Rev.*A
Maintain
Maintain
Maintain
Maintain
Maintain
Maintain
previous
previous
previous
previous
previous
previous
state
state
state
state
state
state
Page 84 of 145
MB9A150RB Series
Poweron reset
Pin status type
or lowvoltage
Function
group
detectio
INITX
input
state
Device
internal
reset
state
n state
Power
supply
Return
Run
mode or
Timer mode,
Deep standby Rtc mode
Sleep
RTC mode, or
or Deep standby Stop
mode
Stop mode state
mode state
state
Power supply stable
supply
INITX = 0
INITX = 1
INITX = 1
-
-
-
-
Power supply stable
Power supply stable
supply
INITX = 1
INITX = 1
INITX = 1
stable
SPL = 0
External
interrupt
Setting
Setting
Setting
enabled
disabled
disabled
disabled
other than
above
selected
Hi-Z
Hi-Z /
Hi-Z /
Input
Input
enabled
enabled
SPL = 1
SPL = 0
SPL = 1
-
Maintain
previous
state
selected
Resource
mode
Power
stable
-
standby
state
Power
unstable
from
Deep
GPIO
Maintain
Maintain
selected
previous
previous
Internal
state
state
Hi-Z /
Internal
input fixed
at 0
Hi-Z /
Internal
GPIO
input fixed
selected
at 0
input fixed
at 0
GPIO
selected
WKUP
WKUP
input
enabled
External
Setting
Setting
Setting
disabled
disabled
disabled
Maintain
enabled
Hi-Z /
WKUP
input
enabled
previous
state
interrupt
enabled
S
selected
Maintain
Maintain
previous
previous
GPIO
state
state
selected
GPIO
Resource
Internal
other than
above
selected
Hi-Z
Hi-Z /
Hi-Z /
Input
Input
enabled
enabled
GPIO
Hi-Z /
Internal
input fixed
Hi-Z /
selected
Internal
input fixed
at 0
at 0
input fixed
at 0
selected
[1]. Oscillation is stopped at Sub Timer mode, Low-speed CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep
Standby Stop mode.
[2]. Oscillation is stopped at Stop mode and Deep Standby Stop mode.
Document Number: 002-05646 Rev.*A
Page 85 of 145
MB9A150RB Series
12. Electrical Characteristics
12.1 Absolute Maximum Ratings
Rating
Parameter
Symbol
Unit
Min
Max
VCC
VSS - 0.5
VSS + 4.6
V
AVCC
VSS - 0.5
VSS + 4.6
V
AVRH
VSS - 0.5
VSS + 4.6
V
VSS - 0.5
VCC + 0.5 (≤ 4.6 V)
V
VSS - 0.5
VSS + 6.5
V
VIA
VSS - 0.5
AVCC + 0.5 (≤ 4.6 V)
V
VO
VSS - 0.5
VCC + 0.5 (≤ 4.6 V)
V
IOL
-
10
mA
IOLAV
-
4
mA
L level total maximum output current
∑IOL
-
100
mA
L level total average output current[6]
∑IOLAV
-
50
mA
IOH
-
- 10
mA
IOHAV
-
-4
mA
∑IOH
-
- 100
mA
∑IOHAV
-
- 50
mA
Power consumption
PD
-
300
mW
Storage temperature
TSTG
- 55
+ 150
°C
Power supply voltage[1], [2]
Analog power supply voltage
[1], [3]
Analog reference voltage[1], [3]
Input voltage[1]
Remarks
VI
[1]
Analog pin input voltage
[1]
Output voltage
L level maximum output current[4]
L level average output current
[5]
H level maximum output current
[4]
H level average output current[5]
H level total maximum output current
H level total average output current
[6]
5 V tolerant
[1]. These parameters are based on the condition that VSS = AVSS = 0.0 V.
[2]. VCC must not drop below VSS - 0.5 V.
[3]. Ensure that the voltage does not exceed VCC + 0.5 V, for example, when the power is turned on.
[4]. The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
[5]. The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100 ms period.
[6]. The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms.
WARNING:
Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or
temperature) in excess of absolute maximum ratings.Do not exceed any of these ratings.
Document Number: 002-05646 Rev.*A
Page 86 of 145
MB9A150RB Series
12.2 Recommended Operating Conditions
(VSS = AVSS = 0.0V)
Value
Parameter
Symbol
Conditions
Unit
Min
Max
Remarks
VCC
-
1.65[2]
3.6
V
Analog power supply voltage
AVCC
-
1.65
3.6
V
AVCC = VCC
2.7
AVCC
V
AVCC ≥ 2.7 V
Analog reference voltage
AVRH
AVCC
AVCC
V
AVCC < 2.7 V
Power supply voltage
Smoothing capacitor
CS
-
1
10
μF
Operating temperature
TA
-
- 40
+ 85
°C
For built-in
Regulator[1]
[1]. See C pin in Handling Devices for the connection of the smoothing capacitor.
[2]. In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and
low voltage detection function by built-in High-speed CR(including Main PLL is used) or built-in Low-speed CR is possible to operate only.
WARNING:
The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of
the device's electrical characteristics are warranted when the device is operated under these conditions.
Any use of semiconductor devices will be under their recommended operating condition.
Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device
failure. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If
you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.
Document Number: 002-05646 Rev.*A
Page 87 of 145
MB9A150RB Series
12.3 DC Characteristics
12.3.1 Current rating
(VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Value
Pin
name
Conditions
Typ
CPU: 40 MHz,
[3]
Max
[4]
Unit
Remarks
17.5
23.7
mA
[1] [5]
8
11
mA
[1] [5]
CPU/ Peripheral: 4 MHz[2]
1.9
3.1
mA
[1]
CPU/ Peripheral: 32 kHz
120
810
μA
[1] [6]
CPU/ Peripheral: 100 kHz
140
830
μA
[1]
Peripheral: 40 MHz
11
15
mA
[1] [5]
Peripheral: 4 MHz[2]
0.82
1.7
mA
[1]
Peripheral: 32 kHz
105
800
μA
[1] [6]
Peripheral: 100 kHz
125
810
μA
[1]
Peripheral: 40 MHz
PLL
CPU: 40 MHz,
Run mode
Peripheral: the clock
stops
,
,
NOP operation
ICC
High-speed
CR Run mode
Power
VCC
supply
current
Sub Run mode
Low-speed CR
Run mode
PLL Sleep mode
High-speed CR
Sleep mode
ICCS
Sub Sleep mode
Low-speed
CR Sleep mode
,
,
,
[1]. When all ports are fixed.
[2]. When setting it to 4 MHz by trimming.
[3]. TA=+25°C, VCC=3.6 V
[4]. TA=+85°C, VCC=3.6 V
[5]. When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)
[6]. When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
Document Number: 002-05646 Rev.*A
Page 88 of 145
MB9A150RB Series
Parameter
Symbol
Value
Pin
name
Conditions
Typ
TA = + 25°C,
Main
Timer mode
When LVD is off
TA = + 85°C,
When LVD is off
ICCT
TA = + 25°C,
Sub
When LVD is off
Timer mode
TA = + 85°C,
When LVD is off
TA = + 25°C,
ICCR
RTC mode
When LVD is off
TA = + 85°C,
When LVD is off
TA = + 25°C,
ICCH
Stop mode
When LVD is off
TA = + 85°C,
When LVD is off
[2]
Max
[2]
Unit
Remarks
2.0
2.7
mA
[1], [3]
-
3.2
mA
[1], [3]
15
45
μA
[1], [4}
-
440
μA
[1], [4}
13
40
μA
[1], [4]
-
380
μA
[1], [4]
11
38
μA
[1]
-
370
μA
[1]
2.0
12
μA
[1], [4],[5]
9.2
25
μA
[1], [4],[5]
125
μA
[1], [4],[5]
195
μA
[1], [4],[5]
1.4
10
μA
[1], [5]
8.6
23
μA
[1], [5]
120
μA
[1], [5]
190
μA
[1], [5]
TA = + 25°C,
When LVD is off,
When RAM is off
Power
supply
TA = + 25°C,
VCC
current
Deep
ICCRD
Standby
RTC mode
When LVD is off,
When RAM is on
TA = + 85°C,
When LVD is off,
When RAM is off
TA = + 85°C,
-
When LVD is off,
When RAM is on
TA = + 25°C,
When LVD is off,
When RAM is off
TA = + 25°C,
Deep
ICCHD
Standby
Stop mode
When LVD is off,
When RAM is on
TA = + 85°C,
When LVD is off,
When RAM is off
TA = + 85°C,
When LVD is off,
-
When RAM is on
[1]. When all ports are fixed.
[2]. VCC=3.6 V
[3]. When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)
[4]. When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)
[5]. RAM on/off setting is on-chip SRAM only.
Document Number: 002-05646 Rev.*A
Page 89 of 145
MB9A150RB Series
12.3.1.1 Low-Voltage Detection Current
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Pin
Symbol
name
Value
Conditions
Unit
At operation for reset
Low-voltage
detection circuit
(LVD) power
VCC = 3.6 V
ICCLVD
Remarks
Typ
Max
0.13
0.3
μA
At not detect
0.13
0.3
μA
At not detect
VCC
At operation for interrupt
supply current
VCC = 3.6 V
12.3.1.2 Flash Memory Current
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Flash memory
write/erase current
Pin
Symbol
ICCFLASH
name
VCC
Value
Conditions
At Write/Erase
Typ
Max
9.5
11.2
Unit
Remarks
mA
[1]
Unit
Remarks
[1]. The current at which to write or erase Flash memory, ICCFLASH is added to ICC.
12.3.1.3 A/D Converter Current
(VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to +85°C)
Parameter
Power supply
current
Pin
Symbol
ICCAD
name
Value
Conditions
Typ
Max
At 1unit operation
0.27
0.42
mA
At stop
0.03
10
μA
0.72
1.29
mA
0.02
2.6
μA
AVCC
At 1unit operation
Reference power
supply current
ICCAVRH
AVRH
AVRH=3.6 V
At stop
Document Number: 002-05646 Rev.*A
Page 90 of 145
MB9A150RB Series
12.3.2 Pin Characteristics
(VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)
Parameter
Value
Sym
bol
Pin name
Conditions
Unit
Min
CMOS
VCC ≥ 2.7 V
VCC × 0.8
VCC < 2.7 V
VCC × 0.7
VCC ≥ 2.7 V
VCC × 0.8
VCC < 2.7 V
VCC × 0.7
hysteresis
H level input
Voltage
(hysteresis
input pin,
VIHS
input)
input pin
CMOS
(hysteresis
input pin,
VILS
input)
5 V tolerant
-
VSS + 5.5
V
VCC × 0.2
VSS - 0.3
V
VCC × 0.3
VCC ≥ 2.7 V
VCC × 0.2
VSS - 0.3
V
-
VCC < 2.7 V
mA
VCC × 0.3
VCC - 0.5
4mA type
-
VCC
V
VSS
-
0.4
V
-5
-
+5
μA
-
-
+1.8
μA
33
66
VCC < 2.7 V, IOH = - 2
VCC -
mA
0.45
VCC ≥ 2.7 V, IOL = 4 mA
L level
output voltage
V
VCC < 2.7 V
VCC ≥ 2.7 V, IOH = - 4
H level
VOH
VCC + 0.3
Remarks
MD0, MD1
input pin
output voltage
-
VCC ≥ 2.7 V
hysteresis
Voltage
Max
MD0, MD1
5V tolerant
L level input
Typ
VOL
4mA type
VCC < 2.7 V, IOL = 2 mA
-
-
CEC0_0,
Input leak
current
IIL
CEC0_1,
VCC = AVCC = AVRH =
CEC1_0,
VSS = AVSS = 0.0 V
CEC1_1
Pull-up resistor
value
RPU
VCC ≥ 2.7 V
21
VCC < 2.7 V
-
-
134
-
-
5
15
kΩ
Pull-up pin
Other than
Input
capacitance
CIN
VCC, VSS,
pF
AVCC, AVSS,
AVRH
Document Number: 002-05646 Rev.*A
Page 91 of 145
MB9A150RB Series
12.4 AC Characteristics
12.4.1 Main Clock Input Characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin
name
Value
Conditions
Unit
Min
Max
VCC ≥ 2.7V
4
48
VCC < 2.7V
4
20
-
4
48
MHz
Input frequency
fCH
Remarks
When crystal oscillator is
connected
When using external
MHz
clock
X0,
Input clock cycle
Input clock pulse
width
tCYLH
-
X1
20.83
250
ns
clock
PWH/tCYLH,
When using external
-
45
55
%
PWL/tCYLH
Input clock rising
tCF,
time and falling time
tCR
When using external
clock
When using external
-
-
5
ns
clock
fCM
-
-
-
40
MHz
Master clock
fCC
-
-
-
40
MHz
Base clock (HCLK/FCLK)
fCP0
-
-
-
40
MHz
APB0 bus clock[2]
fCP1
-
-
-
40
MHz
APB1 bus clock[2]
fCP2
-
-
-
40
MHz
APB2 bus clock[2]
tCYCC
-
-
25
-
ns
Base clock (HCLK/FCLK)
Internal operating
tCYCP0
-
-
25
-
ns
APB0 bus clock[2]
clock[1] cycle time
tCYCP1
-
-
25
-
ns
APB1 bus clock[2]
tCYCP2
-
-
25
-
ns
APB2 bus clock[2]
Internal operating
clock[1] frequency
[1]. For more information about each internal operating clock, see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
[2]. For about each APB bus which each peripheral is connected to, see Block Diagram in this data sheet.
tCYLH
0.8 × Vcc
X0
0.8 × Vcc
0.2 × Vcc
PWL
PWH
tCF
Document Number: 002-05646 Rev.*A
0.8 × Vcc
0.2 × Vcc
tCR
Page 92 of 145
MB9A150RB Series
12.4.2 Sub Clock Input Characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Input frequency
Symbol
Pin
name
Value
Conditions
Unit
Min
Typ
-
-
32.768
-
kHz
-
32
-
100
kHz
-
10
-
31.25
μs
Input clock pulse
45
-
55
%
width
When crystal oscillator
is connected[1]
fCL
X0A,
Input clock cycle
Remarks
Max
tCYLL
X1A
PWH/tCYLL,
PWL/tCYLL
When using external
clock
When using external
clock
When using external
clock
[1]. For more information about crystal oscillator, see Sub Crystal Oscillator in Handling Devices.
tCYLL
0.8 × Vcc
0.8 × Vcc
X0A
0.2 × Vcc
PWH
Document Number: 002-05646 Rev.*A
0.8 × Vcc
0.2 × Vcc
PWL
Page 93 of 145
MB9A150RB Series
12.4.3 Built-in CR Oscillation Characteristics
12.4.3.1 Built-in High-speed CR
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Value
Symbo
l
Conditions
Unit
Min
TA = + 25°C,VCC ≥ 2.7V
TA = - 20°C to + 85°C,
VCC ≥ 2.7V
TA = - 40°C to + 85°C,
Clock frequency
fCRH
VCC ≥ 2.7V
TA = - 40°C to + 85°C
VCC < 2.7V
TA = - 40°C to + 85°C
stabilization time
tCRWT
Remarks
Max
3.94
4
4.06
3.92
4
4.08
3.88
4
4.12
When trimming[1]
MHz
TA = + 25°C, VCC < 2.7V
Frequency
Typ
-
3.9
4
4.1
3.66
4
4.20
2.8
4
5.2
-
-
30
When not trimming
μs
[2]
[1]. In the case of using the values in CR trimming area of Flash memory at shipment for frequency/temperature trimming.
[2]. This is the time to stabilize the frequency of High-speed CR clock after setting trimming value. This period is able to use High-speed CR clock
as source clock.
12.4.3.2 Built-in Low-speed CR
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Conditions
Unit
Min
Clock frequency
fCRL
-
Document Number: 002-05646 Rev.*A
50
Typ
100
Remarks
Max
150
kHz
Page 94 of 145
MB9A150RB Series
12.4.4 Operating Conditions of Main PLL
12.4.4.1 Operating Conditions of Main PLL (In the case of using main clock for input of Main PLL)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Unit
Min
Typ
Max
tLOCK
100
-
-
μs
PLL input clock frequency
fPLLI
4
-
16
MHz
PLL multiplication rate
-
5
-
37
multiplier
fPLLO
75
-
150
MHz
fCLKPLL
-
-
40
MHz
PLL oscillation stabilization wait time[1]
(LOCK UP time)
PLL macro oscillation clock frequency
[2]
Main PLL clock frequency
Remarks
[1]. Time from when the PLL starts operating until the oscillation stabilizes.
[2]. For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
12.4.4.2 Operating Conditions of Main PLL (In the case of using the built-in High-speed CR for input clock of Main PLL)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Unit
Min
Typ
PLL oscillation stabilization wait time[1]
tLOCK
100
-
-
μs
PLL input clock frequency
fPLLI
3.8
4
4.2
MHz
PLL multiplication rate
-
19
-
35
multiplier
PLL macro oscillation clock frequency
fPLLO
72
-
150
MHz
Main PLL clock frequency[2]
fCLKPLL
-
-
40
MHz
(LOCK UP time)
Remarks
Max
[1]. Time from when the PLL starts operating until the oscillation stabilizes.
[2]. For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.
Note:
 Make sure to input to the Main PLL source clock, the High-speed CR clock (CLKHC) that the frequency has been trimmed.
 When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account and prevent the
master clock from exceeding the maximum frequency.
Main PLL connection
Main PLL
Main clock (CLKMO)
K
High-speed CR clock
(CLKHC)
divider
PLLinput
PLL macro
clock
oscillation clock
Main
PLL
clock
M
(CLKPLL)
divider
N
divider
Document Number: 002-05646 Rev.*A
Page 95 of 145
MB9A150RB Series
12.4.5 Reset Input Characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Reset input time
tINITX
Value
Pin
name
Conditions
INITX
-
Unit
Min
Max
500
-
Remarks
ns
12.4.6 Power-on Reset Timing
(VCC= 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Power supply rising time
tVCCR
Power supply shut down time
tOFF
Pin
name
Value
Unit
Min
Max
0
-
ms
1
-
ms
1.34
16.09
ms
VCC
Remarks
Time until releasing
tPRT
Power-on reset
VCC_minimum
VDH_minimum
VCC
0.2V
0.2V
0.2V
tVCCR
tOFF
tPRT
Internal reset
CPU Operation
Reset active
Release
start
Glossary
 VCC_minimum
: Minimum VCC of recommended operating conditions
 VDH_minimum : Minimum detection voltage (when SVHR=00000) of Low-Voltage detection reset
See 6. Low-Voltage Detection Characteristics
Document Number: 002-05646 Rev.*A
Page 96 of 145
MB9A150RB Series
12.4.7 External Bus Timing
12.4.7.1 External bus clock output characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Output frequency
Pin name
Conditions
MCLKOUT[1]
tCYCLE
Unit
Min
Max
VCC ≥ 2.7 V
-
40
MHz
VCC < 2.7 V
-
20
MHz
The external bus clock (MCLKOUT) is a divided clock of HCLK. For more information about setting of clock divider,
see Chapter 12: External Bus Interface in FM3 Family Peripheral Manual..
When external bus clock is not output, this characteristic does not give any effect on external bus operation.
tCYCLE
0.8 × Vcc
0.8 × Vcc
MCLKOUT
0.8 × Vcc
0.2 × Vcc
0.2 × Vcc
PWL
PWH
12.4.7.2 External bus signal input/output characteristics
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Conditions
Value
Unit
0.8 × VCC
V
0.2 × VCC
V
VOH
0.8 × VCC
V
VOL
0.2 × VCC
V
VIH
Remarks
Signal input characteristics
VIL
Signal output characteristics
Input signal
VIH
VIL
VIH
VIL
Output signal
VOH
VOL
VOH
VOL
Document Number: 002-05646 Rev.*A
Page 97 of 145
MB9A150RB Series
12.4.7.3 Separate Bus Access Asynchronous SRAM Mode
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
MOEX Min pulse width
MCSX ↓ → Address output
delay time
Symbol
tOEW
tCSL – AV
MOEX ↑ → Address hold time tOEH - AX
MCSX ↓ →MOEX ↓ delay
time
Pin name
MOEX
VCC ≥ 2.7 V
VCC < 2.7 V
Unit
Min
Max
MCLK×n-3
-
MCSX[7:0],
VCC ≥ 2.7 V
-9
+9
MAD[24:0]
VCC < 2.7 V
-12
+12
MOEX,
VCC ≥ 2.7 V
MAD[24:0]
VCC < 2.7 V
MCLK×m+9
0
time
Data set up → MOEX ↑ time
VCC ≥ 2.7 V
MCLK×m-9
MCLK×m+9
VCC < 2.7 V
MCLK×m-12
MCLK×m+12
ns
MOEX,
VCC ≥ 2.7 V
tOEH - CSH
tCSL - RDQML
tDS - OE
MOEX ↑ →Data hold time
tDH - OE
MWEX Min pulse width
tWEW
MWEX ↑ → Address output
delay time
MCSX ↓ → MWEX ↓ delay
time
MWEX ↑ → MCSX ↑ delay
time
MCSX ↓→ MDQM ↓ delay
time
MCSX ↓→ Data output time
MWEX ↑ →
Data hold time
ns
MCLK×m+12
MCLK×m+9
0
VCC < 2.7 V
MCSX ↓ → MDQM ↓ delay
tWEH - AX
ns
MCLK×m+12
MCSX,
VCC ≥ 2.7 V
MCLK×m-9
MCLK×m+9
MDQM[1:0]
VCC < 2.7 V
MCLK×m-12
MCLK×m+12
MOEX,
VCC ≥ 2.7 V
20
-
MADATA[15:0]
VCC < 2.7 V
38
-
MOEX,
VCC ≥ 2.7 V
MADATA[15:0]
VCC < 2.7 V
0
-
ns
MCLK×n-3
-
ns
MWEX
ns
ns
VCC ≥ 2.7 V
VCC < 2.7 V
MWEX,
VCC ≥ 2.7 V
MAD[24:0]
VCC < 2.7 V
MCLK×m+9
0
ns
MCLK×m+12
VCC ≥ 2.7 V
MCLK×n-9
MCLK×n+9
MWEX,
VCC < 2.7 V
MCLK×n-12
MCLK×n+12
MCSX[7:0]
VCC ≥ 2.7 V
ns
tCSL - WEL
MCLK×m+9
0
tWEH - CSH
tCSL-DV
tWEH - DX
ns
MCLK×m+12
VCC < 2.7 V
tCSL-WDQML
ns
ns
tCSL - OEL
MCSX[7:0]
MOEX ↑ → MCSX ↑ time
Conditions
MCSX,
VCC ≥ 2.7 V
MCLK×n-9
MCLK×n+9
MDQM[1:0]
VCC < 2.7 V
MCLK×n-12
MCLK×n+12
MCSX,
VCC ≥ 2.7 V
MCLK-9
MCLK+9
MADATA[15:0]
VCC < 2.7 V
MCLK-12
MCLK+12
MWEX,
VCC ≥ 2.7 V
MADATA[15:0]
VCC < 2.7 V
ns
ns
MCLK×m+9
0
ns
MCLK×m+12
Note:
When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16).
Document Number: 002-05646 Rev.*A
Page 98 of 145
MB9A150RB Series
tCYCLE
MCLK
tWEH - CSH
tOEH - CSH
MCSX[7:0]
tCSL - AV
tOEH - AX
tCSL - AV
tWEH - AX
Address
MAD[24:0]
Address
tCSL - OEL
tOEW
MOEX
tCSL -WDQML
tCSL - RDQML
MDQM[1:0]
tCSL -WEL
tWEW
MWEX
MADATA[15:0]
tDS - OE tDH - OE
RD
tWEH -DX
Invalid
WD
tCSL -DV
Document Number: 002-05646 Rev.*A
Page 99 of 145
MB9A150RB Series
12.4.7.4 Separate Bus Access Synchronous SRAM Mode
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Pin name
Conditions
Unit
Min
MCLK,
Address delay time
tAV
VCC ≥ 2.7 V
9
1
MAD[24:0]
VCC < 2.7 V
9
1
MCLK,
VCC < 2.7 V
MCSX[7:0]
VCC ≥ 2.7 V
MCSX delay time
tCSH
9
1
9
1
MCLK,
VCC < 2.7 V
MOEX
VCC ≥ 2.7 V
MOEX delay time
tREH
9
1
VCC ≥ 2.7 V
19
MADATA[15:0]
VCC < 2.7 V
37
MCLK,
VCC ≥ 2.7 V
MADATA[15:0]
VCC < 2.7 V
0
VCC ≥ 2.7 V
MCLK,
VCC < 2.7 V
MWEX
VCC ≥ 2.7 V
tWEH
-
ns
ns
12
9
1
ns
12
VCC ≥ 2.7 V
tDQML
9
1
MCLK,
VCC < 2.7 V
MDQM[1:0]
VCC ≥ 2.7 V
MDQM[1:0] delay time
tDQMH
ns
12
9
1
VCC < 2.7 V
tOD
ns
9
VCC < 2.7 V
MCLK ↑ → Data hold time
-
1
MWEX delay time
tODS
ns
12
MCLK,
tWEL
MCLK ↑ → Data output time
ns
12
VCC < 2.7 V
tDH
ns
12
VCC ≥ 2.7 V
tREL
MCLK ↑ → Data hold time
ns
12
VCC < 2.7 V
tDS
ns
12
VCC ≥ 2.7 V
tCSL
Data set up →MCLK ↑ time
Max
MCLK,
ns
12
VCC ≥ 2.7 V
MCLK+18
MCLK+1
MADATA[15:0]
VCC < 2.7 V
MCLK,
VCC ≥ 2.7 V
ns
MCLK+24
18
1
MADATA[15:0]
VCC < 2.7 V
ns
24
Note:
When the external load capacitance CL = 30 pF.
Document Number: 002-05646 Rev.*A
Page 100 of 145
MB9A150RB Series
tCYCLE
MCLK
tCSH
tCSL
MCSX[7:0]
tAV
tAV
Address
Address
MAD[24:0]
tREL
tREH
tDQML
tDQMH
MOEX
tDQML
tDQMH
tWEL
tWEH
MDQM[1:0]
MWEX
MADATA[15:0]
tDS
tDH
RD
tOD
WD
Invalid
tODS
Document Number: 002-05646 Rev.*A
Page 101 of 145
MB9A150RB Series
12.4.7.5 Multiplexed Bus Access Asynchronous SRAM Mode
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Pin name
Conditions
Unit
Min
Multiplexed address
delay time
Multiplexed address
hold time
VCC ≥ 2.7 V
Max
+10
tALE-CHMADV
0
ns
MALE,
VCC < 2.7 V
+20
MADATA[15:0]
VCC ≥ 2.7 V
MCLK×n+0
MCLK×n+10
VCC < 2.7 V
MCLK×n+0
MCLK×n+20
tCHMADH
ns
Note:
When the external load capacitance CL = 30 pF (m = 0 to 15, n = 1 to 16).
tCYCLE
MCLK
MCSX[7:0]
MALE
Address
MAD [24:0]
Address
MOEX
MDQM [1:0]
MWEX
Address
RD
Address
WD
MADATA[15:0]
tALE - CHMADV
Document Number: 002-05646 Rev.*A
tALE - CHMADV tCHMADH
Page 102 of 145
MB9A150RB Series
12.4.7.6 Multiplexed Bus Access Synchronous SRAM Mode
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Pin name
Conditions
Unit
Min
VCC ≥ 2.7 V
tCHAL
Remarks
Max
9
ns
12
ns
9
ns
12
ns
1
tOD
ns
1
tOD
ns
1
VCC < 2.7 V
MCLK, ALE
MALE delay time
VCC ≥ 2.7 V
tCHAH
1
VCC < 2.7 V
VCC ≥ 2.7 V
MCLK ↑ → Multiplexed Address
tCHMADV
delay time
VCC < 2.7 V
MCLK, MADATA[15:0]
MCLK ↑ → Multiplexed Data output
time
VCC ≥ 2.7 V
tCHMADX
VCC < 2.7 V
Note:
When the external load capacitance CL = 30 pF.
tCYCLE
MCLK
MCSX[7:0]
MALE
tCHAH
tCHAL
MAD [24:0]
Address
Address
MOEX
MDQM [1:0]
MWEX
MADATA[15:0]
Address
tCHMADV
Document Number: 002-05646 Rev.*A
Address
RD
tCHMADV
WD
tCHMADX
Page 103 of 145
MB9A150RB Series
12.4.7.7 NAND Flash Memory Mode
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Pin name
Conditions
Unit
Min
Max
MCLK×n-3
-
VCC ≥ 2.7 V
MNREX Min pulse width
tNREW
MNREX
ns
VCC < 2.7 V
Data setup → MNREX↑time
MNREX↑→ Data hold time
MNALE↑→MNWEX delay time
MNALE↓→MNWEX delay time
MNCLE↑→MNWEX delay time
MNWEX↑→MNCLE delay time
tDS – NRE
tDH – NRE
tALEH - NWEL
tALEL - NWEL
tCLEH - NWEL
tNWEH - CLEL
MNREX,
VCC ≥ 2.7 V
20
-
MADATA[15:0]
VCC < 2.7 V
38
-
MNREX,
VCC ≥ 2.7 V
0
-
MADATA[15:0]
VCC < 2.7 V
MNALE,
VCC ≥ 2.7 V
MCLK×m-9
MCLK×m+9
MNWEX
VCC < 2.7 V
MCLK×m-12
MCLK×m+12
MNALE,
VCC ≥ 2.7 V
MCLK×m-9
MCLK×m+9
MNWEX
VCC < 2.7 V
MCLK×m-12
MCLK×m+12
MNCLE,
VCC ≥ 2.7 V
MCLK×m-9
MCLK×m+9
MNWEX
VCC < 2.7 V
MCLK×m-12
MCLK×m+12
MNCLE,
VCC ≥ 2.7 V
ns
ns
ns
ns
ns
MCLK×m+9
0
MNWEX
VCC < 2.7 V
ns
MCLK×m+12
VCC ≥ 2.7 V
MNWEX Min pulse width
tNWEW
MNWEX
MCLK×n-3
-
ns
VCC < 2.7 V
MNWEX↓→Data output time
MNWEX↑→Data hold time
tNWEL – DV
tNWEH – DX
MNWEX,
VCC ≥ 2.7 V
-9
+9
MADATA[15:0]
VCC < 2.7 V
-12
+12
MNWEX,
VCC ≥ 2.7 V
ns
MCLK×m+9
0
MADATA[15:0]
VCC < 2.7 V
ns
MCLK×m+12
Note:
When the external load capacitance CL = 30 pF (m=0 to 15, n=1 to 16).
Document Number: 002-05646 Rev.*A
Page 104 of 145
MB9A150RB Series
Figure 1. NAND Flash Memory Read
tCYCLE
MCLK
VOH
VOH
tNREW
MNREX
VOH
VOL
tDS-NRE
VIH
MADATA[15:0]
VIL
tDH-NRE
VIH
Read
VIL
Figure 2. NAND Flash Memory Address Write
tCYCLE
MCLK
VOH
VOH
tALEH-NWEL
MNALE
VOH
MNCLE
tNWEW
MNWEX
VOL
VOH
tNWEL-DV
MADATA[15:0]
Document Number: 002-05646 Rev.*A
VOH
VOL
tNWEH-DX
Write
VOH
VOL
Page 105 of 145
MB9A150RB Series
Figure 3. NAND Flash Memory Command Write
tCYCLE
MCLK
VOH
VOH
tALEL-NWEL
MNALE
VOL
tCLEH-NWEL
MNCLE
tNWEH-CLEL
VOH
MNWEX
VOL
tNWEW
VOL
tNWEL-DV
VOH
tNWEH-DX
MADATA[15:0]
VOH
VOL
Document Number: 002-05646 Rev.*A
Write
VOH
VOL
Page 106 of 145
MB9A150RB Series
12.4.7.8 External Ready Input Timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Pin name
Conditions
Unit
Min
MCLK ↑ MRDY input
setup time
tRDYI
MCLK,
VCC ≥ 2.7 V
19
MRDY
VCC < 2.7 V
37
Remarks
Max
-
ns
When RDY is input
···
MCLK
Over 2cycles
Original
MOEX
MWEX
tRDYI
MRDY
When RDY is released
MCLK
··· ···
2 cycles
Extended
MOEX
MWEX
tRDYI
0.5×VCC
MRDY
Document Number: 002-05646 Rev.*A
Page 107 of 145
MB9A150RB Series
12.4.8 Base Timer Input Timing
12.4.8.1 Timer input timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Input pulse width
Symbol
Pin name
Conditions
Unit
Min
Max
2tCYCP
-
Remarks
TIOAn/TIOBn
tTIWH,
-
(when using as
tTIWL
ns
ECK, TIN)
tTIWH
tTIWL
ECK
TIN
VIHS
VIHS
VILS
VILS
12.4.8.2 Trigger input timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Input pulse width
Symbol
tTRGH,
tTRGL
Pin name
Conditions
VIHS
Max
2tCYCP
-
Remarks
TIOAn/TIOBn
-
(when using
ns
as TGIN)
tTRGL
tTRGH
TGIN
Unit
Min
VIHS
VILS
VILS
Note:
 tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the Base Timer is connected to, see Block Diagram in this data sheet.
Document Number: 002-05646 Rev.*A
Page 108 of 145
MB9A150RB Series
12.4.9 CSIO/UART Timing
12.4.9.1 CSIO (SPI = 0, SCINV = 0)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbo
l
Pin
name
VCC < 2.7 V
Conditions
SCKx
VCC ≥ 2.7 V
Unit
Min
Max
Min
Max
4tCYCP
-
4tCYCP
-
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
Serial clock cycle time
tSCYC
SCK ↓ → SOT delay time
tSLOVI
SIN → SCK ↑ setup time
tIVSHI
SCK ↑ → SIN hold time
tSHIXI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
SCK ↓ → SOT delay time
tSLOVE
-
50
-
30
ns
SIN → SCK ↑ setup time
tIVSHE
10
-
10
-
ns
SCK ↑ → SIN hold time
tSHIXE
20
-
20
-
ns
SCK falling time
tF
SCKx
-
5
-
5
ns
SCK rising time
tR
SCKx
-
5
-
5
ns
SCKx,
SOTx
SCKx,
Master mode
SINx
SCKx,
SINx
SCKx,
SOTx
SCKx,
Slave mode
SINx
SCKx,
SINx
Notes:
 The above characteristics apply to clock synchronous mode.
 tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function
Serial is connected to, see Block Diagram in this data sheet.
 These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
 When the external load capacitance CL = 30 pF.
Document Number: 002-05646 Rev.*A
Page 109 of 145
MB9A150RB Series
tSCYC
VOH
SCK
VOL
VOL
tSLOVI
VOH
SOT
VOL
tIVSHI
SIN
tSHIXI
VIH
VIH
VIL
VIL
Master mode
tSLSH
SCK
tSHSL
VIH
VIH
tF
VIL
VIL
VIH
tR
tSLOVE
SOT
VOH
VOL
tIVSHE
SIN
VIH
VIL
tSHIXE
VIH
VIL
Slave mode
Document Number: 002-05646 Rev.*A
Page 110 of 145
MB9A150RB Series
12.4.9.2 CSIO (SPI = 0, SCINV = 1)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbol
Pin
name
VCC < 2.7 V
Conditions
SCKx
VCC ≥ 2.7 V
Unit
Min
Max
Min
Max
4tCYCP
-
4tCYCP
-
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
Serial clock cycle time
tSCYC
SCK ↑ → SOT delay time
tSHOVI
SIN → SCK ↓ setup time
tIVSLI
SCK ↓ → SIN hold time
tSLIXI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
SCK ↑ → SOT delay time
tSHOVE
-
50
-
30
ns
SIN → SCK ↓ setup time
tIVSLE
10
-
10
-
ns
SCK ↓ → SIN hold time
tSLIXE
20
-
20
-
ns
SCK falling time
tF
SCKx
-
5
-
5
ns
SCK rising time
tR
SCKx
-
5
-
5
ns
SCKx,
SOTx
SCKx,
Master mode
SINx
SCKx,
SINx
SCKx,
SOTx
SCKx,
Slave mode
SINx
SCKx,
SINx
Notes:
 The above characteristics apply to clock synchronous mode.
 tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function
Serial is connected to, see Block Diagram in this data sheet.
 These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
 When the external load capacitance CL = 30 pF.
Document Number: 002-05646 Rev.*A
Page 111 of 145
MB9A150RB Series
tSCYC
VOH
SCK
VOH
VOL
tSHOVI
VOH
SOT
VOL
tIVSLI
VIH
SIN
tSLIXI
VIH
VIL
VIL
Master mode
tSHSL
SCK
tSLSH
VIH
VIH
VIL
tR
tF
VIL
VIL
tSHOVE
SOT
VOH
VOL
tIVSLE
SIN
VIH
VIL
tSLIXE
VIH
VIL
Slave mode
Document Number: 002-05646 Rev.*A
Page 112 of 145
MB9A150RB Series
12.4.9.3 CSIO (SPI = 1, SCINV = 0)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbo
l
Pin
name
VCC < 2.7 V
Conditions
SCKx
VCC ≥ 2.7 V
Unit
Min
Max
Min
Max
4tCYCP
-
4tCYCP
-
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP - 30
-
ns
Serial clock cycle time
tSCYC
SCK ↑ → SOT delay time
tSHOVI
SIN → SCK ↓ setup time
tIVSLI
SCK ↓→ SIN hold time
tSLIXI
SOT → SCK ↓ delay time
tSOVLI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
SCK ↑ → SOT delay time
tSHOVE
-
50
-
30
ns
SIN → SCK ↓ setup time
tIVSLE
10
-
10
-
ns
SCK ↓→ SIN hold time
tSLIXE
20
-
20
-
ns
SCK falling time
tF
SCKx
-
5
-
5
ns
SCK rising time
tR
SCKx
-
5
-
5
ns
SCKx,
SOTx
SCKx,
SINx
Master mode
SCKx,
SINx
SCKx,
SOTx
SCKx,
SOTx
SCKx,
Slave mode
SINx
SCKx,
SINx
Notes:
 The above characteristics apply to clock synchronous mode.
 tCYCP indicates the APB bus clock cycle time.About the APB bus number which Multi-function Serial
is connected to, see Block Diagram in this data sheet.
 These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
 When the external load capacitance CL = 30 pF.
Document Number: 002-05646 Rev.*A
Page 113 of 145
MB9A150RB Series
tSCYC
VOH
SCK
VOL
SOT
VOH
VOL
VOH
VOL
tIVSLI
tSLIXI
VIH
VIL
SIN
VOL
tSHOVI
tSOVLI
VIH
VIL
Master mode
tSLSH
VIH
SCK
VIL
tF
*
SOT
VIL
tSHSL
tR
VOH
VOL
tIVSLE
SIN
VIH
VIH
tSHOVE
VOH
VOL
tSLIXE
VIH
VIL
VIH
VIL
Slave mode
*: Changes when writing to TDR register
Document Number: 002-05646 Rev.*A
Page 114 of 145
MB9A150RB Series
12.4.9.4 CSIO (SPI = 1, SCINV = 1)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Parameter
Symbo
l
Pin
name
VCC ≥ 2.7 V
VCC < 2.7 V
Conditions
SCKx
Unit
Min
Max
Min
Max
4tCYCP
-
4tCYCP
-
ns
- 30
+ 30
- 20
+ 20
ns
50
-
30
-
ns
0
-
0
-
ns
2tCYCP - 30
-
2tCYCP - 30
-
ns
Serial clock cycle time
tSCYC
SCK ↓ → SOT delay time
tSLOVI
SIN → SCK ↑ setup time
tIVSHI
SCK ↑ → SIN hold time
tSHIXI
SOT → SCK ↑ delay time
tSOVHI
Serial clock L pulse width
tSLSH
SCKx
2tCYCP - 10
-
2tCYCP - 10
-
ns
Serial clock H pulse width
tSHSL
SCKx
tCYCP + 10
-
tCYCP + 10
-
ns
SCK ↓ → SOT delay time
tSLOVE
-
50
-
30
ns
SIN → SCK ↑ setup time
tIVSHE
10
-
10
-
ns
SCK ↑ → SIN hold time
tSHIXE
20
-
20
-
ns
SCK falling time
tF
SCKx
-
5
-
5
ns
SCK rising time
tR
SCKx
-
5
-
5
ns
SCKx,
SOTx
SCKx,
SINx
Master mode
SCKx,
SINx
SCKx,
SOTx
SCKx,
SOTx
SCKx,
Slave mode
SINx
SCKx,
SINx
Notes:
 The above characteristics apply to clock synchronous mode.
 tCYCP indicates the APB bus clock cycle time.About the APB bus number which Multi-function Serial
is connected to, see Block Diagram in this data sheet.
 These characteristics only guarantee the same relocate port number.
For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
 When the external load capacitance CL = 30 pF.
Document Number: 002-05646 Rev.*A
Page 115 of 145
MB9A150RB Series
tSCYC
VOH
SCK
VOH
VOL
tSOVHI
tSLOVI
VOH
VOL
SOT
VOH
VOL
tSHIXI
tIVSHI
VIH
VIL
SIN
VIH
VIL
Master mode
tR
SCK
tF
tSHSL
VIH
VIH
VIL
tSLSH
VIL
VIL
tSLOVE
VOH
VOL
SOT
VOH
VOL
tIVSHE
tSHIXE
VIH
VIL
SIN
VIH
VIL
Slave mode
12.4.9.5 UART external clock input (EXT = 1)
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Serial clock L pulse width
tSLSH
Serial clock H pulse width
tSHSL
Conditions
Unit
Min
Max
tCYCP + 10
-
ns
tCYCP + 10
-
ns
Remarks
CL = 30 pF
SCK falling time
tF
-
5
ns
SCK rising time
tR
-
5
ns
tF
tR
tSHSL
SCK
V IL
Document Number: 002-05646 Rev.*A
V IH
t SLSH
V IH
V IL
V IL
V IH
Page 116 of 145
MB9A150RB Series
12.4.10 External Input Timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbo
l
Pin name
Condition
s
Min
Ma
x
Unit
A/D converter trigger
ADTG
input
FRCKx
Input pulse width
Remarks
2tCYCP[1]
-
Free-run timer input
-
ns
clock
tINH,
ICxx
Input capture
tINL
DTIxX
Waveform generator
2tCYCP +
[2]
100[1]
INTxx, NMIX
WKUPx
-
ns
External interrupt,
NMI
[3]
500
-
ns
[4]
600
-
ns
Deep Standby wake up
[1]. tCYCP indicates the APB bus clock cycle time.
About the APB bus number which the Multi-function Timer is connected to, see Block Diagram in this data sheet.
[2]. When in Run mode, in Sleep mode.
[3]. When in Stop mode, in Timer mode.
[4]. When in Deep Standby RTC mode, in Deep Standby Stop mode.
tINL
tINH
VILS
Document Number: 002-05646 Rev.*A
VILS
VIHS
VIHS
Page 117 of 145
MB9A150RB Series
12.4.11 Quadrature Position/Revolution Counter timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Conditions
AIN pin H width
tAHL
-
AIN pin L width
tALL
-
BIN pin H width
tBHL
-
BIN pin L width
tBLL
-
BIN rising time from AIN pin H
tAUBU
PC_Mode2 or PC_Mode3
tBUAD
PC_Mode2 or PC_Mode3
tADBD
PC_Mode2 or PC_Mode3
tBDAU
PC_Mode2 or PC_Mode3
tBUAU
PC_Mode2 or PC_Mode3
tAUBD
PC_Mode2 or PC_Mode3
tBDAD
PC_Mode2 or PC_Mode3
tADBU
PC_Mode2 or PC_Mode3
ZIN pin H width
tZHL
QCR:CGSC=0
ZIN pin L width
tZLL
QCR:CGSC=0
tZABE
QCR:CGSC=1
tABEZ
QCR:CGSC=1
level
AIN falling time from BIN pin H
level
BIN falling time from AIN pin L
level
AIN rising time from
AIN rising time from BIN pin H
level
BIN falling time from AIN pin H
level
AIN falling time from BIN pin L
level
BIN rising time from AIN pin L
level
AIN/BIN rising and falling time
from determined ZIN level
Determined ZIN level from
AIN/BIN rising and falling time
Unit
Min
Max
2tCYCP[1]
-
ns
[1]. tCYCP indicates the APB bus clock cycle time.About the APB bus number which the Quadrature Position/Revolution Counter is connected to,
see Block Diagram in this data sheet.
Document Number: 002-05646 Rev.*A
Page 118 of 145
MB9A150RB Series
tALL
tAHL
AIN
tADBD
tBUAD
tAUBU
tBDAU
BIN
tBHL
tBLL
tBLL
tBHL
BIN
tBUAU
tBDAD
tAUBD
tADBU
AIN
tAHL
Document Number: 002-05646 Rev.*A
tALL
Page 119 of 145
MB9A150RB Series
tZHL
ZIN
tZLL
ZIN
tABEZ
tZABE
AIN/BIN
Document Number: 002-05646 Rev.*A
Page 120 of 145
MB9A150RB Series
2
12.4.12 I C Timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Standard-mode
Parameter
Symbol
Fast-mode
Conditions
Unit
Min
Max
Min
Max
0
100
0
400
kHz
tHDSTA
4.0
-
0.6
-
μs
SCL clock L width
tLOW
4.7
-
1.3
-
μs
SCL clock H width
tHIGH
4.0
-
0.6
-
μs
4.7
-
0.6
-
μs
0
3.45[2]
0
0.9[3]
μs
tSUDAT
250
-
100
-
ns
tSUSTO
4.0
-
0.6
-
μs
tBUF
4.7
-
1.3
-
μs
2 tCYCP[4]
-
2 tCYCP[4]
-
ns
SCL clock frequency
fSCL
(Repeated) START condition hold
time SDA ↓ → SCL ↓
(Repeated) START condition
setup time SCL ↑ → SDA ↓
Data hold time SCL ↓ → SDA ↓ ↑
tSUSTA
CL = 30 pF,
tHDDAT
R = (VP/IOL)[1]
Remarks
Data setup time
SDA ↓ ↑ → SCL ↑
STOP condition setup time
SCL ↑ → SDA ↑
Bus free time between
STOP condition and START
condition
Noise filter
tSP
-
[1]. R and CL represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively. VP indicates the power supply voltage of
the pull-up resistor and IOL indicates VOL guaranteed current.
[2]. The maximum tHDDAT must satisfy that it does not extend at least L period (tLOW) of device's SCL signal.
[3]. A Fast-mode I2C bus device can be used on a Standard-mode I2C bus system as long as the device satisfies the requirement of tSUDAT ≥ 250
ns.
[4]. tCYCP is the APB bus clock cycle time. About the APB bus number that I2C is connected to, see Block Diagram in this data sheet.
To use Standard-mode, set the APB bus clock at 2 MHz or more.To use Fast-mode, set the APB bus clock at 8 MHz or more.
SDA
tSUDAT
tLOW
tSUSTA
tBUF
SCL
tHDSTA
Document Number: 002-05646 Rev.*A
tHDDAT
tHIGH
tHDSTA
tSP
tSUSTO
Page 121 of 145
MB9A150RB Series
12.4.13 ETM Timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Data hold
TRACECLK frequency
Symbol
tETMH
Pin name
Unit
Min
Max
TRACECLK,
VCC ≥ 2.7V
2
11
TRACED[3:0]
VCC < 2.7V
2
15
VCC ≥ 2.7V
-
40
MHz
VCC < 2.7V
-
20
MHz
VCC ≥ 2.7V
25
-
ns
VCC < 2.7V
50
-
ns
Remarks
ns
1/ tTRACE
TRACECLK
TRACECLK clock cycle
Conditions
tTRACE
Note:
When the external load capacitance CL = 30 pF.
tCYCC
HCLK
VOH
VOH
tTRACE
TRACECLK
TRACED[3:0]
Document Number: 002-05646 Rev.*A
VOH
VOL
tETMH
tETMH
VOH
VOL
VOH
VOH
VOL
Page 122 of 145
MB9A150RB Series
12.4.14 JTAG Timing
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
TMS, TDI setup time
TMS, TDI hold time
TDO delay time
Symbol
tJTAGS
tJTAGH
tJTAGD
Pin name
Conditions
Unit
Min
Max
15
-
ns
15
-
ns
TCK,
VCC ≥ 2.7V
TMS, TDI
VCC < 2.7V
TCK,
VCC ≥ 2.7V
TMS, TDI
VCC < 2.7V
TCK,
VCC ≥ 2.7V
-
25
TDO
VCC < 2.7V
-
45
Remarks
ns
Note:
When the external load capacitance CL = 30 pF.
TCK
VOH
VOL
tJTAGS
VOH
VOL
TMS/TDI
tJTAGH
VOH
VOL
tJTAGD
TDO
Document Number: 002-05646 Rev.*A
VOH
VOL
Page 123 of 145
MB9A150RB Series
12.5 12-bit A/D Converter
12.5.1 Electrical Characteristics for the A/D Converter
(VCC = AVCC = 1.65V to 3.6V, VSS = AVSS = 0V, TA = - 40°C to + 85°C)
Value
Symbol
Pin
name
Min
Resolution
-
-
-
-
12
bit
Integral Nonlinearity
-
-
-
± 2.4
± 4.5
LSB
Differential Nonlinearity
-
-
-
± 2.3
± 2.5
LSB
Zero transition voltage
VZT
ANxx
-
±7
± 15
mV
VFST
ANxx
-
AVRH ± 7
AVRH ± 15
mV
2.0
-
-
-
-
4.0
-
-
10
-
-
0.6
-
1.2
-
3.0
-
Parameter
Full-scale transition
voltage
Conversion time[1]
Sampling time[2]
tS
-
Typ
Max
Unit
AVCC ≥ 2.7 V
μs
tCCK
-
200
AVCC ≥ 2.7 V
10
us
operation permission
Analog input capacity
AVCC ≥ 2.7 V
-
1000
ns
tSTT
-
-
-
1.0
μs
CAIN
-
-
-
9.4
pF
RAIN
-
-
AVCC ≥ 2.7 V
-
5.5
kΩ
10.5
Interchannel disparity
-
-
-
4
LSB
-
ANxx
-
-
5
μA
Analog input voltage
-
ANxx
AVSS
-
AVRH
V
Reference voltage
-
AVRH
-
AVCC
V
current
2.7
AVCC
1.8 V< AVCC < 2.7 V
1.65 V< AVCC < 1.8 V
-
Analog port input leak
1.8 V< AVCC < 2.7 V
1.65 V< AVCC < 1.8 V
2.2
Analog input resistor
1.8 V< AVCC < 2.7 V
1.65 V< AVCC < 1.8 V
500
State transition time to
1.8 V< AVCC < 2.7 V
1.65 V< AVCC < 1.8 V
100
Compare clock cycle[3]
Remarks
AVCC ≥ 2.7 V
AVCC < 2.7 V
[1]. The conversion time is the value of sampling time (tS) + compare time (tC).
The condition of the minimum conversion time is the following.
sampling time: 0.6 μs, compare time: 1.4 μs
AVCC ≥ 2.7 V, HCLK=40 MHz
sampling time: 1.2 μs, compare time: 2.8 μs
1.8 V < AVCC < 2.7 V, HCLK=40 MHz
sampling time: 3 μs, compare time: 7 μs
1.65 V < AVCC < 1.8 V, HCLK=40 MHz
Ensure that it satisfies the value of the sampling time (tS) and compare clock cycle (tCCK).
For setting of the sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM3 Family Peripheral Manual. Analog Macro Part.
The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing.
For the number of the APB bus to which the A/D Converter is connected, see Block Diagram. The base clock (HCLK) is used to generate the
sampling time and the compare clock cycle.
[2]. A necessary sampling time changes by external impedance.
Ensure that it sets the sampling time to satisfy (Equation 1).
[3]. The compare time (tC) is the value of (Equation 2).
Document Number: 002-05646 Rev.*A
Page 124 of 145
MB9A150RB Series
Analog signal
source
REXT
ANxx
Analog input pin
Comparator
RAIN
CAIN
(Equation 1) tS ≥ ( RAIN + REXT ) × CAIN × 9
tS: Sampling time[ns]
RAIN: input resistor of A/D[kΩ] = 2.2 kΩ at 2.7 V < AVCC < 3.6 V
input resistor of A/D[kΩ] = 5.5 kΩ at 1.8 V < AVCC < 2.7 V
input resistor of A/D[kΩ] = 10.5 kΩ at 1.65 V < AVCC < 1.8 V
CAIN: input capacity of A/D[pF] = 9.4 pF at 1.65 V < AVCC < 3.6 V
REXT: Output impedance of external circuit[kΩ]
(Equation 2) tC = tCCK × 14
tC: Compare time
tCCK: Compare clock cycle
Document Number: 002-05646 Rev.*A
Page 125 of 145
MB9A150RB Series
12.5.2 Definition of 12-bit A/D Converter Terms
 Resolution: Analog variation that is recognized by an A/D converter.
 Integral Nonlinearity: Deviation of the line between the zero-transition point
(0b000000000000 ←→ 0b000000000001) and the full-scale transition point
(0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics.
 Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB.
Integral Nonlinearity
Differential Nonlinearity
0xFFF
Actual conversion
characteristics
0xFFE
Actual conversion
characteristics
0x(N+1)
{1 LSB(N-1) + VZT}
VFST
VNT
0x004
(Actually-measured
value)
0x003
0x002
(Actuallymeasured
value)
Digital output
Digital output
0xFFD
0xN
Ideal characteristics
V(N+1)T
0x(N-1)
(Actually-measured
value)
Actual conversion
characteristics
Ideal characteristics
VNT
(Actually-measured
value)
0x(N-2)
0x001
VZT (Actually-measured value)
AVSS
Actual conversion characteristics
AVRH
AVSS
AVRH
Analog input
Integral Nonlinearity of digital output N =
Differential Nonlinearity of digital output N =
1LSB =
Analog input
VNT - {1LSB × (N - 1) + VZT}
1LSB
V(N + 1) T - VNT
1LSB
[LSB]
- 1 [LSB]
VFST - VZT
4094
N: A/D converter digital output value.
VZT: Voltage at which the digital output changes from 0x000 to 0x001.
VFST: Voltage at which the digital output changes from 0xFFE to 0xFFF.
VNT: Voltage at which the digital output changes from 0x(N − 1) to 0xN.
Document Number: 002-05646 Rev.*A
Page 126 of 145
MB9A150RB Series
12.6 Low-Voltage Detection Characteristics
12.6.1 Low-Voltage Detection Reset
(TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Conditions
Min
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
SVHR[1] = 00000
SVHR[1] = 00001
SVHR[1] = 00010
SVHR[1] = 00011
SVHR[1] = 00100
SVHR[1] = 00101
SVHR[1] = 00110
SVHR[1] = 00111
SVHR[1] = 01000
SVHR[1] = 01001
SVHR[1] = 01010
SVHR[1] = 01011
SVHR[1] = 01100
SVHR[1] = 01101
SVHR[1] = 01110
SVHR[1] = 01111
Document Number: 002-05646 Rev.*A
Typ
Unit
Remarks
Max
1.38
1.50
1.60
V
When voltage drops
1.43
1.55
1.65
V
When voltage rises
1.43
1.55
1.65
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
1.47
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
1.52
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
1.56
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
1.61
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
1.66
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
1.70
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
1.75
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
1.79
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
1.84
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
1.89
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
2.30
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
2.39
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
2.48
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
2.58
V
When voltage drops
V
When voltage rises
1.60
1.65
1.70
1.75
1.80
1.85
1.90
1.95
2.00
2.05
2.50
2.60
2.70
2.80
1.73
1.78
1.84
1.89
1.94
2.00
2.05
2.11
2.16
2.21
2.70
2.81
2.92
3.02
Same as SVHR = 00000 value
Page 127 of 145
MB9A150RB Series
Value
Parameter
Symbol
Conditions
Unit
Remarks
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
2.76
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
2.85
V
When voltage drops
Same as SVHR = 00000 value
V
When voltage rises
2.94
V
When voltage drops
V
When voltage rises
Min
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
LVD stabilization
wait time
LVD detection delay
time
SVHR[1] = 10000
SVHR[1] = 10001
SVHR[1] = 10010
SVHR[1] = 10011
2.67
Typ
2.90
3.00
3.10
3.20
Max
3.13
3.24
3.35
3.46
Same as SVHR = 00000 value
tLVDW
-
-
-
tLVDDL
-
-
-
5200 ×
tCYCP[2]
200
μs
μs
[1]. The SVHR bit of Low-Voltage Detection Voltage Control Register (LVD_CTL) is initialized to 00000 by Low-Voltage Detection Reset.
[2]. tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-05646 Rev.*A
Page 128 of 145
MB9A150RB Series
12.6.2 Interrupt of Low-Voltage Detection
(TA = - 40°C to + 85°C)
Parameter
Symbol
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
Detected voltage
VDL
Released voltage
VDH
LVD stabilization wait
time
LVD detection delay
time
Conditions
SVHI = 00100
SVHI = 00101
SVHI = 00110
SVHI = 00111
SVHI = 01000
SVHI = 01001
SVHI = 01010
SVHI = 01011
SVHI = 01100
SVHI = 01101
SVHI = 01110
SVHI = 01111
SVHI = 10000
SVHI = 10001
SVHI = 10010
SVHI = 10011
Min
Value
Typ
Max
1.56
1.70
1.61
1.75
1.61
1.66
1.66
Unit
Remarks
1.84
V
When voltage drops
1.89
V
When voltage rises
1.75
1.89
V
When voltage drops
1.80
1.94
V
When voltage rises
1.80
1.94
V
When voltage drops
1.70
1.85
2.00
V
When voltage rises
1.70
1.85
2.00
V
When voltage drops
1.75
1.90
2.05
V
When voltage rises
1.75
1.90
2.05
V
When voltage drops
1.79
1.95
2.11
V
When voltage rises
1.79
1.95
2.11
V
When voltage drops
1.84
2.00
2.16
V
When voltage rises
1.84
2.00
2.16
V
When voltage drops
1.89
2.05
2.21
V
When voltage rises
1.89
2.05
2.21
V
When voltage drops
1.93
2.10
2.27
V
When voltage rises
2.30
2.50
2.70
V
When voltage drops
2.39
2.60
2.81
V
When voltage rises
2.39
2.60
2.81
V
When voltage drops
2.48
2.70
2.92
V
When voltage rises
2.48
2.70
2.92
V
When voltage drops
2.58
2.80
3.02
V
When voltage rises
2.58
2.80
3.02
V
When voltage drops
2.67
2.90
3.13
V
When voltage rises
2.67
2.90
3.13
V
When voltage drops
2.76
3.00
3.24
V
When voltage rises
2.76
3.00
3.24
V
When voltage drops
2.85
3.10
3.35
V
When voltage rises
2.85
3.10
3.35
V
When voltage drops
2.94
3.20
3.46
V
When voltage rises
2.94
3.20
3.46
V
When voltage drops
3.04
3.30
3.56
V
When voltage rises
tLVDW
-
-
-
5200 × tCYCP[1]
μs
tLVDDL
-
-
-
200
μs
[1]. tCYCP indicates the APB2 bus clock cycle time.
Document Number: 002-05646 Rev.*A
Page 129 of 145
MB9A150RB Series
12.7 Flash Memory Write/Erase Characteristics
12.7.1 Write / Erase time
(VCC = 1.65V to 3.6V, TA = - 40°C to + 85°C)
Value
Parameter
Typ
[1]
Max
[1]
Sector erase
Large Sector
1.1
2.7
time
Small Sector
0.3
0.9
30
11.2
Remarks
s
Includes write time prior to internal erase
528
μs
Not including system-level overhead time
30.5
s
Includes write time prior to internal erase
Half word (16-bit)
write time
Chip erase time
Unit
[1].The typical value is immediately after shipment, the maximam value is guarantee value under 100,000 cycle of erase/write.
12.7.2 Write cycles and data hold time
Erase/write cycles (cycle)
Data hold time (year)
1,000
20[1]
10,000
10*
Remarks
[1]. At average + 85°C
Document Number: 002-05646 Rev.*A
Page 130 of 145
MB9A150RB Series
12.8 Return Time from Low-Power Consumption Mode
12.8.1 Return Factor: Interrupt/WKUP
The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the
program operation.
12.8.1.1 Return Count Time
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
Typ
Sleep mode
Max
[1]
Unit
Remarks
μs
tCYCC
High-speed CR Timer mode,
40
80
μs
350
700
μs
690
880
μs
RTC mode, Stop mode
278
523
μs
Deep Standby RTC mode
318
603
μs
When RAM is off
Deep Standby Stop mode
278
523
μs
When RAM is on
Main Timer mode, PLL Timer mode
Low-speed CR Timer mode
Sub Timer mode
tICNT
[1]. The maximum value depends on the accuracy of built-in CR.
12.8.1.2
[1]
Operation example of return from Low-Power consumption mode (by external interrupt )
External
interrupt
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
[1]. External interrupt is set to detecting fall edge.
Document Number: 002-05646 Rev.*A
Page 131 of 145
MB9A150RB Series
12.8.1.3
[1]
Operation example of return from Low-Power consumption mode (by internal resource interrupt )
Internal
resource
interrupt
Interrupt factor
accept
Active
tICNT
CPU
Operation
Interrupt factor
clear by CPU
Start
[1]. Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.
Notes:
 The return factor is different in each Low-Power consumption modes. See Chapter 6: Low Power
Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral Manual.
 When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the
Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in
FM3 Family Peripheral Manual.
Document Number: 002-05646 Rev.*A
Page 132 of 145
MB9A150RB Series
12.8.2 Return Factor: Reset
The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program
operation.
12.8.2.1 Return Count Time
(VCC = 1.65V to 3.6V, VSS = 0V, TA = - 40°C to + 85°C)
Value
Parameter
Symbol
[1]
Unit
Remarks
Typ
Max
148
263
μs
148
263
μs
258
483
μs
322
516
μs
RTC/Stop mode
278
523
μs
Deep Standby RTC mode
318
603
μs
When RAM is off
Deep Standby Stop mode
278
523
μs
When RAM is on
Sleep mode
High-speed CR Timer mode,
Main Timer mode, PLL Timer mode
Low-speed CR Timer mode
Sub Timer mode
tRCNT
[1]. The maximum value depends on the accuracy of built-in CR.
12.8.2.2
Operation example of return from Low-Power consumption mode (by INITX)
INITX
Internal reset
Reset active
Release
tRCNT
CPU
Operation
Document Number: 002-05646 Rev.*A
Start
Page 133 of 145
MB9A150RB Series
12.8.2.3
[1]
Operation example of return from low power consumption mode (by internal resource reset )
Internal
resource
reset
Internal reset
Reset active
Release
tRCNT
CPU
Operation
Start
[1]. Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.
Notes:
 The return factor is different in each Low-Power consumption modes.
See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in
FM3 Family Peripheral Manual
 When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the
Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in
FM3 Family Peripheral Manual
 The time during the power-on reset/low-voltage detection reset is excluded.
See 13.4.6 Power-on Reset Timing in 13.4 AC Characteristics in Electrical Characteristics for the
detail on the time during the power-on reset/low-voltage detection reset.
 When in recovery from reset, CPU changes to the High-speed CR Run mode. When using the
main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time
or the Main PLL clock stabilization wait time.
 The internal resource reset means the watchdog reset and the CSV reset.
Document Number: 002-05646 Rev.*A
Page 134 of 145
MB9A150RB Series
13. Ordering Information
Part number
MB9AF154MBPMC-G-JNE2
MB9AF155MBPMC-G-JNE2
MB9AF156MBPMC-G-JNE2
MB9AF154MBBGL-GE1
MB9AF155MBBGL-GE1
MB9AF156MBBGL-GE1
MB9AF154NBPMC-G-JNE2
MB9AF155NBPMC-G-JNE2
MB9AF156NBPMC-G-JNE2
MB9AF154NBBGL-GE1
MB9AF155NBBGL-GE1
MB9AF156NBBGL-GE1
MB9AF154RBPMC-G-JNE2
MB9AF155RBPMC-G-JNE2
MB9AF156RBPMC-G-JNE2
Document Number: 002-05646 Rev.*A
On-chip Flash
memory
Main: 256 Kbyte
Work: 32 Kbyte
Main: 384 Kbyte
Work: 32 Kbyte
Main: 512 Kbyte
Work: 32 Kbyte
Main: 256 Kbyte
Work: 32 Kbyte
Main: 384 Kbyte
Work: 32 Kbyte
Main: 512 Kbyte
Work: 32 Kbyte
Main: 256 Kbyte
Work: 32 Kbyte
Main: 384 Kbyte
Work: 32 Kbyte
Main: 512 Kbyte
Work: 32 Kbyte
Main: 256 Kbyte
Work: 32 Kbyte
Main: 384 Kbyte
Work: 32 Kbyte
Main: 512 Kbyte
Work: 32 Kbyte
Main: 256 Kbyte
Work: 32 Kbyte
Main: 384 Kbyte
Work: 32 Kbyte
Main: 512 Kbyte
Work: 32 Kbyte
On-chip
SRAM
Package
Packing
32 Kbyte
Plastic  LQFP 80-pin
48 Kbyte
(0.5 mm pitch),
(FPT-80P-M37)
64 Kbyte
32 Kbyte
Plastic  PFBGA 96-pin
48 Kbyte
(0.5 mm pitch),
(BGA-96P-M07)
64 Kbyte
32 Kbyte
Plastic  LQFP 100-pin
Tray
48 Kbyte
(0.5 mm pitch),
(FPT-100P-M23)
64 Kbyte
32 Kbyte
Plastic  PFBGA 112-pin
48 Kbyte
(0.8 mm pitch),
(BGA-112P-M04)
64 Kbyte
32 Kbyte
Plastic  LQFP 120-pin
48 Kbyte
(0.5 mm pitch),
(FPT-120P-M37)
64 Kbyte
Page 135 of 145
MB9A150RB Series
14. Package Dimensions
120-pin plastic LQFP
(FPT-120P-M37)
120-pin plastic LQFP
(FPT-120P-M37)
Lead pitch
0.50 mm
Package width ×
package length
16.0 mm × 16.0 mm
Lead shape
Gullwing
Sealing method
Plastic mold
Mounting height
1.70 mm Max
Weight
0.88 g
Code
(Reference)
P-LFQFP120-16 × 16-0.50
Note 1) * : These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
18.00 ± 0.20(.709 ± .008) SQ
* 16.00 ± 0.10(.630 ± .004) SQ
90
61
91
Details of "A" part
60
+0.20
+.008
1.50 –0.10 .059 –.004
(Mounting height)
0.25(.010)
0.08(.003)
0˚~8˚
INDEX
0.60 ± 0.15
(.024 ± .006)
"A"
LEAD No.
1
30
0.50(.020)
C
0.10 ± 0.05
(.004 ± .002)
(Stand off)
31
120
0.22 ± 0.05
(.009 ± .002)
0.08(.003)
2010 FUJITSU SEMICONDUCTOR LIMITED F120037Sc(1)-1-1
Document Number: 002-05646 Rev.*A
+0.05
0.145–0.03
( .006+.002
–.001 )
M
Dimensions in mm (inches).
Note: The values in parentheses are reference values
Page 136 of 145
MB9A150RB Series
100-pin plastic LQFP
Lead pitch
0.50 mm
Package width ×
package length
14.00 mm × 14.00 mm
Lead shape
Gullwing
Lead bend
direction
Normal bend
Sealing method
Plastic mold
Mounting height
1.70 mm MAX
Weight
0.65 g
(FPT-100P-M23)
100-pin plastic LQFP
(FPT-100P-M23)
Note 1) * : These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
16.00±0.20(.630±.008)SQ
*14.00±0.10(.551±.004)SQ
75
51
76
50
0.08(.003)
Details of "A" part
1.50 +0.20
- 0.10
(.059+.008
-.004)
(Mounting height)
INDEX
100
26
"A"
1
C
0.60±0.15
(.024±.006)
25
0.50(.020)
0.22±0.05
(.009±.002)
0.08(.003)
2009-2010 FUJITSU SEMICONDUCTOR LIMITED F100034S-c-3-4
Document Number: 002-05646 Rev.*A
0°~8°
0.50±0.20
(.020±.008)
M
0.10±0.10
(.004±.004)
(Stand off)
0.25(.010)
0.145±0.055
(.006±.002)
Dimensions in mm (inches).
Note:The values in parentheses are reference values.
Page 137 of 145
MB9A150RB Series
80-pin plastic LQFP
Lead pitch
0.50 mm
Package width ×
package length
12.00 mm × 12.00 mm
Lead shape
Gullwing
Lead bend
direction
Normal bend
Sealing method
Plastic mold
Mounting height
1.70 mm MAX
Weight
0.47 g
(FPT-80P-M37)
80-pin plastic LQFP
(FPT-80P-M37)
Note 1) * : These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness include plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.
14.00± 0.20(.551 ± .008)SQ
0.145± 0.055
(.006 ± .002)
*12.00± 0.10(.472 ± .004)SQ
60
41
Details of "A" part
61
40
+0.20
1.50 –0.10
(Mounting height)
.059 +.008
–.004
0.25(.010)
0~8°
0.08(.003)
INDEX
80
0.50 ± 0.20
(.020 ± .008)
0.60 ± 0.15
(.024 ± .006)
0.10 ± 0.05
(.004 ± .002)
(Stand off)
21
"A"
1
20
0.50(.020)
0.22± 0.05
(.009± .002)
C
0.08(.003)
2009-2010 FUJITSU SEMICONDUCTOR LIMITED F80037S-c-1-2
Document Number: 002-05646 Rev.*A
M
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
Page 138 of 145
MB9A150RB Series
112-ball plastic PFBGA
Ball pitch
0.80 mm
Package width ×
package length
10.00 × 10.00 mm
Lead shape
Soldering ball
Sealing method
Plastic mold
Ball size
Ф 0.45 mm
Mounting height
1.45 mm Max.
Weight
0.22 g
(BGA-112P-M04)
112-ball plastic PFBGA
(BGA-112P-M04)
10.00±0.10(.394±.004)
0.20(.008) S B
0.80(.031)
REF
B
11
10
9
8
7
6
5
4
3
2
0.80(.031)
REF
A
10.00±0.10
(.394±.004)
1
L K J H G F
(INDEX AREA)
0.35±0.10
(.014±.004)
(Stand off)
0.20(.008) S A
1.25±0.20
(.049±.008)
(Seated height)
ED C B A
INDEX
112-Ф0.45±010
(112-Ф0.18±.004)
Ф0.08(.003) M S A B
S
0.10(.004) S
C
2003-2010 FUJITSU SEMICONDUCTOR LIMITED B112004S-c-2-3
Document Number: 002-05646 Rev.*A
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
Page 139 of 145
MB9A150RB Series
96-pin plastic FBGA
Lead pitch
0.5 mm
Package width ×
package length
6.00 mm × 6.00 mm
Lead shape
Ball
Sealing method
Plastic mold
Mounting height
1.30 mm MAX
Weight
0.08 g
(BGA-96P-M07)
96-pin plastic FBGA
(BGA-96P-M07)
6.00±0.10(.236±.004)
5.00(.197)
REF
B
0.20(.008) S B
0.50
(.020)
TYP
11
10
9
8
A
7
5.00(.197)
REF
6.00±0.10
(.236±.004)
6
5
0.50(.020)
TYP
4
3
2
1
L
K
J
H G F E D C B A
(INDEX AREA)
INDEX
0.20(.008) S A
96-ø0.30±0.10
(96-ø.012±.004)
ø0.05(.002)
M
S A B
S
0.08(.003) S
C
2012 FUJITSU SEMICONDUCTOR LIMITED B96007S-c-1-1
Document Number: 002-05646 Rev.*A
1.15±0.15
(Seated height)
(.045±.006)
0.25±0.10
(Stand off)
(.010±.004)
Dimensions in mm (inches).
Note: The values in parentheses are reference values.
Page 140 of 145
MB9A150RB Series
15. Major Changes
Spansion Publication Number: MB9A150RB_DS706-00047
Page
Section
Change Results
Revision 0.1
-
-
Initial release
Revision 1.0
1
7
71
-
Preliminary → Data Sheet
Features
Corrected the description of "Flash memory".
On-chip Memories
1. Product Lineup
7.Handling Devices
8.Block Diagram
74
75
75
78, 79
10.Memory Map
94, 95,
 Added the description of "Crystal oscillator circuit".
 Added the description of "Sub crystal oscillator".
Corrected the figure.
 TIOA: input → input/output
 TIOB: output → input
Corrected the value of address of "SRAM0".
10.1 Memory Map (1)
10.2 Memory Map (2)
Added the footnote.
11. Pin Status In Each CPU State
 Corrected the Return from Deep standby mode state of
11.1 List of Pin Status
13. Electrical Characteristics
77, 78
Corrected the value of channel number of the "Base Timer".
1.2. Function
13.3. DC Characteristics
"Pin status type H".
 Corrected the functon group of "Pin status type I".
 Revised the value of "TBD".
 Revised the typical value of "Power supply voltage
(ICCH, ICCT, ICCR)".
13.3.1 Current Rating
 Added the "Flash Memory Write/Erase current (ICCFLASH)".
 Added the footnote.
13.4. AC Characteristics
 Added the description of Note of "Input frequency (FCL)".
13.4.2 Sub Clock Input Characteristics
 Added the footnote.
13.4.3 Built-in CR Oscillation
 Reviced the condition.
Characteristics
 Corrected the value.
13.4.3.1 Built-in high-speed CR
 Added the item of "Frequency stabilization time".
 Added the footnote.
99
13.4.7. External Bus Timing
 Corrected the value.
13.4.7.1. Separate Bus Access
 Deleted the "MWEX ↓ → Data output time".
Asynchronous SRAM Mode
 Added the "MCSX ↓ → Data output time".
 Corrected the figure.
101
13.4.7.2 Separate Bus Access
 Corrected the "MCLK↑ → Data output time".
Synchronous SRAM Mode
 Added the "MCLK↑ → Data hold time".
 Corrected the figure.
110,
13.4.9. CSIO Timming
UART Timming → CSIO Timming
112,
Corrected the description of "Note".
114, 116
122
Corrected the description of section title.
UART is connected → Multi-function Serial is connected
2
13.4.12 I C Timing
Added the footnote.
13.5. 12-bit A/D Converter
 Revised the parameter.
125
 Revised the symbol.
 Corrected the value.
Document Number: 002-05646 Rev.*A
Page 141 of 145
MB9A150RB Series
Page
127
128, 129
130
Section
Change Results
13.5.2 Definition of 12-bit A/D Converter
 Revised the parameter.
Terms
13.6. Low-Voltage Detection
 Revised the symbol.
 Corrected "Conditions" and "Value" in the table.
Characteristics
 Added the Item.
13.6.1 Low-Voltage Detection Reset
 Added the footnote.
13.6.2 Interrupt of Low-Voltage Detection
Added the Item.
Revision 1.1
-
-
Company name and layout design change
Revision 2.0
-
-
Corrected the Series name.
MB9A150R Series → MB9A150RA Series
Corrected the Product name as follows.
-
-
MB9AF156MA, MB9AF155MA, MB9AF154MA
MB9AF156NA, MB9AF155NA, MB9AF154NA
MB9AF156RA, MB9AF155RA, MB9AF154RA
Features
External Bus Interface
Added the Item.
 Maximum area size : Up to 256 Mbytes
1
Multi-function Serial Interface
Corrected the description of "I2C"
2
Multi-function Timer
Corrected the channel count of "A/D activation compare"
1
7
9
1.Product Lineup
1.2 Function
2. Packages
Added the footnote
Delete the following packages.
 FPT-100P-M36
 FPT-80P-M40
11
12
15 – 36
37 - 60
75
3. Pin Assignment
3.2 FPT-100P-M36
3.3 FPT-80P-M37
4. List Of Pin Function
4.1 List of numbers
4.2 List of pin functions
10.Memory Map
10.1 Memory Map (1)
Delete the Item
Corrected the description of section title.
FPT-80P-M37/M40 →FPT-80P-M37
Delete column of terminal number "QFP-100"
Delete column of terminal number "QFP-100"
Corrected the address "External Device Area"
13.Electrical Characteristics
88
13.2.Recommended Operating
Add the footnote
Conditions
 Corrected the Condition
89
13.3.DC Characteristics
 Delete the minmun value
13.3.1 Current rating
 Corrected the remarks
 Add the footnote
13.9. CSIO Timing
116
13.9.4 Synchronous serial (SPI=1,
Corrected the figure of "MS bit=1"
SCINV=1)
13.9 CSIO Timing
117
13.4.9.5. External
Corrected the figure
clock(EXT=1):asyntironous only
Document Number: 002-05646 Rev.*A
Page 142 of 145
MB9A150RB Series
Page
Section
Change Results
Add the terminal as follows
118
122
13.4.10. External Input Timing
13.4.12. I2C Timing
 FRCKx
 ICxx
 DTTIxX
Corrected the description as follows.
 Typical mode → Standard-mode
 High-speed mode → Fast-mode
 Corrected the terminal name
13.5.12-bit A/D Converter
125
AN00 to AN23 → ANxx
13.5.1 Electrical Characteristics for
 Corrected the minmum value of "Sampling time"
the A/D Converter
 Corrected the max and min value of "State transition time to
oprerationpermission"
 Corrected the footnote
137
14. ORDERING INFORMATON
Corrected the "Part number"
Revision 3.0
-
-
Corrected the Series name.
MB9A150RA Series → MB9A150RB Series
Corrected the Product name as follows.
-
-
MB9AF156MB, MB9AF155MB, MB9AF154MB
MB9AF156NB, MB9AF155NB, MB9AF154NB
MB9AF156RB, MB9AF155RB, MB9AF154RB
76
89
10.Memory Map
10.2. Memory map(2)
Added the summary of Flash memory sector
13. Electrical Characteristics
 Changed the table format
13.3. DC Characteristics
 Added Main TIMER mode current
13.3.1 Current rating
 Moved A/D Converter Current
13. Electrical Characteristics
96
13.4. AC Characteristics
13.4.1 Operating Conditions of Main PLL
 Added the figure of Main PLL connection
13.4.2 Operating Conditions of Main PLL
13. Electrical Characteristics
97
13. 4. AC Characteristics
13.4.6. Power-on Reset Timing
110 - 117
125
 Added Time until releasing Power-on reset
 Changed the figure of timing
13.Electrical Characteristics
 Modified from UART Timing to CSIO/UART Timing
13.4. AC Characteristics
 Changed from Internal shift clock operation to Master mode
13.4.9 CSIO/UART Timing
 Changed from External shift clock operation to Slave mode
 Added the typical value of Integral Nonlinearity, Differential
13. Electrical Characteristics
13.5. 12bit A/D Converter
Nonlinearity, Zero transition voltage and Full-scale transition
voltage
 Added the value of conversion time at AVCC < 2.7 V
13. Electrical Characteristics
132 - 134
13.8. Return Time from Low-Power
Added Return Time from Low-Power Consumption Mode
Consumption Mode
137
14. Ordering Information
Changed notation of part number
137 - 141
15. Package Dimensions
Deleted FPT-100P-M36 and FPT-80P-M40
NOTE: Please see “Document History” about later revised information.
Document Number: 002-05646 Rev.*A
Page 143 of 145
MB9A150RB Series
Document History
Document Title: MB9AF154MB/NB/RB, MB9AF155MB/NB/RB, MB9AF156MB/NB/RB, FM3, MB9A150RB Series, 32-bit
ARM® Cortex®-M3 based Microcontroller Datasheet
Document Number: 002-05646
Revision
**
*A
ECN
−
Orig. of
Change
Submission
Date
Description of Change
Migrated to Cypress and assigned document number 002-05646.
AKIH
5226742 AKIH
Document Number: 002-05646 Rev.*A
04/28/2015
No change to document contents or format.
04/27/2016
Updated to Cypress template
Page 144 of 145
MB9A150RB Series
Sales, Solutions, and Legal Information
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations
®
Products
®
PSoC Solutions
®
ARM Cortex Microcontrollers
Automotive
Clocks & Buffers
Interface
Lighting & Power Control
Memory
PSoC
Touch Sensing
USB Controllers
Wireless/RF
cypress.com/arm
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
cypress.com/automotive
cypress.com/clocks
cypress.com/interface
cypress.com/powerpsoc
cypress.com/memory
Cypress Developer Community
Forums | Projects | Videos | Blogs | Training | Components
Technical Support
cypress.com/support
cypress.com/psoc
cypress.com/touch
cypress.com/usb
cypress.com/wireless
ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.
© Cypress Semiconductor Corporation, 2012-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other
countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights,
trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of
the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software
provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in
binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s
patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use,
reproduction, modification, translation, or compilation of the Software is prohibited.
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes.
It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress
products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support
devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the
failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform
can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release
Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims,
costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the
United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.
Document Number: 002-05646 Rev.*A
Page 145 of 145