S6E1B8 Series 32-bit ARM® Cortex®-M0+ FM0+ Microcontroller The S6E1B8 Series is a series of highly integrated 32-bit microcontrollers designed for embedded controllers aiming at low power consumption and low cost. This series has the ARM Cortex-M0+ Processor with on-chip Flash memory and SRAM, and consists of peripheral functions such as various timers, LCD controller (LCDC), AES, ADC and communication interfaces (UART, CSIO (SPI), 2 2 I C, I S, Smart Card, and USB). The products which are described in this data sheet are placed into TYPE2-M0+ product categories in "FM0+ Family Peripheral Manual". Features USB host 32-bit ARM Cortex-M0+ Core USB 2.0 Full/Low-Speed supported Interrupt-transfer and Isochronous-transfer support USB Device connected/disconnected automatically detect IN/OUT token handshake packet automatically Max 256-byte packet-length supported Wake-up function supported Bulk-transfer, Processor version: r0p1 Maximum operating frequency: 40.8 MHz Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 24 peripheral interrupt with 4 selectable interrupt priority levels 24-bit System timer (Sys Tick): System timer for OS task management LCD Controller (LCDC) Selectable from 44 SEG × 4 COM (Max) or 40 SEG × 8 COM (Max) Internal Charge pump can generate 4.6 V at most Internal divide resistor is contained (selectable from 10 kΩ or 100 kΩ for the resistor value) LCD drive power supply (bias) pin (VV4 to VV0) Interrupt function synchronized with the LCD module frame frequency With blinking function Inverted display function Bit Band Operation Compatible with Cortex-M3 bit band operation. On-Chip Memory Flash memory Up to 512 K+48 Kbytes bank: upper bank : 512 Kbytes(64 Kbytes x 8) lower bank : 48 Kbytes(8 Kbytes x 6) Read cycle: 0 wait-cycle Security function for code protection Dual Multi-Function Serial Interface (Max 8channels) 128 bytes with Tx/Rx FIFO in all channels (The number of FIFO steps varies depending on the settings of the communication mode or bit length.) SRAM The on-chip SRAM of this series has one independent SRAM . Up to SRAM: 60 K+4 Kbytes 4Kbytes: can retain value in Deep Standby Mode The operation mode of each channel can be selected from one of the following. UART CSIO (CSIO is known to many customers as SPI) 2 I C USB Interface USB interface is composed of Device and Host PLL for USB is built-in, USB clock can be generated by multiplication of Main clock. UART Full duplex double buffer can be enabled or disabled. Built-in dedicated baud rate generator External clock available as a serial clock Various error detection functions (parity errors, framing errors, and overrun errors) Parity USB Device USB 2.0 Full-Speed supported 6 EndPoint supported EndPoint 0 is control transfer EndPoint 1, 2 can be selected Bulk-transfer, Interrupt-transfer or Isochronous-transfer EndPoint 3 to 5 can select Bulk-transfer or Interrupt-transfer EndPoint 1 to 5 comprise Double Buffer The size of each EndPoint is according to the follows EndPoint 0, 2 to 5 : 64 bytes EndPoint 1 : 256 bytes Max • • • • • • • Cypress Semiconductor Corporation Document Number: 001-99223 Rev.*A • CSIO (also known as SPI) 198 Champion Court Full duplex double buffer dedicated baud rate generator Overrun error detection function Serial chip select function (ch6 and ch7 only) Data length: 5 to 16 bits Built-in • San Jose, CA 95134-1709 • 408-943-2600 Revised April 7, 2016 S6E1B8 Series I2 C Standard-mode (Max: 100 kbps) supported / Fast-mode (Max 400 kbps) supported. I2 S Using 2 CSIO (ch.5, ch.6) and I S clock generator Supports two transfer protocol 2 • IS • MSB-justified Master mode only Descriptor System Data Transfer Controller (DSTC) (64 Channels) Certain ports are 5 V tolerant. See 4. List of Pin Functions and 5. I/O Circuit Type for the corresponding pins. Dual Timer (32-/16-bit Down Counter) The Dual Timer consists of two programmable 32-/16-bit down counters. The operation mode of each timer channel can be selected from one of the following. Free-running mode Periodic mode (= Reload mode) One-shot mode The DSTC can transfer data at high-speed without going via Multi-Function Timer system and, following the specified contents of the 16-bit free-run timer × 3 channels the CPU. The DSTC adopts the Descriptor Descriptor that has already been constructed on the memory, can access directly the memory / peripheral device and performs the data transfer operation. It supports the software activation, the hardware activation, and the chain activation functions A/D Converter (Max: 24 Channels) 12-bit A/D Converter Successive approximation type time: 1.0 μs @ 2.7 V to 3.6 V Priority conversion available (2 levels of priority) Scan conversion mode Built-in FIFO for conversion data storage (for scan conversion: 16 steps, for priority conversion: 4 steps) Conversion Base Timer (Max: 8 Channels) The operation mode of each channel can be selected from one of the following. 16-bit PWM timer 16-bit PPG timer 16/32-bit reload timer 16/32-bit PWC timer General-Purpose I/O Port This series can use its pin as a general-purpose I/O port when it is not used for an external bus or a peripheral function. All ports can be set to fast general-purpose I/O ports or slow general-purpose I/O ports. In addition, this series has a port relocate function that can set to which I/O port a peripheral function can be allocated. All ports are Fast GPIO which can be accessed by 1cycle Capable of controlling the pull-up of each pin The Multi-function Timer consists of the following blocks. Input capture × 4 channels Output compare × 6 channels ADC start compare × 6 channel Waveform generator × 3 channels 16-bit PPG timer × 3 channels IGBT mode is contained. The following function can be used to achieve the motor control. PWM signal output function DC chopper waveform output function Dead time function Input capture function ADC start function DTIF (motor emergency stop) interrupt function Real-Time Clock (RTC with Vbat) The Real-time Clock counts year/month/day/hour/minute/second/day of the week from year 01 to year 99. The RTC can generate an interrupt at a specific time (year/month/day/hour/minute/second/day of the week) and can also generate an interrupt in a specific year, in a specific month, on a specific day, at a specific hour or at a specific minute. It has a timer interrupt function generating an interrupt upon a specific time or at specific intervals. It can keep counting while rewriting the time. It can count leap years automatically. Capable of reading pin level directly Port relocate function Up to 102 fast general-purpose I/O ports @120-pin package Document Number: 001-99223 Rev.*A Page 2 of 129 S6E1B8 Series Watch Counter The Watch Counter wakes up the microcontroller from the low power consumption mode. The clock source can be selected from the main clock, the sub clock, the built-in high-speed CR clock or the built-in low-speed CR clock. Interval timer: up to 64 s (sub clock: 32.768 kHz) External Interrupt Controller Unit AES Calculator AES (Advanced Encryption Standard) calculator is an AES common key crypto accelerator that is compliant with FIPS (Federal Information Processing Standard Publication) 197. Available key length: 128/192/256-bit CBC mode and ECB mode support Up to 24 external interrupt input pins Clock and Reset Non-maskable interrupt (NMI) input pin: 1 Clocks Watchdog Timer (2 Channels) The watchdog timer generates an interrupt or a reset when the counter reaches a time-out value. This series consists of two different watchdogs, hardware watchdog and software watchdog. The hardware watchdog timer is clocked by the built-in low-speed CR oscillator. Therefore, the hardware watchdog is active in any low-power consumption modes except RTC, Stop, Deep standby RTC and Deep standby Stop mode. CRC (Cyclic Redundancy Check) Accelerator The CRC accelerator calculates the CRC which has a heavy software processing load, and achieves a reduction of the integrity check processing load for reception data and storage. CCITT CRC16 and IEEE-802.3 CRC32 are supported. CCITT CRC16 Generator Polynomial: 0x1021 IEEE-802.3 CRC32 Generator Polynomial: 0x04C11DB7 HDMI-CEC/Remote Control Receiver (Up to 2 Channels) HDMI-CEC transmitter Header block automatic transmission by judging Signal free Generating status interrupt by detecting Arbitration lost Generating START, EOM, ACK automatically to output CEC transmission by setting 1 byte data Generating transmission status interrupt when transmitting 1 block (1 byte data and EOM/ACK) HDMI-CEC receiver Automatic ACK reply function available Line error detection function available Remote control receiver 4 bytes reception buffer Repeat code detection function available A clock can be selected from five clock sources (two external oscillators, two built-in CR oscillator, and main PLL). Main clock: 4 MHz to 40 MHz Sub clock: 32.768 kHz Built-in high-speed CR clock: 4 MHz Built-in low-speed CR clock : 100 kHz Main PLL clock Resets Reset request from the INITX pin on reset Software reset Watchdog timer reset Low-voltage detection reset Clock supervisor reset Power Clock Supervisor (CSV) The Clock Supervisor monitors the failure of external clocks with a clock generated by a built-in CR oscillator. If an external clock failure (clock stop) is detected, a reset is asserted. If an external frequency anomaly is detected, an interrupt or a reset is asserted. Low-Voltage Detector (LVD) This series monitors the voltage on the VCC pin with a 2-stage mechanism. When the voltage falls below a designated voltage, the Low-voltage Detector generates an interrupt or a reset. LVDR: monitor Vcc and auto-reset operation LVD1: monitor Vcc and error reporting via an interrupt LVD2: selectable to monitor Vcc or LVDI and error reporting via an interrupt Low Power Consumption Mode This series has six low power consumption modes. Sleep Smart Card Interface (Max 2 Channels) Timer Compliant with ISO7816-3 specification RTC Card Reader only/B class card only Stop Available protocols Deep standby RTC (selectable between keeping the value of Transmitter: 8E2, 8O2, 8N2 Receiver: 8E1, 8O1, 8N2, 8N1, 9N1 Inverse mode RAM and not) Deep standby Stop (selectable between keeping the value of RAM and not) TX/RX FIFO integrated (RX: 16-bytes, TX:16-bytes) Document Number: 001-99223 Rev.*A Page 3 of 129 S6E1B8 Series Peripheral Clock Gating The system can reduce the current consumption of the total system with gating the operation clocks of peripheral functions not used. VBAT The consumption power during the RTC operation can be reduced by supplying the power supply independent VBAT pin. RTC (calendar circuit) / 32 kHz oscillation circuit. The following circuit can also be used. Power Supply Wide voltage range: VCC = 1.65V to 3.6 V VCC = 3.0V to 3.6V (when USB is used) VCC = 2.2V to 3.6V (when LCDC is used) Power supply for VBAT: VBAT = 1.65 V to 3.6 V RTC 32 kHz oscillation circuit Power-on circuit Back up register: 32 bytes Port circuit Debug Serial Wire Debug Port (SW-DP) Micro Trace Buffer (MTB) Unique ID A 41-bit unique value of the device has been set. Document Number: 001-99223 Rev.*A Page 4 of 129 S6E1B8 Series Table of Contents Features................................................................................................................................................................................... 1 1. Product Lineup ............................................................................................................................................................... 7 2. Packages......................................................................................................................................................................... 8 3. Pin Assignment .............................................................................................................................................................. 9 4. List of Pin Functions .................................................................................................................................................... 12 5. I/O Circuit Type ............................................................................................................................................................. 36 6. Handling Precautions .................................................................................................................................................. 46 6.1 Precautions for Product Design ................................................................................................................................... 46 6.2 Precautions for Package Mounting .............................................................................................................................. 47 6.3 Precautions for Use Environment ................................................................................................................................ 49 7. Handling Devices ......................................................................................................................................................... 50 8. Block Diagram .............................................................................................................................................................. 53 9. Memory Map ................................................................................................................................................................. 54 10. Pin Status in Each CPU State ...................................................................................................................................... 57 11. Electrical Characteristics ............................................................................................................................................ 67 11.1 Absolute Maximum Ratings ......................................................................................................................................... 67 11.2 Recommended Operating Conditions.......................................................................................................................... 68 11.3 DC Characteristics....................................................................................................................................................... 69 11.3.1 Current Rating .............................................................................................................................................................. 69 11.3.2 Pin Characteristics ....................................................................................................................................................... 75 11.3.3 LCD Characteristic ....................................................................................................................................................... 76 11.4 AC Characteristics ....................................................................................................................................................... 80 11.4.1 Main Clock Input Characteristics .................................................................................................................................. 80 11.4.2 Sub Clock Input Characteristics ................................................................................................................................... 81 11.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 82 11.4.4 Operating Conditions of Main PLL (In the Case of Using the Main Clock as the Input Clock of the PLL) .................... 83 11.4.5 Operating Conditions of Main PLL (In the Case of Using the Built-in High-Speed CR Clock as the Input Clock of the Main PLL) ........................................................................................................................................ 83 11.4.6 Reset Input Characteristics .......................................................................................................................................... 84 11.4.7 Power-on Reset Timing................................................................................................................................................ 84 11.4.8 Base Timer Input Timing .............................................................................................................................................. 85 11.4.9 CSIO/SPI/UART Timing ............................................................................................................................................... 86 11.4.10 External Input Timing .............................................................................................................................................. 103 2 11.4.11 I C Timing ............................................................................................................................................................... 104 2 11.4.12 I S Timing ............................................................................................................................................................... 105 11.4.13 Smart Card Interface Characteristics ...................................................................................................................... 106 11.4.14 SW-DP Timing ........................................................................................................................................................ 107 11.5 12-bit A/D Converter .................................................................................................................................................. 108 11.6 USB Characteristics .................................................................................................................................................. 111 11.7 Low-Voltage Detection Characteristics ...................................................................................................................... 116 11.7.1 Low-Voltage Detection Reset ..................................................................................................................................... 116 11.7.2 Low-Voltage Detection Interrupt ................................................................................................................................. 117 11.7.3 Low-Voltage Detection Interrupt 2 .............................................................................................................................. 118 11.8 Flash Memory Write/Erase Characteristics ............................................................................................................... 119 11.9 Return Time from Low-Power Consumption Mode .................................................................................................... 120 11.9.1 Return Factor: Interrupt/WKUP .................................................................................................................................. 120 11.9.2 Return Factor: Reset .................................................................................................................................................. 122 12. Ordering Information ................................................................................................................................................. 124 Document Number: 001-99223 Rev.*A Page 5 of 129 S6E1B8 Series 13. Package Dimensions ................................................................................................................................................. 125 Document History ............................................................................................................................................................... 128 Sales, Solutions, and Legal Information........................................................................................................................... 129 Document Number: 001-99223 Rev.*A Page 6 of 129 S6E1B8 Series 1. Product Lineup Memory Size Product Name Upper Bank On-chip Flash memory Lower Bank On-chip SRAM Function S6E1B84E/F/G 256 Kbytes 48 Kbytes 32 Kbytes S6E1B84E0A S6E1B86E0A S6E1B84EHA S6E1B86EHA 80 Product Name Pin count S6E1B84F0A S6E1B86F0A S6E1B84FHA S6E1B86FHA 100 Cortex-M0+ 40.8 MHz 1.65 V to 3.6 V 1 unit 64ch 8ch (Max) with 128 bytes FIFO 2 I S: ch.5, ch.6 CPU Frequency Power supply voltage range USB 2.0 (Device/Host) DSTC Multi-function Serial Interface 2 2 (UART/CSIO (SPI)/I C/I S) Base Timer (PWC/Reload timer/PWM/PPG) 20SEG x 8COM(Max) / 24SEG x 4COM(Max) Multi-function Timer 32SEG x 8COM(Max) / 36SEG x 4COM(Max) 40SEG x 8COM(Max) / 44SEG x 4COM(Max) 6ch 4ch 3ch 6ch 3ch 3ch 1 unit Dual Timer 1 unit HDMI-CEC/ Remote Control Receiver Smart Card Interface Real-time Clock Watch Counter CRC Accelerator Watchdog timer External Interrupt I/O port 12-bit A/D converter CSV (Clock Supervisor) LVD (Low-voltage Detection) High-speed Built-in CR Low-speed Debug Function Unique ID AES Calculator S6E1B84G0A S6E1B86G0A S6E1B84GHA S6E1B86GHA 120 8ch (Max) LCD controller A/D activation compare Input capture Free-run timer Output compare Waveform generator PPG S6E1B86E/F/G 512 Kbytes 48 Kbytes 64 Kbytes 2ch (max) 65 pins (Max) 16ch (1 unit) - Yes *1 2ch (max) 1 unit (with battery power) 1 unit Yes 1ch (SW) + 1ch (HW) 24 pins (Max), NMI × 1 82 pins (Max) 23ch (1 unit) Yes 2ch 4 MHz 100 kHz SW-DP Yes *1 Yes 102 pins (Max) 24ch (1 unit) - Yes *1 *1: AES Calculator is built in following products. S6E1B86GHA, S6E1B84GHA, S6E1B86FHA, S6E1B84FHA, S6E1B86EHA, S6E1B84EHA Note: − All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the I/O port according to your function use. See "11 Electrical Characteristics 11.4 AC Characteristics 11.4.3 Built-in CR Oscillation Characteristics" for accuracy of built-in CR. Document Number: 001-99223 Rev.*A Page 7 of 129 S6E1B8 Series 2. Packages Product Name Package LQFP: LQH080-02 (0.50 mm pitch) LQFP: LQI100 (0.50 mm pitch) LQFP: LQM120 (0.50 mm pitch) : Available S6E1B84E/S6E1B86E S6E1B84F/S6E1B86F S6E1B84G/S6E1B86G - - - - - - Note: See "13. Package Dimensions" for detailed information on each package. − Document Number: 001-99223 Rev.*A Page 8 of 129 S6E1B8 Series 3. Pin Assignment LQH080-02 VSS P82/SCK7_2 P81/SOT7_2/INT11_0/C1 P80/SIN7_2/INT20_1/C0 P60/SIN5_0/MI2SDI5_0/TIOA2_2/INT15_1/WKUP3/CEC1_0/IGTRG0_1 P61/SOT5_0/MI2SDO5_0/TIOB2_2/DTTI0X_2/SEG00 P62/SCK5_0/MI2SCK5_0/ADTG_3/INT07_1/SEG01/TIOA6_1/IC0_RST_0 P63/MI2SWS5_0/INT03_0/SEG02/TIOB6_1/IC0_DATA_0 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/MI2SMCK5_0/WKUP0/IC0_CLK_0/SCK4_0 P0E/CTS4_0/TIOB3_2/INT21_0/SEG03/IC0_VCC_0 P0D/RTS4_0/TIOA3_2/INT20_0/SEG04/IC0_VPEN_0 P0C/INT19_0/UDP0 P0B/INT18_0/UDM0 P0A/SIN4_0/INT00_2/WKUP5/IC0_CIN_0/UHCONX0 P07/AN22/ADTG_0/SCK4_2/INT23_1/SEG07/SOT4_0 P04/SCK3_2/INT06_2 P03/SWDIO P02/SIN3_2/TIOB5_0 P01/SWCLK P00/SOT3_2/INT14_1 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 (TOP VIEW) VCC 1 60 P21/AN18/SIN0_0/INT06_1/WKUP2/SEG11 P50/INT00_0/SIN3_1/VV4 2 59 P22/AN17/SOT0_0/TIOB7_1/SEG12 P51/INT01_0/SOT3_1/VV3 3 58 P23/AN16/SCK0_0/TIOA7_1/RTO00_1/SEG13 P52/INT02_0/SCK3_1/VV2 4 57 P1B/AN11/SOT4_1/IC02_1/INT20_2/SEG16 P53/SIN6_0/TIOA1_2/INT07_2/VV1 5 56 P1A/AN10/SIN4_1/IC01_1/INT05_1/SEG17 P54/SOT6_0/TIOB1_2/INT18_1/VV0 6 P55/SCK6_0/ADTG_1/INT19_1/SEG39 7 55 P19/AN09/SCK2_2/IC00_1/SEG18 54 P18/AN08/SOT2_2/SEG19 ` P56/INT08_2/MI2SMCK6_1/SEG38/WKUP9/CEC1_1 8 P30/TIOB0_1/SCS60_1/INT03_2/MI2SWS6_1/COM7/SEG43/WKUP4 9 53 AVRH 52 AVRL P31/TIOB1_1/SCK6_1/MI2SCK6_1/INT04_2/COM6/SEG42 10 51 AVSS LQFP - 80 P32/TIOB2_1/SOT6_1/MI2SDO6_1/INT05_2/COM5/SEG41 11 50 AVCC P33/INT04_0/TIOB3_1/SIN6_1/MI2SDI6_1/ADTG_6/COM4/SEG40 12 49 P17/AN07/SIN2_2/INT04_1/SEG20 P39/DTTI0X_0/ADTG_2/TIOB4_0/INT06_0/COM3 13 48 P16/AN06/SCK0_1/INT15_0/SEG21 P3A/RTO00_0/TIOA0_1/INT07_0/RTCCO_2/SUBOUT_2/IC1_CIN_0/COM2 14 47 P15/AN05/IC1_CIN_1/SOT0_1/IC03_2/INT14_0/SEG22 P3B/RTO01_0/TIOA1_1/IC1_DATA_0/COM1 15 46 P14/AN04/IC1_DATA_1/RTS1_1/SIN0_1/INT03_1/IC02_2/SEG23 P3C/RTO02_0/TIOA2_1/INT18_2/IC1_RST_0/COM0 16 45 P13/AN03/IC1_RST_1/SCK1_1/RTCCO_1/IC01_2/SUBOUT_1/SEG24 P3D/RTO03_0/TIOA3_1/IC1_VPEN_0/SEG36 17 44 P12/AN02/IC1_VPEN_1/SOT1_1/IC00_2/SEG25 P3E/RTO04_0/TIOA4_1/INT19_2/IC1_VCC_0/SEG35/WKUP8 18 43 P11/AN01/IC1_VCC_1/SIN1_1/INT02_1/FRCK0_2/WKUP1/SEG26 P3F/RTO05_0/TIOA5_1/IC1_CLK_0/SEG34 19 42 P10/AN00/IC1_CLK_1/CTS1_1/SEG27 40 VSS PE3/X1 39 PE2/X0 38 37 MD0 PE0/MD1 36 P4D/TIOB3_0/INT13_0/SCK7_1/WKUP6/SEG28 35 31 VBAT P4C/TIOB2_0/SOT7_1/INT12_0/SEG29/CEC0_0 34 30 P49/VWAKEUP P4B/TIOB1_0/SIN7_1/INT22_1/WKUP7/SEG30/IGTRG0_0 33 29 P48/VREGCTL P4A/TIOB0_0/SCS70_1/INT21_1/SEG31 32 28 P47/X1A 25 VCC 27 24 VSS P46/X0A 23 C INITX 26 22 P45/LVDI/TIOA5_0/SEG32/IC0_CIN_1 41 VCC P44/TIOA4_0/INT10_0/SEG33/RTS1_2/IC0_DATA_1 21 VSS 20 Note: − The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used. Document Number: 001-99223 Rev.*A Page 9 of 129 S6E1B8 Series LQI100 P82/SCK7_2 P81/SOT7_2/INT11_0/C1 P80/SIN7_2/INT20_1/C0 P60/SIN5_0/MI2SDI5_0/TIOA2_2/INT15_1/WKUP3/CEC1_0/IGTRG0_1 P61/SOT5_0/MI2SDO5_0/TIOB2_2/DTTI0X_2/SEG00 P62/SCK5_0/MI2SCK5_0/ADTG_3/INT07_1/SEG01/TIOA6_1/IC0_RST_0 P63/MI2SWS5_0/INT03_0/SEG02/TIOB6_1/IC0_DATA_0 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/MI2SMCK5_0/WKUP0/IC0_CLK_0/SCK4_0 P0E/CTS4_0/TIOB3_2/INT21_0/SEG03/IC0_VCC_0 P0D/RTS4_0/TIOA3_2/INT20_0/SEG04/IC0_VPEN_0 P0C/INT19_0/UDP0 P0B/INT18_0/UDM0 P0A/SIN4_0/INT00_2/WKUP5/IC0_CIN_0/UHCONX0 P09/TIOB0_2/RTS4_2/INT17_0/SEG05 P08/AN23/TIOA0_2/CTS4_2/INT16_0/SEG06 P07/AN22/ADTG_0/SCK4_2/INT23_1/SEG07/SOT4_0 P06/AN21/TIOB5_2/SOT4_2/INT01_1/SEG08 P05/AN20/TIOA5_2/SIN4_2/INT00_1/SEG09/WKUP10 P04/SCK3_2/INT06_2 P03/SWDIO P02/SIN3_2/TIOB5_0 P01/SWCLK P00/SOT3_2/INT14_1 VCC 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 100 VSS (TOP VIEW) VCC 1 75 VSS P50/INT00_0/SIN3_1/VV4 2 74 P20/AN19/INT05_0/CROUT_0/SEG10 P51/INT01_0/SOT3_1/VV3 3 73 P21/AN18/SIN0_0/INT06_1/WKUP2/SEG11 P52/INT02_0/SCK3_1/VV2 4 72 P22/AN17/SOT0_0/TIOB7_1/SEG12 P53/SIN6_0/TIOA1_2/INT07_2/VV1 5 71 P23/AN16/SCK0_0/TIOA7_1/RTO00_1/SEG13 P54/SOT6_0/TIOB1_2/INT18_1/VV0 6 70 P1E/AN14/RTS4_1/ADTG_5/FRCK0_1/INT23_2 P55/SCK6_0/ADTG_1/INT19_1/SEG39 7 69 P1D/AN13/CTS4_1/DTTI0X_1/INT22_2/SEG14 P56/INT08_2/MI2SMCK6_1/SEG38/WKUP9/CEC1_1 8 68 P1C/AN12/SCK4_1/IC03_1/INT21_2/SEG15 P30/TIOB0_1/SCS60_1/INT03_2/MI2SWS6_1/COM7/SEG43/WKUP4 9 67 P1B/AN11/SOT4_1/IC02_1/INT20_2/SEG16 P31/TIOB1_1/SCK6_1/MI2SCK6_1/INT04_2/COM6/SEG42 10 66 P1A/AN10/SIN4_1/IC01_1/INT05_1/SEG17 P32/TIOB2_1/SOT6_1/MI2SDO6_1/INT05_2/COM5/SEG41 11 65 P19/AN09/SCK2_2/IC00_1/SEG18 64 P18/AN08/SOT2_2/SEG19 P33/INT04_0/TIOB3_1/SIN6_1/MI2SDI6_1/ADTG_6/COM4/SEG40 12 63 AVRH P34/SCS61_1/FRCK0_0/TIOB4_1 13 LQFP - 100 P35/SCS62_1/IC03_0/TIOB5_1/INT08_1/SEG37 14 62 AVRL P36/IC02_0/SIN5_2/INT09_1/WKUP11 15 61 AVSS P37/IC01_0/SOT5_2/INT10_1 16 60 AVCC P38/IC00_0/SCK5_2/INT11_1 17 59 P17/AN07/SIN2_2/INT04_1/SEG20 58 P16/AN06/SCK0_1/INT15_0/SEG21 P39/DTTI0X_0/ADTG_2/TIOB4_0/INT06_0/COM3 18 57 P15/AN05/IC1_CIN_1/SOT0_1/IC03_2/INT14_0/SEG22 P3A/RTO00_0/TIOA0_1/INT07_0/RTCCO_2/SUBOUT_2/IC1_CIN_0/COM2 19 56 P14/AN04/IC1_DATA_1/RTS1_1/SIN0_1/INT03_1/IC02_2/SEG23 P3B/RTO01_0/TIOA1_1/IC1_DATA_0/COM1 20 55 P13/AN03/IC1_RST_1/SCK1_1/RTCCO_1/IC01_2/SUBOUT_1/SEG24 P3C/RTO02_0/TIOA2_1/INT18_2/IC1_RST_0/COM0 21 P3D/RTO03_0/TIOA3_1/IC1_VPEN_0/SEG36 22 54 P12/AN02/IC1_VPEN_1/SOT1_1/IC00_2/SEG25 53 P11/AN01/IC1_VCC_1/SIN1_1/INT02_1/FRCK0_2/WKUP1/SEG26 P3E/RTO04_0/TIOA4_1/INT19_2/IC1_VCC_0/SEG35/WKUP8 23 52 P10/AN00/IC1_CLK_1/CTS1_1/SEG27 P3F/RTO05_0/TIOA5_1/IC1_CLK_0/SEG34 24 50 VSS PE3/X1 49 PE2/X0 48 47 MD0 PE0/MD1 46 P4D/TIOB3_0/INT13_0/SCK7_1/WKUP6/SEG28 45 41 VBAT P4C/TIOB2_0/SOT7_1/INT12_0/SEG29/CEC0_0 44 40 P49/VWAKEUP P4B/TIOB1_0/SIN7_1/INT22_1/WKUP7/SEG30/IGTRG0_0 43 39 P48/VREGCTL P4A/TIOB0_0/SCS70_1/INT21_1/SEG31 42 38 P47/X1A 35 VCC 37 34 VSS P46/X0A 33 C INITX 36 32 P45/LVDI/TIOA5_0/SEG32/IC0_CIN_1 P44/TIOA4_0/INT10_0/SEG33/RTS1_2/IC0_DATA_1 31 29 P42/TIOA2_0/INT08_0/SCK1_2/IC0_VPEN_1 P43/TIOA3_0/INT09_0/ADTG_7/CTS1_2/IC0_RST_1 30 28 P41/TIOA1_0/INT13_1/SOT1_2/IC0_VCC_1 VCC 26 51 VCC P40/TIOA0_0/INT12_1/SIN1_2/IC0_CLK_1 27 VSS 25 Note: − The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used. Document Number: 001-99223 Rev.*A Page 10 of 129 S6E1B8 Series LQM120 VSS P82/SCK7_2 P81/SOT7_2/INT11_0/C1 P80/SIN7_2/INT20_1/C0 P60/SIN5_0/MI2SDI5_0/TIOA2_2/INT15_1/WKUP3/CEC1_0/IGTRG0_1 P61/SOT5_0/MI2SDO5_0/TIOB2_2/DTTI0X_2/SEG00 P62/SCK5_0/MI2SCK5_0/ADTG_3/INT07_1/SEG01/TIOA6_1/IC0_RST_0 P63/SIN5_1/MI2SWS5_0/INT03_0/SEG02/TIOB6_1/IC0_DATA_0 P64/SOT5_1/TIOA7_0/INT10_2 P65/SCK5_1/TIOB7_0/INT23_0 P66/SIN3_0/INT11_2 P67/SOT3_0/TIOA7_2/INT22_0 P68/SCK3_0/TIOB7_2/INT12_2 P0F/NMIX/CROUT_1/RTCCO_0/SUBOUT_0/MI2SMCK5_0/WKUP0/IC0_CLK_0/SCK4_0 P0E/CTS4_0/TIOB3_2/INT21_0/SEG03/IC0_VCC_0 P0D/RTS4_0/TIOA3_2/INT20_0/SEG04/IC0_VPEN_0 P0C/INT19_0/UDP0 P0B/INT18_0/UDM0 P0A/SIN4_0/INT00_2/WKUP5/IC0_CIN_0/UHCONX0 P09/TIOB0_2/RTS4_2/INT17_0/SEG05 P08/AN23/TIOA0_2/CTS4_2/INT16_0/SEG06 P07/AN22/ADTG_0/SCK4_2/INT23_1/SEG07/SOT4_0 P06/AN21/TIOB5_2/SOT4_2/INT01_1/SEG08 P05/AN20/TIOA5_2/SIN4_2/INT00_1/SEG09/WKUP10 P04/SCK3_2/INT06_2 P03/SWDIO P02/SIN3_2/TIOB5_0 P01/SWCLK P00/SOT3_2/INT14_1 VCC 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 (TOP VIEW) VCC 1 90 VSS P50/INT00_0/SIN3_1/VV4 2 89 P20/AN19/INT05_0/CROUT_0/SEG10 P51/INT01_0/SOT3_1/VV3 3 88 P21/AN18/SIN0_0/INT06_1/WKUP2/SEG11 P52/INT02_0/SCK3_1/VV2 4 87 P22/AN17/SOT0_0/TIOB7_1/SEG12 P53/SIN6_0/TIOA1_2/INT07_2/VV1 5 86 P23/AN16/SCK0_0/TIOA7_1/RTO00_1/SEG13 P54/SOT6_0/TIOB1_2/INT18_1/VV0 6 85 P24/SIN2_1/RTO01_1/INT17_1 P55/SCK6_0/ADTG_1/INT19_1/SEG39 7 84 P25/SOT2_1/RTO02_1 P56/SIN1_0/INT08_2/MI2SMCK6_1/SEG38/WKUP9/CEC1_1 8 83 P26/SCK2_1/RTO03_1 P57/SOT1_0 9 82 P27/AN15/RTO04_1/TIOA6_2/INT02_2 P58/SCK1_0 10 81 P28/ADTG_4/RTO05_1/TIOB6_2 P59/SIN7_0/INT16_1 11 80 P1E/AN14/RTS4_1/ADTG_5/FRCK0_1/INT23_2 P5A/SOT7_0/INT16_2 12 79 P1D/AN13/CTS4_1/DTTI0X_1/INT22_2/SEG14 P5B/SCK7_0/INT17_2 13 78 P1C/AN12/SCK4_1/IC03_1/INT21_2/SEG15 P30/TIOB0_1/SCS60_1/INT03_2/MI2SWS6_1/COM7/SEG43/WKUP4 14 77 P1B/AN11/SOT4_1/IC02_1/INT20_2/SEG16 LQFP - 120 P31/TIOB1_1/SCK6_1/MI2SCK6_1/INT04_2/COM6/SEG42 15 P32/TIOB2_1/SOT6_1/MI2SDO6_1/INT05_2/COM5/SEG41 16 76 P1A/AN10/SIN4_1/IC01_1/INT05_1/SEG17 75 P19/AN09/SCK2_2/IC00_1/SEG18 P33/INT04_0/TIOB3_1/SIN6_1/MI2SDI6_1/ADTG_6/COM4/SEG40 17 74 P18/AN08/SOT2_2/SEG19 P34/SCS61_1/FRCK0_0/TIOB4_1 18 73 AVRH P35/SCS62_1/IC03_0/TIOB5_1/INT08_1/SEG37 19 72 AVRL P36/IC02_0/SIN5_2/INT09_1/WKUP11 20 71 AVSS P37/IC01_0/SOT5_2/INT10_1 21 70 AVCC P38/IC00_0/SCK5_2/INT11_1 22 69 P17/AN07/SIN2_2/INT04_1/SEG20 P39/DTTI0X_0/ADTG_2/TIOB4_0/INT06_0/COM3 23 68 P16/AN06/SCK0_1/INT15_0/SEG21 P3A/RTO00_0/TIOA0_1/INT07_0/RTCCO_2/SUBOUT_2/IC1_CIN_0/COM2 24 67 P15/AN05/IC1_CIN_1/SOT0_1/IC03_2/INT14_0/SEG22 P3B/RTO01_0/TIOA1_1/IC1_DATA_0/COM1 25 66 P14/AN04/IC1_DATA_1/RTS1_1/SIN0_1/INT03_1/IC02_2/SEG23 P3C/RTO02_0/TIOA2_1/INT18_2/IC1_RST_0/COM0 26 65 P13/AN03/IC1_RST_1/SCK1_1/RTCCO_1/IC01_2/SUBOUT_1/SEG24 P3D/RTO03_0/TIOA3_1/IC1_VPEN_0/SEG36 27 64 P12/AN02/IC1_VPEN_1/SOT1_1/IC00_2/SEG25 P3E/RTO04_0/TIOA4_1/INT19_2/IC1_VCC_0/SEG35/WKUP8 28 63 P11/AN01/IC1_VCC_1/SIN1_1/INT02_1/FRCK0_2/WKUP1/SEG26 P3F/RTO05_0/TIOA5_1/IC1_CLK_0/SEG34 29 62 P10/AN00/IC1_CLK_1/CTS1_1/SEG27 60 VSS PE3/X1 59 PE2/X0 58 57 MD0 PE0/MD1 56 46 VBAT P74/SCK2_0 55 45 P49/VWAKEUP P73/SOT2_0/TIOB6_0/INT15_2 54 44 P48/VREGCTL P72/SIN2_0/TIOA6_0/INT14_2 53 43 P71/SCS72_1/TIOB4_2/INT13_2 52 42 P47/X1A P70/SCS71_1/TIOA4_2 51 41 INITX P46/X0A P4D/TIOB3_0/INT13_0/SCK7_1/WKUP6/SEG28 50 40 VCC P4C/TIOB2_0/SOT7_1/INT12_0/SEG29/CEC0_0 49 39 VSS P4B/TIOB1_0/SIN7_1/INT22_1/WKUP7/SEG30/IGTRG0_0 48 38 C P4A/TIOB0_0/SCS70_1/INT21_1/SEG31 47 37 P45/LVDI/TIOA5_0/SEG32/IC0_CIN_1 P44/TIOA4_0/INT10_0/SEG33/RTS1_2/IC0_DATA_1 36 34 P43/TIOA3_0/INT09_0/ADTG_7/CTS1_2/IC0_RST_1 35 33 P41/TIOA1_0/INT13_1/SOT1_2/IC0_VCC_1 P42/TIOA2_0/INT08_0/SCK1_2/IC0_VPEN_1 VCC 31 61 VCC P40/TIOA0_0/INT12_1/SIN1_2/IC0_CLK_1 32 VSS 30 Note: − The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used. Document Number: 001-99223 Rev.*A Page 11 of 129 S6E1B8 Series 4. List of Pin Functions List of Pin Numbers The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used. Pin No. LQFP-120 LQFP-100 LQFP-80 1 1 1 Pin Name I/O Circuit Type VCC Pin State Type - P50 2 2 2 SIN3_1 INT00_0 Q X Q X Q X Q X Q X L S L U F I F I F J VV4 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 - - 9 - - 10 - - 11 - - 8 Document Number: 001-99223 Rev.*A P51 SOT3_1 INT01_0 VV3 P52 SCK3_1 INT02_0 VV2 P53 SIN6_0 TIOA1_2 INT07_2 VV1 P54 SOT6_0 TIOB1_2 INT18_1 VV0 P55 SCK6_0 ADTG_1 INT19_1 SEG39 P56 MI2SMCK6_1 CEC1_1 INT08_2 WKUP9 SEG38 SIN1_0 P57 SOT1_0 P58 SCK1_0 P59 SIN7_0 INT16_1 Page 12 of 129 S6E1B8 Series Pin No. LQFP-120 LQFP-100 LQFP-80 12 - - 13 - - 14 9 9 15 10 10 16 11 11 17 12 12 18 13 - 19 14 - 20 15 - 21 16 - Document Number: 001-99223 Rev.*A Pin Name P5A SOT7_0 INT16_2 P5B SCK7_0 INT17_2 P30 TIOB0_1 SCS60_1 MI2SWS6_1 INT03_2 WKUP4 COM7 SEG43 P31 TIOB1_1 SCK6_1 MI2SCK6_1 INT04_2 COM6 SEG42 P32 TIOB2_1 SOT6_1 MI2SDO6_1 INT05_2 COM5 SEG41 P33 TIOB3_1 SIN6_1 MI2SDI6_1 INT04_0 ADTG_6 COM4 SEG40 P34 SCS61_1 FRCK0_0 TIOB4_1 P35 SCS62_1 IC03_0 TIOB5_1 INT08_1 SEG37 P36 IC02_0 SIN5_2 INT09_1 WKUP11 P37 IC01_0 SOT5_2 INT10_1 I/O Circuit Type Pin State Type F J F J M T M S M S M S I I L S I N I J Page 13 of 129 S6E1B8 Series Pin No. LQFP-120 LQFP-100 LQFP-80 22 17 - 23 18 13 24 19 14 25 20 15 26 21 16 27 22 17 28 23 18 29 24 19 30 31 25 26 20 - 32 27 - Document Number: 001-99223 Rev.*A Pin Name P38 IC00_0 SCK5_2 INT11_1 P39 DTTI0X_0 TIOB4_0 ADTG_2 INT06_0 COM3 P3A RTO00_0 TIOA0_1 RTCCO_2 SUBOUT_2 IC1_CIN_0 INT07_0 COM2 P3B RTO01_0 TIOA1_1 IC1_DATA_0 COM1 P3C RTO02_0 TIOA2_1 INT18_2 IC1_RST_0 COM0 P3D RTO03_0 TIOA3_1 IC1_VPEN_0 SEG36 P3E RTO04_0 TIOA4_1 IC1_VCC_0 INT19_2 WKUP8 SEG35 P3F RTO05_0 TIOA5_1 IC1_CLK_0 SEG34 VSS VCC P40 TIOA0_0 IC0_CLK_1 INT12_1 SIN1_2 I/O Circuit Type Pin State Type F J N S N S N P N S L P L T L P - - F J Page 14 of 129 S6E1B8 Series Pin No. LQFP-120 LQFP-100 LQFP-80 33 28 - 34 29 - 35 30 - 36 31 21 37 32 22 38 39 40 41 33 34 35 36 23 24 25 26 42 37 27 43 38 28 44 39 29 45 40 30 46 41 31 47 42 32 48 43 33 Document Number: 001-99223 Rev.*A Pin Name P41 TIOA1_0 SOT1_2 IC0_VCC_1 INT13_1 P42 TIOA2_0 SCK1_2 IC0_VPEN_1 INT08_0 P43 TIOA3_0 CTS1_2 ADTG_7 IC0_RST_1 INT09_0 P44 TIOA4_0 IC0_DATA_1 INT10_0 RTS1_2 SEG33 P45 TIOA5_0 IC0_CIN_1 LVDI SEG32 C VSS VCC INITX P46 X0A P47 X1A P48 VREGCTL P49 VWAKEUP VBAT P4A TIOB0_0 SCS70_1 INT21_1 SEG31 P4B TIOB1_0 SIN7_1 INT22_1 WKUP7 SEG30 IGTRG0_0 I/O Circuit Type Pin State Type F J F J F J L S L P B C D E E F I I I I - - L S L T Page 15 of 129 S6E1B8 Series Pin No. LQFP-120 LQFP-100 LQFP-80 Pin Name P4C TIOB2_0 SOT7_1 CEC0_0 INT12_0 SEG29 P4D TIOB3_0 SCK7_1 INT13_0 WKUP6 SEG28 P70 TIOA4_2 SCS71_1 P71 TIOB4_2 SCS72_1 INT13_2 P72 SIN2_0 TIOA6_0 INT14_2 P73 SOT2_0 TIOB6_0 INT15_2 P74 SCK2_0 PE0 MD1 MD0 PE2 X0 PE3 I/O Circuit Type Pin State Type L R L T F I F J F J F J F I C D J M A A A B 49 44 34 50 45 35 51 - - 52 - - 53 - - 54 - - 55 - - 56 46 36 57 47 37 58 48 38 59 49 39 60 50 40 VSS - - 61 51 41 VCC - - P K P W 62 52 42 63 53 43 Document Number: 001-99223 Rev.*A X1 P10 IC1_CLK_1 CTS1_1 AN00 SEG27 P11 IC1_VCC_1 SIN1_1 FRCK0_2 INT02_1 WKUP1 AN01 SEG26 Page 16 of 129 S6E1B8 Series Pin No. LQFP-120 LQFP-100 LQFP-80 64 54 44 65 55 45 66 56 46 67 57 47 68 58 48 69 59 49 70 71 72 73 60 61 62 63 50 51 52 53 74 64 54 75 65 55 Document Number: 001-99223 Rev.*A Pin Name P12 IC1_VPEN_1 SOT1_1 IC00_2 AN02 SEG25 P13 IC1_RST_1 SCK1_1 RTCCO_1 IC01_2 SUBOUT_1 AN03 SEG24 P14 IC1_DATA_1 RTS1_1 SIN0_1 IC02_2 INT03_1 AN04 SEG23 P15 IC1_CIN_1 SOT0_1 IC03_2 INT14_0 AN05 SEG22 P16 SCK0_1 INT15_0 AN06 SEG21 P17 SIN2_2 INT04_1 AN07 SEG20 AVCC AVSS AVRL AVRH P18 SOT2_2 AN08 SEG19 P19 SCK2_2 IC00_1 AN09 SEG18 I/O Circuit Type Pin State Type P K P K P V P V P V P V - - P K P K Page 17 of 129 S6E1B8 Series Pin No. LQFP-120 LQFP-100 LQFP-80 76 66 56 77 67 57 78 68 - 79 69 - 80 70 - 81 - - 82 - - 83 - - 84 - - 85 - - 86 71 58 Document Number: 001-99223 Rev.*A Pin Name P1A SIN4_1 IC01_1 INT05_1 AN10 SEG17 P1B SOT4_1 IC02_1 INT20_2 AN11 SEG16 P1C SCK4_1 IC03_1 INT21_2 AN12 SEG15 P1D CTS4_1 DTTI0X_1 INT22_2 AN13 SEG14 P1E RTS4_1 FRCK0_1 ADTG_5 INT23_2 AN14 P28 RTO05_1 TIOB6_2 ADTG_4 P27 RTO04_1 TIOA6_2 INT02_2 AN15 P26 SCK2_1 RTO03_1 P25 SOT2_1 RTO02_1 P24 SIN2_1 RTO01_1 INT17_1 P23 SCK0_0 TIOA7_1 RTO00_1 AN16 SEG13 I/O Circuit Type Pin State Type P V P V P V P V H L F I G L F I F I F J P K Page 18 of 129 S6E1B8 Series Pin No. LQFP-120 LQFP-100 LQFP-80 87 72 59 88 73 60 89 74 - 90 91 75 76 - 92 77 61 93 78 62 94 79 63 95 80 64 96 81 65 97 82 - 98 83 - 99 84 66 Document Number: 001-99223 Rev.*A Pin Name P22 SOT0_0 TIOB7_1 AN17 SEG12 P21 SIN0_0 INT06_1 WKUP2 AN18 SEG11 P20 INT05_0 CROUT_0 AN19 SEG10 VSS VCC P00 SOT3_2 INT14_1 P01 SWCLK P02 SIN3_2 TIOB5_0 P03 SWDIO P04 SCK3_2 INT06_2 P05 TIOA5_2 SIN4_2 INT00_1 WKUP10 AN20 SEG09 P06 TIOB5_2 SOT4_2 INT01_1 AN21 SEG08 P07 SCK4_2 ADTG_0 INT23_1 AN22 SEG07 SOT4_0 I/O Circuit Type Pin State Type P K P W P V - - I J I H I I I H I J P W P V P V Page 19 of 129 S6E1B8 Series Pin No. LQFP-120 LQFP-100 LQFP-80 100 85 - 101 86 - 102 87 67 103 88 68 104 89 69 105 90 70 106 91 71 107 92 72 108 - - 109 - - 110 - - 111 - - Document Number: 001-99223 Rev.*A Pin Name P08 TIOA0_2 CTS4_2 INT16_0 AN23 SEG06 P09 TIOB0_2 RTS4_2 INT17_0 SEG05 P0A SIN4_0 INT00_2 WKUP5 IC0_CIN_0 UHCONX0 P0B INT18_0 UDM0 P0C INT19_0 UDP0 P0D RTS4_0 TIOA3_2 INT20_0 SEG04 IC0_VPEN_0 P0E CTS4_0 TIOB3_2 INT21_0 SEG03 IC0_VCC_0 P0F CROUT_1 RTCCO_0 SUBOUT_0 MI2SMCK5_0 NMIX WKUP0 IC0_CLK_0 SCK4_0 P68 SCK3_0 TIOB7_2 INT12_2 P67 SOT3_0 TIOA7_2 INT22_0 P66 SIN3_0 INT11_2 P65 I/O Circuit Type Pin State Type P V L S I O K Q K Q L S L S I G F J F J F J F J Page 20 of 129 S6E1B8 Series Pin No. LQFP-120 112 LQFP-100 LQFP-80 - - 93 73 - - 114 94 74 115 95 75 116 96 76 117 97 77 118 98 78 119 99 79 120 100 80 113 Pin Name SCK5_1 TIOB7_0 INT23_0 P64 SOT5_1 TIOA7_0 INT10_2 P63 MI2SWS5_0 INT03_0 SEG02 TIOB6_1 IC0_DATA_0 SIN5_1 P62 SCK5_0 MI2SCK5_0 ADTG_3 INT07_1 SEG01 TIOA6_1 IC0_RST_0 P61 SOT5_0 MI2SDO5_0 TIOB2_2 DTTI0X_2 SEG00 P60 SIN5_0 MI2SDI5_0 TIOA2_2 CEC1_0 INT15_1 WKUP3 IGTRG0_1 P80 SIN7_2 INT20_1 C0 P81 SOT7_2 INT11_0 C1 P82 SCK7_2 VSS I/O Circuit Type Pin State Type F J L S L S L P I O O J O J I I - - *: 5 V tolerant I/O Document Number: 001-99223 Rev.*A Page 21 of 129 S6E1B8 Series List of Pin Functions The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used. Pin Function LQFP-120 99 7 23 114 81 80 17 35 62 Pin No. LQFP-100 84 7 18 94 70 12 30 52 LQFP-80 66 7 13 74 12 42 AN01 63 53 43 AN02 64 54 44 AN03 65 55 45 AN04 66 56 46 AN05 67 57 47 AN06 AN07 AN08 AN09 AN10 AN11 AN12 AN13 AN14 AN15 AN16 AN17 AN18 AN19 AN20 AN21 AN22 AN23 TIOA0_0 TIOA0_1 TIOA0_2 TIOB0_0 TIOB0_1 TIOB0_2 68 69 74 75 76 77 78 79 80 82 86 87 88 89 97 98 99 100 32 24 100 47 14 101 58 59 64 65 66 67 68 69 70 71 72 73 74 82 83 84 85 27 19 85 42 9 86 48 49 54 55 56 57 58 59 60 66 14 32 9 - Pin Name ADTG_0 ADTG_1 ADTG_2 ADTG_3 ADTG_4 ADTG_5 ADTG_6 ADTG_7 AN00 ADC Base Timer 0 Document Number: 001-99223 Rev.*A Function Description A/D converter external trigger input pin A/D converter analog input pin. ANxx describes ADC ch.xx. Base timer ch.0 TIOA pin Base timer ch.0 TIOB pin Page 22 of 129 S6E1B8 Series Pin Function Base Timer 1 Pin Name TIOA1_0 TIOA1_1 TIOA1_2 TIOB1_0 TIOB1_1 TIOB1_2 TIOA2_0 TIOA2_1 Base Timer 2 Base Timer 3 Base Timer 4 Base Timer 5 Base Timer 6 Base Timer 7 Debugger Function Description Base timer ch.1 TIOA pin Base timer ch.1 TIOB pin Base timer ch.2 TIOA pin TIOA2_2 TIOB2_0 TIOB2_1 TIOB2_2 TIOA3_0 TIOA3_1 TIOA3_2 TIOB3_0 TIOB3_1 TIOB3_2 TIOA4_0 TIOA4_1 TIOA4_2 TIOB4_0 TIOB4_1 TIOB4_2 TIOA5_0 TIOA5_1 TIOA5_2 TIOB5_0 TIOB5_1 TIOB5_2 TIOA6_0 TIOA6_1 TIOA6_2 TIOB6_0 TIOB6_1 TIOB6_2 TIOA7_0 TIOA7_1 TIOA7_2 TIOB7_0 TIOB7_1 TIOB7_2 SWCLK SWDIO Document Number: 001-99223 Rev.*A Base timer ch.2 TIOB pin Base timer ch.3 TIOA pin Base timer ch.3 TIOB pin Base timer ch.4 TIOA pin Base timer ch.4 TIOB pin Base timer ch.5 TIOA pin Base timer ch.5 TIOB pin Base timer ch.6 TIOA pin Base timer ch.6 TIOB pin Base timer ch.7 TIOA pin Base timer ch.7 TIOB pin Serial wire debug interface clock input pin Serial wire debug interface data input / output pin LQFP-120 33 25 5 48 15 6 34 Pin No. LQFP-100 28 20 5 43 10 6 29 LQFP-80 15 5 33 10 6 - 26 21 16 116 96 76 49 16 115 35 27 105 50 17 106 36 28 51 23 18 52 37 29 97 94 19 98 53 114 82 54 113 81 112 86 109 111 87 108 93 44 11 95 30 22 90 45 12 91 31 23 18 13 32 24 82 79 14 83 94 93 71 72 78 34 11 75 17 70 35 12 71 21 18 13 22 19 63 74 73 58 59 62 95 80 64 Page 23 of 129 S6E1B8 Series Pin Function Pin Name INT00_0 INT00_1 INT00_2 INT01_0 INT01_1 Function Description External interrupt request 00 input pin External interrupt request 01 input pin INT02_0 Pin No. LQFP-100 2 82 87 3 LQFP-80 2 67 3 98 83 - 4 4 4 63 53 43 INT02_2 82 - - INT03_0 113 93 73 66 56 46 14 9 9 17 69 15 89 76 16 23 88 96 24 114 5 34 19 8 35 20 36 21 112 118 22 110 49 32 108 50 33 52 67 92 53 12 59 10 74 66 11 18 73 81 19 94 5 29 14 8 30 15 31 16 98 17 44 27 45 28 57 77 - 12 49 10 56 11 13 60 65 14 74 5 8 21 78 34 35 47 61 - INT02_1 INT03_1 External interrupt request 02 input pin External interrupt request 03 input pin INT03_2 External Interrupt LQFP-120 2 97 102 3 INT04_0 INT04_1 INT04_2 INT05_0 INT05_1 INT05_2 INT06_0 INT06_1 INT06_2 INT07_0 INT07_1 INT07_2 INT08_0 INT08_1 INT08_2 INT09_0 INT09_1 INT10_0 INT10_1 INT10_2 INT11_0 INT11_1 INT11_2 INT12_0 INT12_1 INT12_2 INT13_0 INT13_1 INT13_2 INT14_0 INT14_1 INT14_2 Document Number: 001-99223 Rev.*A External interrupt request 04 input pin External interrupt request 05 input pin External interrupt request 06 input pin External interrupt request 07 input pin External interrupt request 08 input pin External interrupt request 09 input pin External interrupt request 10 input pin External interrupt request 11 input pin External interrupt request 12 input pin External interrupt request 13 input pin External interrupt request 14 input pin Page 24 of 129 S6E1B8 Series Pin Function LQFP-120 68 Pin No. LQFP-100 58 LQFP-80 48 116 54 100 11 12 101 85 13 103 6 26 104 7 28 105 117 77 106 47 78 109 48 79 111 99 80 107 96 85 86 88 6 21 89 7 23 90 97 67 91 42 68 43 69 84 70 92 76 68 6 16 69 7 18 70 77 57 71 32 33 66 72 P00 92 77 61 P01 93 78 62 P02 94 79 63 P03 P04 P05 P06 P07 P08 P09 P0A P0B P0C P0D P0E P0F 95 96 97 98 99 100 101 102 103 104 105 106 107 80 81 82 83 84 85 86 87 88 89 90 91 92 64 65 66 67 68 69 70 71 72 Pin Name Function Description INT15_0 External Interrupt GPIO INT15_1 INT15_2 INT16_0 INT16_1 INT16_2 INT17_0 INT17_1 INT17_2 INT18_0 INT18_1 INT18_2 INT19_0 INT19_1 INT19_2 INT20_0 INT20_1 INT20_2 INT21_0 INT21_1 INT21_2 INT22_0 INT22_1 INT22_2 INT23_0 INT23_1 INT23_2 NMIX Document Number: 001-99223 Rev.*A External interrupt request 15 input pin External interrupt request 16 input pin External interrupt request 17 input pin External interrupt request 18 input pin External interrupt request 19 input pin External interrupt request 20 input pin External interrupt request 21 input pin External interrupt request 22 input pin External interrupt request 23 input pin Non-Maskable Interrupt input pin General-purpose I/O port 0 Page 25 of 129 S6E1B8 Series Pin Function GPIO P10 LQFP-120 62 Pin No. LQFP-100 52 LQFP-80 42 P11 63 53 43 P12 64 54 44 P13 65 55 45 P14 P15 P16 P17 P18 P19 P1A P1B P1C P1D P1E P20 P21 P22 P23 P24 P25 P26 P27 P28 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P3A 66 67 68 69 74 75 76 77 78 79 80 89 88 87 86 85 84 83 82 81 14 15 16 17 18 19 20 21 22 23 24 56 57 58 59 64 65 66 67 68 69 70 74 73 72 71 9 10 11 12 13 14 15 16 17 18 19 46 47 48 49 54 55 56 57 60 59 58 9 10 11 12 13 14 P3B 25 20 15 P3C 26 21 16 P3D 27 22 17 P3E P3F 28 29 23 24 18 19 Pin Name Document Number: 001-99223 Rev.*A Function Description General-purpose I/O port 1 General-purpose I/O port 2 General-purpose I/O port 3 Page 26 of 129 S6E1B8 Series Pin Function Pin Name P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P4A P4B P4C P4D P50 GPIO P51 P52 P53 P54 P55 P56 P57 P58 P59 P5A P5B P60 P61 P62 P63 P64 P65 P66 P67 P68 P70 P71 P72 P73 P74 P80 P81 Function Description General-purpose I/O port 4 General-purpose I/O port 5 General-purpose I/O port 6 General-purpose I/O port 7 General-purpose I/O port 8 P82 PE0* PE2 PE3 Document Number: 001-99223 Rev.*A General-purpose I/O port E LQFP-120 32 33 34 35 36 37 42 43 44 45 47 48 49 50 2 Pin No. LQFP-100 27 28 29 30 31 32 37 38 39 40 42 43 44 45 2 LQFP-80 21 22 27 28 29 30 32 33 34 35 2 3 4 5 6 7 8 9 10 11 12 13 116 115 114 113 112 111 110 109 108 51 52 53 54 55 117 118 3 4 5 6 7 8 96 95 94 93 97 98 3 4 5 6 7 8 76 75 74 73 77 78 119 99 79 56 46 36 58 59 48 49 38 39 Page 27 of 129 S6E1B8 Series Pin Function Pin Name Function Description SIN0_0 SIN0_1 Multi-function serial interface ch.0 input pin SOT0_0 (SDA0_0) Multi-function Serial 0 SOT0_1 (SDA0_1) SCK0_0 (SCL0_0) SCK0_1 (SCL0_1) Multi-function Serial 1 Multi-function Serial 2 SIN1_0 SIN1_1 SIN1_2 SOT1_0 (SDA1_0) SOT1_1 (SDA1_1) SOT1_2 (SDA1_2) SCK1_0 (SCL1_0) SCK1_1 (SCL1_1) SCK1_2 (SCL1_2) SIN2_0 SIN2_1 SIN2_2 SOT2_0 (SDA2_0) SOT2_1 (SDA2_1) SOT2_2 (SDA2_2) SCK2_0 (SCL2_0) SCK2_1 (SCL2_1) SCK2_2 (SCL2_2) Document Number: 001-99223 Rev.*A Multi-function serial interface ch.0 output pin. This pin operates as SOT0 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA0 when used as an I C pin (operation mode 4). Multi-function serial interface ch.0 clock I/O pin. This pin operates as SCK0 when used as a CSIO pin (operation mode 2) and as SCL0 2 when used as an I C pin (operation mode 4). Multi-function serial interface ch.1 input pin Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA1 when used as an I C pin (operation mode 4). LQFP-120 88 66 Pin No. LQFP-100 73 56 LQFP-80 60 46 87 72 59 67 57 47 86 71 58 68 58 48 8 63 32 53 27 43 - 9 - - 64 54 44 33 28 - Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when used as a CSIO pin (operation mode 2) and as SCL1 2 when used as an I C pin (operation mode 4). 10 - - 65 55 45 34 29 - Multi-function serial interface ch.2 input pin 53 85 69 59 49 Multi-function serial interface ch.2 output pin. This pin operates as SOT2 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA2 when used as an I C pin (operation mode 4). 54 - - 84 - - 74 64 54 Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK2 when used as a CSIO pin (operation mode 2) and as SCL2 2 when used as an I C pin (operation mode 4). 55 - - 83 - - 75 65 55 Page 28 of 129 S6E1B8 Series Pin Function Pin Name Function Description SIN3_0 SIN3_1 Multi-function Serial 3 Multi-function Serial 4 SIN3_2 SOT3_0 (SDA3_0) SOT3_1 (SDA3_1) SOT3_2 (SDA3_2) SCK3_0 (SCL3_0) SCK3_1 (SCL3_1) SCK3_2 (SCL3_2) SIN4_0 SIN4_1 SIN4_2 SOT4_0 (SDA4_0) SOT4_1 (SDA4_1) SOT4_2 (SDA4_2) SCK4_0 (SCL4_0) SCK4_1 (SCL4_1) SCK4_2 (SCL4_2) CTS4_0 CTS4_1 CTS4_2 RTS4_0 RTS4_1 RTS4_2 Document Number: 001-99223 Rev.*A Multi-function serial interface ch.3 input pin LQFP-120 110 Pin No. LQFP-100 - LQFP-80 - 2 2 2 94 79 63 Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA3 when used as an I C pin (operation mode 4). 109 - - 3 3 3 92 77 61 Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when used as a CSIO (operation mode 2) and as SCL3 2 when used as an I C pin (operation mode 4). 108 - - 4 4 4 96 81 65 102 76 97 87 66 82 67 56 - Multi-function serial interface ch.4 output pin. This pin operates as SOT4 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA4 when used as an I C pin (operation mode 4). 99 84 66 77 67 57 98 83 - Multi-function serial interface ch.4 clock I/O pin. This pin operates as SCK4 when used as a CSIO (operation mode 2) and as SCL4 2 when used as an I C pin (operation mode 4). 107 92 72 78 68 - 99 84 66 106 79 100 105 80 101 91 69 85 90 70 86 71 70 - Multi-function serial interface ch.4 input pin Multi-function serial interface ch4 CTS input pin Multi-function serial interface ch4 RTS output pin Page 29 of 129 S6E1B8 Series Pin Function Pin Name SIN5_0 (MI2SDI5_0) SIN5_1 SIN5_2 SOT5_0 (SDA5_0) (MI2SDO5_0) SOT5_1 (SDA5_1) Multi-function Serial 5 SOT5_2 (SDA5_2) SCK5_0 (SCL5_0) (MI2SCK5_0) SCK5_1 (SCL5_1) SCK5_2 (SCL5_2) MI2SWS5_0 SIN6_0 SIN6_1 (MI2SDI6_1) SOT6_0 (SDA6_0) SOT6_1 (SDA6_1) (MI2SDO6_1) Multi-function Serial 6 SCK6_0 (SCL6_0) SCK6_1 (SCL6_1) (MI2SCK6_1) SCS60_1 SCS61_1 SCS62_1 MI2SWS6_1 Document Number: 001-99223 Rev.*A Function Description Multi-function serial interface ch.5 input pin. SIN5_0 pin operates as I2SIN5_0 when 2 used as an I S pin (operation mode 2). Multi-function serial interface ch.5 output pin. This pin operates as SOT5 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA5 when used as an I C pin (operation mode 4). SOT5_0 pin operates as MI2SDO5_0 when 2 used as an I S pin (operation mode 2). Multi-function serial interface ch.5 clock I/O pin. This pin operates as SCK5 when used as a CSIO (operation mode 2) and as SCL5 2 when used as an I C pin (operation mode 4). SCK5_0 pin operates as MI2SCK5_0 when 2 used as an I S pin (operation mode 2). 2 I S word select (WS) output Multi-function serial interface ch.6 input pin. SIN6_1 pin operates as I2SIN6_1 when 2 used as an I S pin (operation mode 2). Multi-function serial interface ch.6 output pin. This pin operates as SOT6 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA6 when used as an I C pin (operation mode 4). SOT6_1 pin operates as MI2SDO6_1 when 2 used as an I S pin (operation mode 2). Multi-function serial interface ch.6 clock I/O pin. This pin operates as SCK6 when used as a CSIO (operation mode 2) and as SCL6 2 when used as an I C pin (operation mode 4). SCK6_6 pin operates as MI2SCK6_1 when 2 used as an I S pin (operation mode 2). Multi-function serial interface ch.6 serial chip select 0 output pin. Multi-function serial interface ch.6 serial chip select 1 output pin. Multi-function serial interface ch.6 serial chip select 2 output pin. 2 I S word select (WS) output LQFP-120 Pin No. LQFP-100 LQFP-80 116 96 76 113 20 15 - 115 95 75 112 - - 21 16 - 114 94 74 111 - - 22 17 - 113 5 93 5 73 5 17 12 12 6 6 6 16 11 11 7 7 7 15 10 10 14 9 9 18 13 - 19 14 - 14 9 9 Page 30 of 129 S6E1B8 Series Pin Function Multi-function Serial 7 Pin Name SIN7_0 SIN7_1 SIN7_2 SOT7_0 (SDA7_0) SOT7_1 (SDA7_1) SOT7_2 (SDA7_2) SCK7_0 (SCL7_0) SCK7_1 (SCL7_1) SCK7_2 (SCL7_2) SCS70_1 SCS71_1 SCS72_1 Smart Card Interface 0 Smart Card Interface 1 USB IC0_VCC_0 IC0_VCC_1 IC0_VPEN_0 IC0_VPEN_1 IC0_RST_0 IC0_RST_1 IC0_CIN_0 IC0_CIN_1 IC0_CLK_0 IC0_CLK_1 IC0_DATA_0 IC0_DATA_1 IC1_VCC_0 IC1_VCC_1 IC1_VPEN_0 IC1_VPEN_1 IC1_RST_0 IC1_RST_1 IC1_CIN_0 IC1_CIN_1 IC1_CLK_0 IC1_CLK_1 IC1_DATA_0 IC1_DATA_1 UDM0 UDP0 UHCONX0 Document Number: 001-99223 Rev.*A Function Description Multi-function serial interface ch.7 input pin Multi-function serial interface ch.7 output pin. This pin operates as SOT7 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) 2 and as SDA7 when used as an I C pin (operation mode 4). Multi-function serial interface ch.7 clock I/O pin. This pin operates as SCK7 when used as a CSIO (operation mode 2) and as SCL7 2 when used as an I C pin (operation mode 4). Multi-function serial interface ch.7 serial chip select 0 output pin. Multi-function serial interface ch.7 serial chip select 1 output pin. Multi-function serial interface ch.7 serial chip select 2 output pin. Smart card ch.0 power enable output pin Smart card ch.0 programming output pin Smart card ch.0 reset output pin Smart card ch.0 insert detection input pin Smart card ch.0 serial interface clock output pin Smart card ch.0 serial interface data input/output pin Smart card ch.1 power enable output pin Smart card ch.1 programming output pin Smart card ch.1 reset output pin Smart card ch.1 insert detection input pin Smart card ch.1 serial interface clock output pin Smart card ch.1 serial interface data input/output pin USB device/host D – pin USB device/host D + pin USB external pull-up control pin LQFP-120 11 48 117 Pin No. LQFP-100 43 97 LQFP-80 33 77 12 - - 49 44 34 118 98 78 13 - - 50 45 35 119 99 79 47 42 32 51 - - 52 - - 106 33 105 34 114 35 102 37 107 32 113 36 28 63 27 64 26 65 24 67 29 62 25 66 103 104 102 91 28 90 29 94 30 87 32 92 27 93 31 23 53 22 54 21 55 19 57 24 52 20 56 88 89 87 71 70 74 67 22 72 73 21 18 43 17 44 16 45 14 47 19 42 15 46 68 69 67 Page 31 of 129 S6E1B8 Series Pin Function LQFP-120 23 Pin No. LQFP-100 18 LQFP-80 13 79 69 - 115 95 75 18 13 - 80 70 - 63 22 75 64 53 17 65 54 43 55 44 IC01_0 21 16 - IC01_1 76 66 56 65 55 45 20 15 - 77 66 19 78 67 56 14 68 57 46 - 67 57 47 24 19 14 86 71 58 25 20 15 85 - - 26 21 16 84 - - 27 22 17 83 - - 28 23 18 82 - - 29 24 19 81 - - 48 116 43 96 33 76 Pin Name DTTI0X_0 DTTI0X_1 DTTI0X_2 FRCK0_0 FRCK0_1 FRCK0_2 IC00_0 IC00_1 IC00_2 IC01_2 IC02_0 IC02_1 IC02_2 IC03_0 IC03_1 Function Description Input signal of waveform generator controlling RTO00 to RTO05 outputs of Multi-function Timer 0. 16-bit free-run timer ch.0 external clock input pin. 16-bit input capture input pin of Multi-function timer 0. ICxx describes channel number. IC03_2 Multi-function Timer 0 RTO00_0 (PPG00_0) RTO00_1 (PPG00_1) RTO01_0 (PPG00_0) RTO01_1 (PPG00_1) RTO02_0 (PPG02_0) RTO02_1 (PPG02_1) RTO03_0 (PPG02_0) RTO03_1 (PPG02_1) RTO04_0 (PPG04_0) RTO04_1 (PPG04_1) RTO05_0 (PPG04_0) RTO05_1 (PPG04_1) IGTRG0_0 IGTRG0_1 Document Number: 001-99223 Rev.*A Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode. PPG IGBT mode external trigger input pin Page 32 of 129 S6E1B8 Series Pin Function LQFP-120 107 Pin No. LQFP-100 92 LQFP-80 72 65 55 45 24 19 14 107 92 72 65 24 55 19 45 14 49 44 34 116 8 6 96 8 6 76 8 6 5 5 5 4 4 4 VV3 3 3 3 VV4 2 2 2 117 97 77 Pin Name RTCCO_0 RTCCO_1 Real-time Clock RTCCO_2 0.5-seconds pulse output pin of Real-time clock SUBOUT_0 SUBOUT_1 SUBOUT_2 HDMI-CEC/ Remote Control Reception Function Description CEC0_0 CEC1_0 CEC1_1 VV0 Sub clock output pin HDMI-CEC/Remote Control Reception ch.0 input/output pin HDMI-CEC/Remote Control Reception ch.1 input/output pin VV1 VV2 C0 C1 LCD controller power supply I/O pin LCD controller flying capacitor output pin 118 98 78 COM0 26 21 16 COM1 25 20 15 COM2 24 19 14 23 18 13 COM3 COM4 LCD controller common output pin 17 12 12 COM5 16 11 11 COM6 15 10 10 COM7 14 9 9 LCD SEG00 115 95 75 Controller SEG01 114 94 74 SEG02 113 93 73 SEG03 106 91 71 SEG04 105 90 70 SEG05 101 86 - SEG06 100 85 - SEG07 99 84 66 98 83 - SEG09 97 82 - SEG10 89 74 - SEG11 88 73 60 SEG12 87 72 59 SEG13 86 71 58 SEG14 79 69 - SEG15 78 68 - SEG16 77 67 57 SEG08 Document Number: 001-99223 Rev.*A LCD controller segment output pin Page 33 of 129 S6E1B8 Series Pin Function LCD Controller LowPower Consumption Mode SEG17 LQFP-120 76 Pin No. LQFP-100 66 LQFP-80 56 SEG18 75 65 55 SEG19 74 64 54 SEG20 69 59 49 SEG21 68 58 48 SEG22 67 57 47 SEG23 66 56 46 SEG24 65 55 45 SEG25 64 54 44 SEG26 63 53 43 SEG27 62 52 42 SEG28 50 45 35 SEG29 49 44 34 48 43 33 47 42 32 SEG32 37 32 22 SEG33 36 31 21 SEG34 29 24 19 SEG35 28 23 18 SEG36 27 22 17 SEG37 19 14 - SEG38 8 8 8 SEG39 7 7 7 SEG40 17 12 12 SEG41 16 11 11 SEG42 15 10 10 SEG43 14 9 9 WKUP0 107 92 72 WKUP1 63 53 43 WKUP2 88 73 60 WKUP3 116 96 76 WKUP4 14 9 9 102 87 67 50 45 35 WKUP7 48 43 33 WKUP8 28 23 18 WKUP9 8 8 8 WKUP10 WKUP11 97 20 82 15 - Pin Name SEG30 SEG31 WKUP5 WKUP6 Document Number: 001-99223 Rev.*A Function Description LCD controller segment output pin Deep standby mode return signal input pin Page 34 of 129 S6E1B8 Series Pin Function VBAT Pin Name Function Description LVDI Input pin to monitor the external voltage. The return signal input pin from a hibernation state On-board regulator control pin External Reset Input pin. A reset is valid when INITX="L". Mode 0 pin. During normal operation, input MD0="L". During serial programming to Flash memory, input MD0="H". Mode 1 pin. During normal operation, input is not needed. During serial programming to Flash memory, MD1 = "L" must be input. VWAKEUP REGCTL Reset INITX MD0 Mode MD1 Power VBAT power GND Clock VCC VBAT VSS GND pin LQFP-80 22 45 40 30 44 39 29 41 36 26 57 47 37 56 46 36 1 1 1 31 26 - 40 35 25 61 51 41 91 76 - 46 41 31 30 25 20 39 34 24 60 50 40 90 75 - 120 100 80 Main clock (oscillation) input pin 58 48 38 X0A Sub clock (oscillation) input pin 42 37 27 X1 Main clock (oscillation) I/O pin 59 49 39 Sub clock (oscillation) I/O pin Built-in high-speed CR oscillation clock output port Built-in high-speed CR oscillation clock output port A/D converter analog power supply pin A/D converter analog reference voltage input pin A/D converter analog reference voltage input pin Power supply stabilization capacitance pin 43 38 28 89 74 - 107 92 72 70 60 50 73 63 53 71 61 51 38 33 23 X1A CROUT_1 Analog GND C pin VBAT power supply pin Backup power supply (battery etc.) and system power supply Pin No. LQFP-100 32 X0 CROUT_0 Analog Power Power supply pin LQFP-120 37 AVCC AVRH AVSS C *: PE0 is an open drain pin, cannot output high. Document Number: 001-99223 Rev.*A Page 35 of 129 S6E1B8 Series 5. I/O Circuit Type Type Circuit Remarks Pull-up resistor P-ch P-ch Digital output X1 N-ch Digital output R It is possible to select the main oscillation / GPIO function Pull-up resistor control Digital input Standby mode control Feedback resistor A Clock input When the main oscillation is selected. Oscillation feedback resistor : Approximately 1 MΩ With standby mode control When the GPIO is selected. CMOS level output. CMOS level hysteresis input Standby mode control Digital input Pull-up Standby mode control resistor R P-ch P-ch X0 N-ch With pull-up resistor control With standby mode control Pull-up resistor : Approximately 33 kΩ IOH = -4mA, IOL= 4 mA Digital output Digital output Pull-up resistor control Document Number: 001-99223 Rev.*A Page 36 of 129 S6E1B8 Series Type Circuit Remarks Pull-up resistor CMOS level hysteresis input Digital input B Pull-up resistor : Approximately 33 kΩ Digital input C Digital output N-ch X0A R Digital input D Sub OSC/GPIO select Open drain output CMOS level hysteresis input ・CMOS level output ・ Please refer to the "VBAT domain" setting of IO in of the “Peripheral Manual main part (MN710-00001)". OSC X1A R Digital input Sub OSC/ GPIO select OSC E RX It is possible to select the sub oscillation / GPIO function When the sub oscillation is selected. ・Oscillation feedback resistor : Approximately 12 MΩ When the GPIO is selected. ・CMOS level hysteresis input Sub OSC enable ・Please refer to the "VBAT domain" setting of IO in the “Peripheral Manual Clock input Document Number: 001-99223 Rev.*A main part (MN710-00001)" . Page 37 of 129 S6E1B8 Series Type Circuit Remarks ・ CMOS level output P-ch P-ch Digital output ・ CMOS level hysteresis input ・ With pull-up resistor control ・ With standby mode control ・ Pull-up resistor F : Approximately 33 kΩ N-ch Digital output ・ IOH = -4 mA, IOL = 4 mA ・ When this pin is used as an I2C pin, the R digital output P-ch transistor is always off Pull-up resistor control Digital input Standby mode control P-ch P-ch Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ With input control N-ch Digital output ・ Analog input ・ With pull-up resistor control ・ With standby mode control G ・ Pull-up resistor R Pull-up resistor control Digital input Standby mode control : Approximately 33 kΩ ・ IOH= -4 mA, IOL= 4 mA ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off Analog input Input control Document Number: 001-99223 Rev.*A Page 38 of 129 S6E1B8 Series Type Circuit P-ch P-ch Remarks Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ With input control ・ Analog input N-ch Digital output ・ 5 V tolerant ・ With pull-up resistor control ・ With standby mode control H ・ Pull-up resistor Pull-up resistor control R Digital input Standby mode control : Approximately 33 kΩ ・ IOH= -4 mA, IOL= 4 mA ・ Available to control of PZR registers. ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off Analog input Input control ・ CMOS level output P-ch P-ch Digital output ・ CMOS level hysteresis input ・ 5 V tolerant ・ With pull-up resistor control ・ With standby mode control I N-ch Digital output ・ Pull-up resistor : Approximately 33 kΩ ・ IOH= -4 mA, IOL= 4 mA R ・ Available to control PZR registers Pull-up resistor control Digital input ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off Standby mode control Document Number: 001-99223 Rev.*A Page 39 of 129 S6E1B8 Series Type Circuit Remarks Mode input J ・ CMOS level hysteresis input GPIO Digital output GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control UDP output UDP0/P0C USB Full-speed/Low-speed control UDP input K Di fferential UDM0/P0B It is possible to select the USB I/O / GPIO function. When the USB I/O is selected. Full-speed, Low-speed control Differential input USB/GPIO select UDM input UDM output USB Digital input/output direction GPIO Digital output When the GPIO is selected. CMOS level output CMOS level hysteresis input With standby mode control IOH= -39 mA, IOL= 39 mA GPIO Digital input/output direction GPIO Digital input GPIO Digital input circuit control Document Number: 001-99223 Rev.*A Page 40 of 129 S6E1B8 Series Type Circuit P-ch P-ch Remarks Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ With input control ・ 5 V tolerant N-ch Digital output ・ LCD segment output ・ With pull-up resistor control L ・ With standby mode control ・ Pull-up resistor R Pull-up resistor control Digital input Standby mode control : Approximately 33 kΩ ・ IOH= -4 mA, IOL= 4 mA ・ Available to control of PZR registers. ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off LCD output LCD control Document Number: 001-99223 Rev.*A Page 41 of 129 S6E1B8 Series Type Circuit P-ch P-ch Remarks Digital output ・ CMOS level output ・ CMOS level hysteresis input N-ch Digital output ・ With input control ・ 5 V tolerant ・ LCD common output ・ LCD segment output M R Pull-up resistor control Digital input Standby mode control ・ With pull-up resistor control ・ With standby mode control ・ Pull-up resistor : Approximately 33 kΩ ・ IOH = -4 mA, IOL = 4 mA ・ Available to control of PZR registers. LCD output ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off LCD control LCD output LCD control Document Number: 001-99223 Rev.*A Page 42 of 129 S6E1B8 Series Type Circuit P-ch P-ch Remarks Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ With input control N-ch Digital output ・ 5 V tolerant ・ LCD common output N ・ With pull-up resistor control ・ With standby mode control R Pull-up resistor control Digital input Standby mode control ・ Pull-up resistor : Approximately 33 kΩ ・ IOH=-4 mA, IOL= 4 mA ・ Available to control of PZR registers. LCD output LCD control Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ With input control ・ Analog output Digital output ・ 5 V tolerant ・ With pull-up resistor control O ・ With standby mode control ・ Pull-up resistor Pull-up resistor control : Approximately 33 kΩ ・ IOH= -4 mA, IOL= 4 mA Digital input Standby mode control ・ Available to control of PZR registers. ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off Analog output Document Number: 001-99223 Rev.*A Page 43 of 129 S6E1B8 Series Type Circuit P-ch P-ch Remarks Digital output ・ CMOS level output ・ CMOS level hysteresis input N-ch Digital output ・ With input control ・ Analog input ・ 5 V tolerant ・ LCD segment output P R Pull-up resistor control Digital input Standby mode control ・ With pull-up resistor control ・ With standby mode control ・ Pull-up resistor : Approximately 33 kΩ ・ IOH = -4 mA, IOL = 4 mA ・ Available to control of PZR registers. Analog input ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off Input control LCD output LCD control Document Number: 001-99223 Rev.*A Page 44 of 129 S6E1B8 Series Type Circuit P-ch P-ch Remarks Digital output ・ CMOS level output ・ CMOS level hysteresis input ・ With input control ・ 5 V tolerant N-ch Digital output ・ LCD VV input/output ・ With pull-up resistor control ・ With standby mode control Q ・ Pull-up resistor : Approximately 33 kΩ R Pull-up resistor control ・ IOH = -4 mA, IOL= 4 mA Digital input ・ Available to control of PZR registers. Standby mode control ・ When this pin is used as an I2C pin, the digital output P-ch transistor is always off LCD VV input/output LCD VV control Document Number: 001-99223 Rev.*A Page 45 of 129 S6E1B8 Series 6. Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices. 6.1 Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. (1) Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. (2) Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. (3) Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin. Document Number: 001-99223 Rev.*A Page 46 of 129 S6E1B8 Series Latch-Up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: (1) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. (2) Be sure that abnormal current flows do not occur during the power-on sequence. Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Precautions Related to Usage of Devices Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 6.2 Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Document Number: 001-99223 Rev.*A Page 47 of 129 S6E1B8 Series Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions. Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5 ˚C and 30 ˚C. When you open Dry Package that recommends humidity 40% to 70% relative humidity. (3) When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking. Condition: 125°C/24 h Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. (4) Ground all fixtures and instruments, or protect with anti-static measures. (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies. Document Number: 001-99223 Rev.*A Page 48 of 129 S6E1B8 Series 6.3 Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: (1) Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. (2) Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. (3) Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. (4) Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. (5) Smoke, Flame CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives. Document Number: 001-99223 Rev.*A Page 49 of 129 S6E1B8 Series 7. Handling Devices Power Supply Pins In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with each Power supply pin and GND pin of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin near this device. Stabilizing Supply Voltage A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/μs when there is a momentary fluctuation on switching the power supply. Crystal Oscillator Circuit Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation. Evaluate oscillation of your using crystal oscillator by your mount board. Sub Crystal Oscillator This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation. Surface mount type Size: More than 3.2 mm × 1.5 mm Load capacitance: Approximately 6 pF to 7 pF Lead type Load capacitance: Approximately 6 pF to 7 pF Document Number: 001-99223 Rev.*A Page 50 of 129 S6E1B8 Series Using an External Clock When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port. Example of Using an External Clock Device X0(X0A) Can be used as general-purpose I/O ports. Set as External clock input X1(PE3), X1A (P47) 2 Handling when Using Multi-Function Serial Pin as I C Pin 2 2 If it is using the multi-function serial pin as I C pins, P-ch transistor of digital output is always disabled. However, I C pins need to 2 keep the electrical characteristic like other pins and not to connect to the external I C bus system with power OFF. C Pin This series contains the regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about 4.7 μF would be recommended for this series. C Device CS VSS GND Mode Pins (MD0) Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise. Document Number: 001-99223 Rev.*A Page 51 of 129 S6E1B8 Series Notes on Power-on Turn power on/off in the following order or at the same time. Turning on : VBAT → VCC VCC → AVCC → AVRH Turning off : VCC → VBAT AVRH → AVCC → VCC Serial Communication There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider the case of receiving wrong data due to noise; perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data. Differences in Features Among the Products with Different Memory Sizes and Between Flash Memory Products and MASK Products The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash memory products and MASK products are different because chip layout and memory structures are different. If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics. Pull-Up Function of 5 V Tolerant I/O Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5 V tolerant I/O. Handling when Using Debug Pins When debug pins (SWDIO/SWCLK) are set to GPIO or other peripheral functions, set them as output only; do not set them as input. Document Number: 001-99223 Rev.*A Page 52 of 129 S6E1B8 Series 8. Block Diagram S6E1B86G To PIN-Function-Ctrl SWCLK SWDIO SW-DP Fast GPIO Cortex-M0+ Core @40MHz(Max) NVIC Bit Band Wrapper WatchDog Timer (Software) Clock Reset Generator WatchDog Timer (Hardware) AHB-APB Bridge Dual-Timer Multi-layer AHB (Max 40 MHz) Flash I/F System ROM table INITX On-Chip SRAM 64 Kbyte MTB Security DSTC 64ch. X1 X0A X1A AHB-AHB Bridge CSV X0 Source Clock Main Osc PLL Sub Osc CR 4MHz Vbat domain CR 100kHz AVRH AVRL ANxx Hardware Encryption AES128 USB2.0 (Host/Device) PHY LVD Ctrl 12-bit A/D Converter IRQ-Monitor Unit 0 LVD Regulator VWAKEUP RTCCO SUBOUT Vbat domain Real-Time Clock CRC Accelerator A/D Activation Compare 3ch. ICOx 16-bit Input Capture 4ch. FRCKx 16-bit Free-run Timer 3ch. 16-bit Output Compare 6ch. DTTI0x RTO0x IGTRGx PORTCTL Base Timer 16-bit 16ch. 32-bit 8ch. AHB-APB Bridge: APB1 (Max 40 MHz) TIOBx INTx NMIX MD0 MD1 MODE-ctrl Low-speed CR Prescaler Peripheral Clock Gating GPIO Waveform Generator 3ch. Multi-function Serial I/F 8ch. (with FIFO) 16-bit PPG 3ch. I2S Clock Generator 2ch. Smart Card I/F 2ch. To Fast GPIO PIN-Function-Ctrl P0x P1x . Pxx SCKx SINx SOTx SCSx MI2SCKx MI2SWSx ICx_CLK ICx_VCC ICx_VPEN ICx_RST ICx_CIN ICx_DATA Deep Standby Ctrl LCD Ctrl Voltage booster Document Number: 001-99223 Rev.*A VREGCTL External Interrupt Controller 24pin + NMI Multi-function Timer WKUPx C Watch Counter ADTG TIOAx UDP0, UDM0 UHCONX0 Power-On Reset CROUT AVCC AVSS On-Chip Flash 560 Kbyte SEGxx COMx VVx Cx Page 53 of 129 S6E1B8 Series 9. Memory Map Memory Map (1) 0x41FF_FFFF Reserved 0xFFFF_FFFF Reserved 0xF800_8000 0xF800_0000 IOP(single cycle IO) Reserved 0xF000_2000 0xF000_1000 MTB_DWT CM0+-CoresightMTB(SFR) Cortex-M0 Private Peripherals 0xF000_0000 0xE000_0000 Reserved 0x4400_0000 0x4200_0000 32Mbytes Bit band alias Peripherals 0x4000_0000 Reserved 0x2400_0000 0x2200_0000 32Mbytes Bit band alias Reserved 0x2008_0000 Reserved CR trimming Security 0x0008_C000 Reserved See "Memory map (2)" for the memory size details. Document Number: 001-99223 Rev.*A USB ch.0 Reserved 0x4003_CB00 0x4003_CA00 0x4003_C900 I S Clock Generator Smart Card I/F 0x4003_C200 0x4003_C100 0x4003_C000 0x4003_B000 0x4003_A000 0x4003_9000 0x4003_8000 0x4003_7000 0x4003_6000 0x4003_5000 0x4003_4000 0x4003_3000 0x4003_2000 0x4003_1000 0x4003_0000 0x4002_F000 0x4002_E000 Peripheral Clock Gating Low Speed CR Prescaler RTC Watch Counter CRC MFS Reserved USB Clock Generator LVD / DS mode / Vref Calibration HDMI-CEC/Remote Control Receiver GPIO LCD Controller Int_Req. Read EXTI Reserved CR Trim 2 Reserved Reserved 0x4002_8000 0x4002_7000 0x4002_6000 0x4002_5000 0x4002_4000 0x4002_1000 0x4002_0000 Flash 0x0000_0000 DSTC Reserved 0x4005_0000 0x4004_0000 SRAM 0x2000_0000 0x0010_4000 0x0010_2000 0x0010_0000 0x4006_2000 0x4006_1000 A/DC Reserved Base Timer PPG Reserved MFT unit0 Reserved 0x4001_6000 0x4001_5000 Dual Timer 0x4001_3000 0x4001_2000 0x4001_1000 0x4001_0000 SW WDT HW WDT Clock/Reset Reserved Reserved 0x4000_1000 0x4000_0000 Flash I/F Page 54 of 129 S6E1B8 Series Memory Map (2) S6E1B86G S6E1B84G 0x2008_0000 0x2008_0000 Reserved Reserved 0x2001_0000 0x2000_F000 0x2001_0000 SRAM 4 Kbytes SRAM 60 Kbytes 0x2000_F000 SRAM 4 Kbytes 0x2000_8000 SRAM 28 Kbytes 0x2000_0000 Reserved Reserved 0x0010_4000 0x0010_2000 CR trimming 0x0010_4000 0x0010_2000 CR trimming 0x0010_0000 Security 0x0010_0000 Security 0x0008_C000 Reserved Reserved *: SA0-5 (8 KBx6) 0x0004_C000 SA6-9 (8 KBx4) 0x0000_0000 SA0-5 (8 KBx6) Flash 304 Kbytes 0x0000_0000 Flash 560 Kbytes SA6-13 (8 KBx8) See "S6E1B8 Series Flash Programming Manual" to check details of the Flash memory. Document Number: 001-99223 Rev.*A Page 55 of 129 S6E1B8 Series Peripheral Address Map Start Address End Address Bus 0x4000_0000 0x4000_0FFF 0x4000_1000 0x4000_FFFF 0x4001_0000 0x4001_0FFF Clock/Reset Control 0x4001_1000 0x4001_1FFF Hardware Watchdog Timer 0x4001_2000 0x4001_2FFF 0x4001_3000 0x4001_4FFF AHB APB0 Peripheral Flash memory I/F register Reserved Software Watchdog Timer Reserved 0x4001_5000 0x4001_5FFF Dual-Timer 0x4001_6000 0x4001_FFFF Reserved 0x4002_0000 0x4002_0FFF Multi-function Timer unit0 0x4002_1000 0x4002_3FFF Reserved 0x4002_4000 0x4002_4FFF PPG 0x4002_5000 0x4002_5FFF Base Timer 0x4002_6000 0x4002_6FFF Reserved 0x4002_7000 0x4002_7FFF A/D Converter 0x4002_8000 0x4002_DFFF Reserved 0x4002_E000 0x4002_EFFF Built-in CR trimming 0x4002_F000 0x4002_FFFF Reserved 0x4003_0000 0x4003_0FFF External Interrupt Controller 0x4003_1000 0x4003_1FFF Interrupt Request Batch-Read Function 0x4003_2000 0x4003_2FFF LCD Controller 0x4003_3000 0x4003_3FFF 0x4003_4000 0x4003_5000 0x4003_6000 0x4003_7000 0x4003_8000 0x4003_4FFF 0x4003_5FFF 0x4003_6FFF 0x4003_7FFF 0x4003_8FFF HDMI-CEC/ Remote Control Receiver Low-Voltage Detection / DS mode / Vref Calibration USB Clock Generator Reserved Multi-function Serial Interface 0x4003_9000 0x4003_9FFF CRC 0x4003_A000 0x4003_AFFF Watch Counter 0x4003_B000 0x4003_BFFF Real-time clock 0x4003_C000 0x4003_C0FF Low-speed CR Prescaler 0x4003_C100 0x4003_C800 0x4003_C900 0x4003_CA00 0x4003_CB00 0x4004_0000 0x4006_0000 0x4006_1000 0x4006_2000 0x4003_C7FF 0x4003_FFFF 0x4003_C9FF 0x4003_CAFF 0x4003_FFFF 0x4005_FFFF 0x4006_0FFF 0x4006_1FFF 0x41FF_FFFF Peripheral Clock Gating Reserved Smart Card Interface 2 I S Clock Generator Reserved USB ch.0 Reserved DSTC Reserved Document Number: 001-99223 Rev.*A APB1 AHB GPIO Page 56 of 129 S6E1B8 Series 10. Pin Status in Each CPU State The terms used for pin status have the following meanings. INITX=0 This is the period when the INITX pin is the "L" level. INITX=1 This is the period when the INITX pin is the "H" level. SPL=0 This is the status that the standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "0". SPL=1 This is the status that the standby pin level setting bit (SPL) in the Standby Mode Control Register (STB_CTL) is set to "1". Input enabled Indicates that the input function can be used. Internal input fixed at "0" This is the status that the input function cannot be used. Internal input is fixed at "L". Hi-Z Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state. Setting disabled Indicates that the setting is disabled. Maintain previous state Maintains the state in which a pin was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained. Analog input is enabled Indicates that the analog input is enabled. Trace output Indicates that the trace function can be used. GPIO selected In Deep standby mode, pins switch to the general-purpose I/O port. Document Number: 001-99223 Rev.*A Page 57 of 129 S6E1B8 Series Pin Status Type List of Pin Status A B State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State State Upon Power-on State at Reset or INITX Low-Voltag Input Function e Detection Group State Upon Device Internal Reset State in Run Mode or Sleep Mode Power Supply Unstable - Power Supply Stable INITX=0 - Power Supply Stable INITX=1 - Power Supply Stable INITX=1 - GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Main crystal oscillator input pin/ External main clock input selected Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous state Maintain previous state / When oscillation stops*1, Hi-Z / Internal input fixed at 0 Pull-up / Input enabled Input enabled Maintain previous state / When oscillation stops*1, Hi-Z / Internal input fixed at 0 Pull-up / Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state External main clock input selected Setting disabled Setting disabled Setting disabled Maintain previous state Main crystal oscillator output pin C INITX input pin D Mode input pin State in Timer Mode, RTC Mode, or Stop Mode Power Supply Stable Power Supply Stable INITX=1 SPL=0 SPL=1 INITX=1 SPL=0 SPL=1 GPIO Hi-Z / selected / Internal Internal input fixed input fixed at 0 at 0 Maintain Maintain Maintain Maintain previous previous previous previous state / Hi-Z / state/When state/When state/When Hi-Z / Hi-Z / When Internal oscillation oscillation oscillation input fixed at Internal Internal oscillation 1 1 1 stops* , stops* , stops* , 0/ input fixed input fixed stops*1, Hi-Z / Hi-Z / Hi-Z / at 0 at 0 Input Hi-Z / Internal Internal Internal enabled Internal input fixed input fixed input fixed input fixed at 0 at 0 at 0 at 0 Pull-up / Pull-up / Pull-up / Pull-up / Pull-up / Pull-up / Pull-up / Input Input Input Input Input Input Input enabled enabled enabled enabled enabled enabled enabled Input Input Input Input Input Input Input enabled enabled enabled enabled enabled enabled enabled Document Number: 001-99223 Rev.*A Power Supply Stable INITX=1 GPIO selected Page 58 of 129 S6E1B8 Series State Upon Device Internal Reset State in Run Mode or Sleep Mode Power Supply Unstable - Power Supply Stable INITX=0 - Power Supply Stable INITX=1 - Power Supply Stable INITX=1 - GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Sub crystal E oscillator input pin / External sub clock input selected Input enabled Input enabled Input enabled Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state External sub clock input selected Setting disabled Setting disabled Setting disabled Maintain previous state Pin Status Type State Upon Power-on State at Reset or INITX Low-Voltag Input Function e Detection Group F Hi-Z / Sub Hi-Z / Hi-Z / Internal crystal Internal input fixed at Internal oscillator 0/ input fixed input fixed output at 0 at 0 Input pin enabled NMIX selected Resourc e other G than the above selected GPIO selected Setting disabled Hi-Z Setting disabled Hi-Z / Input enabled Document Number: 001-99223 Rev.*A Maintain previous state Setting disabled Hi-Z / Input enabled Maintain previous state State in Timer Mode, RTC Mode, or Stop Mode State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State Power Supply Stable Power Supply Stable INITX=1 SPL=0 SPL=1 Hi-Z / Maintain Internal previous input fixed state at 0 INITX=1 SPL=0 SPL=1 Power Supply Stable INITX=1 - Input enabled Input enabled Input enabled Input enabled GPIO selected Hi-Z / Input enabled GPIO selected Maintain previous state Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Maintain previous state Maintain Maintain Maintain previous previous previous state / state/When state/When When oscillation oscillation oscillation 2 2 stops* , stops* , stops*2, Hi-Z / Hi-Z / Hi-Z/ Internal Internal Internal input fixed input fixed input fixed at 0 at 0 at 0 Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 WKUP input enabled Hi-Z / Internal input fixed at 0 Maintain previous state / When oscillation stops*2, Hi-Z/ Internal input fixed at 0 Hi-Z / WKUP input enabled Maintain previous state Maintain previous state / When oscillation stops*2, Hi-Z/ Internal input fixed at 0 GPIO selected Page 59 of 129 Pin Status Type S6E1B8 Series H State Upon Power-on State at Reset or INITX Low-Voltag Input Function e Detection Group State Upon Device Internal Reset State in Run Mode or Sleep Mode Power Supply Unstable - Power Supply Stable INITX=0 - Power Supply Stable INITX=1 - Power Supply Stable INITX=1 - Hi-Z Pull-up / Input enabled Pull-up / Input enabled Serial wire debug selected GPIO selected Resourc e I selected GPIO selected External interrupt enabled selected Resourc J e other than the above selected GPIO selected Analog input selected K Resourc e other than the above selected GPIO selected Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z Setting disabled Hi-Z / Input enabled Hi-Z / Input enabled State in Timer Mode, RTC Mode, or Stop Mode Power Supply Stable Power Supply Stable INITX=1 SPL=0 SPL=1 INITX=1 SPL=0 SPL=1 Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal input fixed input fixed input fixed input fixed at 0 / at 0 / at 0 / at 0 / Analog Analog Analog Analog input input input input enabled enabled enabled enabled Setting disabled Document Number: 001-99223 Rev.*A Setting disabled Maintain previous state Maintain previous state Maintain previous state Maintain previous state Power Supply Stable INITX=1 - Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Internal input fixed at 0 GPIO selected GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Maintain previous state Maintain previous state State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 / Analog input enabled Output Maintain previous state / Internal input fixed at 0 Page 60 of 129 Pin Status Type S6E1B8 Series State Upon Power-on State at Reset or INITX Low-Voltag Input Function e Detection Group Power Supply Unstable Analog input selected External interrupt L enabled selected Resourc e other than the above selected Hi-Z State Upon Device Internal Reset State in Run Mode or Sleep Mode State in Timer Mode, RTC Mode, or Stop Mode Power Power Power Supply Supply Supply Power Supply Stable Stable Stable Stable INITX=0 INITX=1 INITX=1 INITX=1 SPL=0 SPL=1 Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed at 0 / at 0 / at 0 / at 0 / at 0 / Analog Analog Analog Analog Analog input input input input input enabled enabled enabled enabled enabled Maintain previous state State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State INITX=1 SPL=0 SPL=1 Hi-Z / Hi-Z / Internal Internal input fixed input fixed at 0 / at 0 / Analog Analog input input enabled enabled Power Supply Stable INITX=1 Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Power Supply Stable Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Mode input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Input enabled GPIO selected Hi-Z / Input enabled GPIO selected WKUP input enabled Hi-Z / WKUP input enabled GPIO selected M WKUP enabled External interrupt enabled N selected Resourc e other than above selected GPIO selected Setting disabled Setting disabled Maintain previous state Setting disabled Maintain previous state Hi-Z Hi-Z / Input enabled Document Number: 001-99223 Rev.*A Hi-Z / Input enabled Hi-Z / Internal input fixed at 0 Maintain previous state Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Page 61 of 129 Pin Status Type S6E1B8 Series State Upon Power-on State at Reset or INITX Low-Voltag Input Function e Detection Group State Upon Device Internal Reset State in Run Mode or Sleep Mode Power Supply Unstable - Power Supply Stable INITX=0 - Power Supply Stable INITX=1 - Setting disabled Setting disabled Setting disabled Power Supply Stable INITX=1 Maintain previous state Setting disabled Setting disabled Setting disabled CEC enabled WKUP enabled O P External interrupt enabled selected Resourc e other than above selected GPIO selected Resourc e selected Hi-Z Hi-Z / Input enabled Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled GPIO selected External interrupt enabled selected Setting disabled Setting disabled Setting disabled Q USB IO GPIO selected Hi-Z Hi-Z/Input Hi-Z/Input enabled enabled Document Number: 001-99223 Rev.*A Power Supply Stable Power Supply Stable INITX=1 SPL=0 SPL=1 Maintain Maintain previous previous state state INITX=1 SPL=0 SPL=1 Maintain Maintain previous previous state state Hi-Z / WKUP WKUP input input enabled enabled Maintain previous state Maintain previous state Hi-Z / Input enabled State in Timer Mode, RTC Mode, or Stop Mode Maintain previous state Hi-Z / Internal input fixed at 0 Maintain previous State Maintain previous state State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Power Supply Stable INITX=1 Maintain previous state GPIO selected / Internal input fixed at 0 Maintain previous State Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Maintain previous state Maintain previous state GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected Hi-Z/Input enabled Hi-Z/Input enabled Hi-Z/Input enabled GPIO Hi-Z GPIO Hi/-Z/Input Hi/-Z/Input enabled enabled Maintain previous state Hi-Z Page 62 of 129 Pin Status Type S6E1B8 Series State Upon Power-on State at Reset or INITX Low-Voltag Input Function e Detection Group State Upon Device Internal Reset State in Run Mode or Sleep Mode Power Supply Unstable - Power Supply Stable INITX=1 - Power Supply Stable INITX=1 - WKUP enabled R External interrupt enabled selected Resourc e other than above selected INITX=1 SPL=0 SPL=1 INITX=1 SPL=0 SPL=1 Power Supply Stable INITX=1 - WKUP input Hi-Z / WKUP enabled input enabled Setting Setting Setting fixed at 0 disabled disabled disabled Maintain GPIO previous selected / state Setting disabled Resourc e other than above selected Hi-Z GPIO selected Power Supply Stable Hi-Z / GPIO selected S Power Supply Stable Internal input Hi-Z External interrupt enabled selected Power Supply Stable INITX=0 - State in Timer Mode, RTC Mode, or Stop Mode State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State Hi-Z / Hi-Z / Internal Internal input fixed input fixed at 0 at 0 Setting disabled Document Number: 001-99223 Rev.*A Maintain Maintain Internal input previous previous fixed at 0 state state Hi-Z / Internal input fixed at 0 Maintain previous state Setting disabled Hi-Z / Hi-Z / Internal Internal input fixed input fixed at 0 at 0 GPIO Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Internal input selected / fixed at 0 Hi-Z / Internal input Output fixed at 0 Output maintains maintains previous previous state / state / Internal input Internal input fixed at 0 fixed at 0 GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Output Maintain previous state / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Output Maintain previous state / Internal input fixed at 0 Page 63 of 129 Pin Status Type S6E1B8 Series State Upon Power-on State at Reset or INITX Low-Voltag Input Function e Detection Group State Upon Device Internal Reset State in Run Mode or Sleep Mode Power Supply Unstable - Power Supply Stable INITX=1 - Power Supply Stable INITX=1 - Power Supply Stable INITX=0 - State in Timer Mode, RTC Mode, or Stop Mode Power Supply Stable Power Supply Stable INITX=1 SPL=0 SPL=1 INITX=1 SPL=0 SPL=1 Hi-Z / Internal input fixed at 0 WKUP enabled External interrupt enabled selected T Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Resourc e other than above selected Hi-Z GPIO selected Hi-Z / Hi-Z / Internal Internal input fixed input fixed at 0 at 0 Document Number: 001-99223 Rev.*A State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State Maintain previous state Hi-Z / Internal input fixed at 0 WKUP input enabled GPIO selected / Internal input fixed at 0 Output maintains previous state / Internal input fixed at 0 Power Supply Stable INITX=1 - Hi-Z / WKUP input enabled GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 Output maintains previous state / Internal input fixed at 0 Page 64 of 129 Pin Status Type S6E1B8 Series State Upon Power-on State at Reset or INITX Low-Voltag Input Function e Detection Group State Upon Device Internal Reset State in Run Mode or Sleep Mode Power Supply Unstable - Power Supply Stable INITX=0 - Power Supply Stable INITX=1 - Power Supply Stable INITX=1 - Setting disabled Setting disabled Setting disabled CEC enabled WKUP enabled U External interrupt enabled selected Resourc e other than above selected V External interrupt enabled selected Resourc e other than above selected GPIO selected Power Supply Stable Power Supply Stable INITX=1 SPL=0 SPL=1 Maintain previous state INITX=1 SPL=0 SPL=1 Maintain Maintain previous previous state state Hi-Z / Internal input fixed at 0 Maintain previous state Maintain previous state Maintain previous state Hi-Z Hi-Z / Hi-Z / Internal Internal input fixed input fixed at 0 at 0 Hi-Z / Internal input fixed at 0 Hi-Z Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal input fixed input fixed input fixed input fixed at 0 / at 0 / at 0 / at 0 / Analog Analog Analog Analog input input input input enabled enabled enabled enabled Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected Analog input selected State in Timer Mode, RTC Mode, or Stop Mode Setting disabled Setting disabled Document Number: 001-99223 Rev.*A Setting disabled Maintain previous state State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 WKUP input enabled GPIO selected / Internal input fixed at 0 Output maintains previous state / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected / Internal input fixed at 0 Hi-Z / WKUP input enabled Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / Internal input fixed at 0 Power Supply Stable INITX=1 Maintain previous state GPIO selected / Internal input fixed at 0 Output maintains previous state / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 / Analog input enabled GPIO selected / Internal input fixed at 0 Page 65 of 129 Pin Status Type S6E1B8 Series State Upon Power-on State at Reset or INITX Low-Voltag Input Function e Detection Group Power Supply Unstable - Analog input selected W State in Run Mode or Sleep Mode State in Timer Mode, RTC Mode, or Stop Mode Power Power Power Supply Supply Supply Power Supply Stable Stable Stable Stable INITX=0 INITX=1 INITX=1 INITX=1 SPL=0 SPL=1 Hi-Z / Hi-Z / Hi-Z / Hi-Z / Hi-Z / Internal Internal Internal Internal Internal input fixed input fixed input fixed input fixed input fixed at 0 / at 0 / at 0 / at 0 / at 0 / Analog Analog Analog Analog Analog input input input input input enabled enabled enabled enabled enabled Hi-Z / Internal input fixed at 0 WKUP enabled External interrupt enabled selected Resourc e other than above selected GPIO selected External interrupt enabled selected X Hi-Z State Upon Device Internal Reset Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 Setting disabled Resourc e other than above selected Setting disabled Maintain previous state Setting disabled Hi-Z / Hi-Z / Internal Internal input fixed input fixed at 0 at 0 Maintain previous state Maintain previous state Hi-Z / Internal input fixed at 0 State when State in Deep Standby Return RTC Mode or Deep Standby Stop Mode from Deep Standby State Mode State Power Supply Stable INITX=1 SPL=0 SPL=1 Hi-Z / Hi-Z / Internal Internal input fixed input fixed at 0 / at 0 / Analog Analog input input enabled enabled WKUP input enabled GPIO selected / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Output Maintain previous GPIO state / selected Internal input fixed at 0 *1: Oscillation stops in Sub timer mode, Low-speed CR timer mode, Stop mode, RTC mode. Hi-Z Power Supply Stable INITX=1 Hi-Z / Internal input fixed at 0 / Analog input enabled Hi-Z / WKUP input enabled Hi-Z / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 GPIO selected / Internal input fixed at 0 Hi-Z / Internal input fixed at 0 *2: Oscillation stops in Stop mode. Document Number: 001-99223 Rev.*A Page 66 of 129 S6E1B8 Series 11. Electrical Characteristics 11.1 Absolute Maximum Ratings Parameter Symbol 1, 2 Power supply voltage* * 1, 3 Analog power supply voltage* * 1, 3 Analog reference voltage* * 1 Input voltage* VCC AVCC AVRH VI 1 Analog pin input voltage* 1 Output voltage* 4 L level maximum output current* 5 L level average output current* L level total maximum output current 6 L level total average output current* 4 H level maximum output current* Min VSS - 0.5 VSS - 0.5 VSS - 0.5 VSS - 0.5 VSS - 0.5 VIA VSS - 0.5 VO VSS - 0.5 IOL - IOLAV ∑IOL ∑IOLAV - IOH - 5 Rating H level average output current* IOHAV H level total maximum output current ∑IOH 6 H level total average output current* ∑IOHAV Power consumption PD Storage temperature TSTG *1: These parameters are based on the condition that VSS=AVSS=0 V. - 55 Max VSS + 4.6 VSS + 4.6 VSS + 4.6 VCC + 0.5 (≤ 4.6 V) VSS + 6.5 VCC + 0.5 (≤ 4.6 V) VCC + 0.5 (≤ 4.6 V) 10 39 4 100 50 - 10 - 39 -4 - 100 - 50 250 + 150 Unit Remarks V V V V V 5 V tolerant V V mA mA mA mA mA mA mA mA mA mA mW °C P0B / P0C P0B / P0C *2: VCC must not drop below VSS - 0.5 V. *3: Ensure that the voltage does not to exceed VCC + 0.5 V at power-on. *4: The maximum output current is the peak value for a single pin. *5: The average output is the average current for a single pin over a period of 100 ms. *6: The total average output current is the average current for all pins over a period of 100 ms. *7: When P0C/UDP0 and P0B/UDM0 pins are used as GPIO (P0C, P0B). *8: When P0C/UDP0 and P0B/UDM0 pins are used as USB (UDP0, UDM0). <WARNING> Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings. − Document Number: 001-99223 Rev.*A Page 67 of 129 S6E1B8 Series 11.2 Recommended Operating Conditions (VSS=AVSS=0.0 V) Parameter Symbol Conditions Power supply voltage VCC - LCD input voltage VVV4 - Min 5 1.65 * 2.2 3.0 2.2 2.2 - 0.5 Fin - - AVCC - Cf,CVV1, CVV2,CVV3, CVV4 LCD External Capacitor *6 Sub Oscillation frequency *7 Analog power supply voltage Analog reference voltage Smoothing capacitor Operating temperature *1: When LCD Controller is not used. AVRH - AVRL CS TA - Value Max 3.6 3.6 3.6 VCC 4.7 Unit Remarks V V V V V *1 *2 *3 No booster used Booster is used 1.3 μF Booster is used - kHz 1.65 3.6 V Typical is 32.768 kHz AVCC=VCC 2.7 AVCC V AVCC ≥ 2.7 V AVCC AVSS 1 - 40 AVCC AVSS 10 + 105 V V μF °C AVCC < 2.7 V 4 For regulator* *2: When LCD Controller is used. *3: When P0C/UDP0 and P0B/UDM0 pins are used as USB (UDP0, UDM0). *4: See "C Pin" in "7. Handling Devices" for the connection of the smoothing capacitor. *5: In between less than the minimum power supply voltage reset / interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR (including Main PLL is used) or built-in Low-speed CR is possible to operate only. *6: LCD external capacitor between VVx to VSS, and between C0 and C1. *7: If a Booster is used, Sub OSC should provide operation clock at typically 32.768 kHz. <WARNING> 1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. 2. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. 3. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. 4. Users considering application outside the listed conditions are advised to contact their representatives beforehand. Document Number: 001-99223 Rev.*A Page 68 of 129 S6E1B8 Series 11.3 DC Characteristics 11.3.1 Current Rating Symbol 4 MHz external clock input, PLL ON*8 NOP code executed Built-in high speed CR stopped All peripheral clock stopped by CKENx Run mode, code executed from Flash *8 4 MHz external clock input, PLL ON Benchmark code executed Built-in high speed CR stopped PCLK1 stopped *8 4 MHz crystal oscillation, PLL ON NOP code executed Built-in high speed CR stopped All peripheral clock stopped by CKENx ICC (VCC) Run mode, code executed from RAM Run mode, code executed from Flash Run mode, code executed from Flash ICCS (VCC) Sleep operation Value HCLK Conditions (Pin Name) 4 MHz external clock input, PLL ON*8 NOP code executed Built-in high speed CR stopped All peripheral clock stopped by CKENx 4 MHz external clock input, PLL ON NOP code executed Built-in high speed CR stopped PCLK1 stopped Built-in high speed CR*5 NOP code executed All peripheral clock stopped by CKENx 32 kHz crystal oscillation NOP code executed All peripheral clock stopped by CKENx Built-in low speed CR NOP code executed All peripheral clock stopped by CKENx Frequency*4 4 MHz Typ*1 Max*2 0.7 1.9 8 MHz 1.5 2.7 20 MHz 3.1 4.4 40 MHz 5.5 7.2 4 MHz 0.65 1.8 8 MHz 1.4 2.6 20 MHz 2.9 4.2 40 MHz 5.2 6.8 4 MHz 0.9 2.1 8 MHz 1.6 2.9 20 MHz 3.2 4.7 40 MHz 5.7 7.4 Unit Remarks mA *3 mA *3 mA *3 mA *3 4 MHz 0.5 1.3 8 MHz 1.1 2.0 20 MHz 2.2 3.1 40 MHz 4.2 5.1 40 MHz 2.6 3.8 mA *3,*6,*7 4 MHz 0.9 2.2 mA *3 32 kHz 96 1250 μA *3 100 kHz 120 1260 μA *3 mA *3 4 MHz 0.5 1.3 4 MHz external clock input, PLL ON*8 8 MHz 0.9 1.8 All peripheral clock stopped by CKENx 20 MHz 1.7 2.8 40 MHz 3 4.3 4 MHz 0.6 1.7 mA *3 32 kHz 94 960 μA *3 100 kHz 105 980 μA *3 *5 Built-in high speed CR All peripheral clock stopped by CKENx 32 kHz crystal oscillation All peripheral clock stopped by CKENx Built-in low speed CR All peripheral clock stopped by CKENx *1 : TA=+25°C,VCC=3.3 V *2 : TA=+105°C,VCC=3.6 V *3 : All ports are fixed *4 : PCLK0 is set to divided rate 8 *5 : The frequency is set to 4 MHz by trimming *6 : Flash sync down is set to FRWTR.RWT=11 and FSYNDN.SD=1111 *7 : VCC=1.65 V *8 : When HCLK=4 MHz, PLL OFF Document Number: 001-99223 Rev.*A Page 69 of 129 S6E1B8 Series Parameter Symbol (Pin Name) ICCH (VCC) Power supply current ICCT (VCC) ICCR (VCC) Conditions Stop mode Sub timer mode RTC mode *1: All ports are fixed. LVD off. Flash off. Document Number: 001-99223 Rev.*A Typ Value Max Unit Remarks TA=25°C VCC=3.3 V 8.5 35 μA *1 TA=25°C VCC=1.65 V 8 34 μA *1 TA=105°C VCC=3.6 V - 722 μA *1 13 40 μA *1 12.5 39 μA *1 - 729 μA *1 10 37 μA *1 9.5 36 μA *1 - 723 μA *1 TA=25°C VCC=3.3 V 32 kHz Crystal oscillation TA=25°C VCC=1.65 V 32 kHz Crystal oscillation TA=105°C VCC=3.6 V 32 kHz Crystal oscillation TA=25°C VCC=3.3 V 32 kHz Crystal oscillation TA=25°C VCC=1.65 V 32 kHz Crystal oscillation TA=105°C VCC=3.6 V 32 kHz Crystal oscillation Page 70 of 129 S6E1B8 Series Parameter Symbol (Pin Name) RAM off ICCHD (VCC) Deep standby Stop mode RAM on Power supply current RAM off ICCRD (VCC) Value Conditions Deep standby RTC mode RAM on *1: All ports are fixed. LVD off. Document Number: 001-99223 Rev.*A TA=25°C VCC=3.3 V TA=25°C VCC=1.65 V TA=105°C VCC=3.6 V TA=25°C VCC=3.3 V TA=25°C VCC=1.65 V TA=105°C VCC=3.6 V TA=25°C VCC=3.3 V TA=25°C VCC=1.65 V TA=105°C VCC=3.6 V TA=25°C VCC=3.3 V TA=25°C VCC=1.65 V TA=105°C VCC=3.6 V Unit Remarks Typ Max 0.95 2.8 μA *1 0.94 2.7 μA *1 - 232 μA *1 1.15 11.5 μA *1 1.1 11.4 μA *1 - 247 μA *1 1.85 3.41 μA *1 1.8 3.4 μA *1 - 233 μA *1 2.05 12.1 μA *1 2 12.1 μA *1 - 248 μA *1 Page 71 of 129 S6E1B8 Series Parameter Symbol (Pin Name) RTC operation Power supply current Typ Value Max 0.9 1.55 μA *1 0.8 1.55 μA *1 - 3.73 μA *1 TA=25°C VCC=3.0V 0.05 0.64 μA *1 TA=25°C VCC=1.65 V 0.02 0.28 μA *1 - 1.24 μA *1 Conditions ICCVBAT (VBAT) RTC stop TA=25°C VCC=3.0V 32 kHz Crystal oscillation TA=25°C VCC=1.65 V 32 kHz Crystal oscillation TA=105°C VCC=3.6V 32 kHz Crystal oscillation TA=105°C VCC=3.6V Unit Remarks *1: All ports are fixed. Document Number: 001-99223 Rev.*A Page 72 of 129 S6E1B8 Series LVD Current Parameter Low-Voltage detection circuit (LVD) power supply current (VCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol ICCLVD Pin Name VCC Conditions Flash memory write/erase current Power supply current Reference power supply current (AVRH) Symbol Pin Name Conditions ICCFLASH VCC At Write/Erase Unit Remarks 0.13 0.3 μA For occurrence of reset 0.13 0.3 μA For occurrence of interrupt Typ Value 9.5 Max 11.2 Unit Remarks mA (VCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol Pin Name ICCAD AVCC ICCAVRH AVRH Document Number: 001-99223 Rev.*A Max (VCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) A/D converter Current Parameter Value At operation Flash Memory Current Parameter Typ Conditions Value Max 0.6 Unit At operation Typ 0.33 At stop 0.1 10 μA At operation 0.72 1.29 mA At stop 0.1 1.7 μA Remarks mA AVRH=3.6 V Page 73 of 129 S6E1B8 Series Peripheral Current Dissipation Clock System Peripheral Conditions GPIO At all ports operation 0.02 0.04 0.11 0.22 DSTC At 2ch operation 0.07 0.15 0.37 0.74 Base timer At 4ch operation 0.02 0.04 0.08 0.16 Multi-functional timer/PPG At 1 unit/4ch operation 0.06 0.11 0.28 0.55 ADC At 1 unit operation 0.02 0.04 010 0.20 Multi-function serial At 1ch operation 0.03 0.06 0.16 0.31 HCLK PCLK1 (VCC= 3.3 V, TA=25°C) Frequency (MHz) 8 20 Document Number: 001-99223 Rev.*A 4 40 Unit Remarks mA mA Page 74 of 129 S6E1B8 Series 11.3.2 Pin Characteristics Parameter H level input voltage (hysteresis input) L level input voltage (hysteresis input) H level output voltage L level output voltage (VCC =AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol VIHS VILS Value Typ Max - VCC +0.3 V VCC × 0.8 VCC × 0.7 - VSS +5.5 V VSS - 0.3 - Pin Name Conditions CMOS hysteresis input pin, MD0, MD1 5 V tolerant input pin CMOS hysteresis input pin, MD0, MD1 5 V tolerant input pin VCC ≥ 2.7 V Min VCC × 0.8 VCC < 2.7 V VCC × 0.7 VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V 4 mA type VOH The pin doubled as USB I/O 4 mA type VOL The pin doubled as USB I/O - Input leak current IIL CEC0_0, CEC1_0, CEC1_1 Pull-up resistance value RPU Pull-up pin Input capacitance CIN Other than VCC, VSS, AVCC, AVSS, AVRH Document Number: 001-99223 Rev.*A VCC < 2.7 V VCC ≥ 2.7 V VCC < 2.7 V VCC ≥ 2.7 V, IOH = - 4 mA VCC < 2.7 V, IOH = - 2 mA VSS - 0.3 VCC - 0.5 VCC - 0.45 Unit Remarks VCC × 0.2 VCC × 0.3 V - VCC × 0.2 VCC × 0.3 V - VCC V - VCC - 0.4 - VCC V VCC ≥ 2.7 V, IOL 4 mA VCC < 2.7 V, IOL=2 mA VSS - 0.4 V - VSS - 0.4 V VCC = AVCC = AVRH = VSS = AVSS = AVRL = 0.0V VCC ≥ 2.7 V VCC < 2.7 V -5 - +5 μA - - +1.8 μA 21 - 33 - 66 134 kΩ - - 5 15 pF Page 75 of 129 S6E1B8 Series 11.3.3 LCD Characteristic 11.3.3.1 LCD Characteristic Without Booster (VCC =AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter VV0 to VV3 output voltage (1/4 bias) VV0 to VV3 output voltage (1/3 bias) VV0 to VV3 output voltage (1/2 bias) VV4 Active current (1/4 bias) VV4 Active current (1/3 bias) VV4 Active current (1/2 bias) VV4 static current VV0 output voltage in using external resistor Symb ol Pin Name VVV0 VV0 VVV1 VV1 VVV2 VV2 VVV3 VV3 VVV0 VV0 VVV1 VV1 VVV2 VV2 VVV3 VV3 VVV0 VV0 VVV1 VV1 VVV2 VV2 VVV3 VV3 IR100K VV4 IR10K VV4 IR100K VV4 IR10K VV4 IR100K VV4 IR10K VV4 IOFF_VV4 VV4 VVV0E VV0 Document Number: 001-99223 Rev.*A Conditions Min 0 When using internal dividing register When using internal dividing register When using internal dividing register When using 100 kΩ internal dividing resistor When using 10 kΩ internal dividing resistor When using 100 kΩ internal dividing resistor When using 10 kΩ internal dividing resistor When using 100 kΩ internal dividing resistor When using 10 kΩ internal dividing resistor VVV4 x 1/4 -10% VVV4 x 1/2 -10% VVV4 x 3/4 -10% 0 VVV4 x 1/3 -10% VVV4 x 2/3 -10% VVV4 x 2/3 -10% 0 VVV4 x 1/2 -10% VVV4 x 1/2 -10% VVV4 x 1/2 -10% Value Typ - Max Unit Remarks VVV4 x 5% VVV4 x 1/4 +10% VVV4 x 1/2 + 10% VVV4 x 3/4 + 10% VVV4 x 5% VVV4 x 1/3 + 10% VVV4 x 2/3 + 10% VVV4 x 2/3 + 10% VVV4 x 5% VVV4 x 1/2 + 10% VVV4 x 1/2 + 10% VVV4 x 1/2 + 10% V V V - 10 16 µA - 80 100 µA - 12 20 µA - 105 125 µA - 18 30 µA - 160 180 µA When LCD stops - 0.5 1 µA IOL=1 mA - - 0.66 V Page 76 of 129 S6E1B8 Series 11.3.3.2 LCD Characteristic With Booster Recommended LCD Operation Conditions With Booster (VCC =AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Pin Name Value Typ Max Voltage correlation VCC-VV 1 Min VCC,VV1 0.35 - Vtole VV1,VV2 ,VV3,VV 4,C0,C1 0 fIN - External Capacitor Cf,CVV1, CVV2,CVV3 , CVV4 LCD capacitor Frame period Unit Remarks - V VCC-VV1 must be larger than 0.35 V - 5.5 V - 32.76 8 - kHz VV1,VV2 ,VV3,VV 4,C0,C1 0.5 1 1.3 µF CLCD/1COM - - 1.25 8 µF tFRAME - 1/150 - 1/30 s External input tolerant voltage Operating frequency Crystal oscillator CHIP VV4 C1 Cf VV3 1uF C0 X0A 32.768kHz VV2 VV1 VV0 X1A CVV1 CVV2 CVV3 CVV4 1uF 1uF 1uF 1uF LCD Booster 1/4 mode (BIAS[1:0]=2'b10) Document Number: 001-99223 Rev.*A Page 77 of 129 S6E1B8 Series CHIP CHIP VV4 VV4 C1 Cf C1 Cf VV3 1uF VV3 1uF C0 VV2 C0 VV2 VV1 X0A VV1 CVV1 32.768kHz VV0 X1A 1uF CVV2 1uF X0A CVV4 1uF VV0 X1A LCD Booster 1/3 mode (BIAS[1:0]=2'b01) CVV4 CVV1 32.768kHz 1uF 1uF LCD Booster 1/2 mode (BIAS[1:0]=2'b00) DC Electrical Specifications of Internal reference output voltage setting (VCC =AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Internal reference output voltage setting Symbol VV1A Conditions Pin Name TRC[1:0] *1 TRF[3:0] *1 00 1010 00 1011 00 1100 00 1101 00 1110 01 0111 01 1000 01 1001 01 1010 01 1011 VV1 01 1100 01 1101 01 1110 10 0101 10 1100 10 1101 10 1110 11 0010 11 0011 Document Number: 001-99223 Rev.*A Min 0.89 0.94 0.99 1.03 1.07 1.11 1.16 1.20 1.25 1.30 1.34 1.39 1.44 1.46 1.79 1.84 1.89 1.85 1.90 Value Typ 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65 2.00 2.05 2.10 2.15 2.20 Max 1.11 1.16 1.21 1.27 1.38 1.38 1.44 1.49 1.55 1.60 1.65 1.71 1.76 1.83 2.21 2.26 2.32 2.39 2.44 Unit Remarks V BIAS[1:0]=10 Other BIAS[1:0]setting is inhibited V BIAS[1:0]=01 Other BIAS[1:0]setting is inhibited V BIAS[1:0]=00 Other BIAS[1:0]setting is inhibited *4 *3 *2 Page 78 of 129 S6E1B8 Series Parameter Internal reference output voltage setting Charge Pump output voltage Symbol Pin Name VV1A VV1 V2 VV2 V3 VV3 V4 VV4 V2 VV2 V3 VV3 V4 VV4 V2 VV2 V3 VV3 V4 VV4 Conditions TRC[1:0] TRF[3:0] 11 0100 Value Typ Max Min 1.96 2.25 2.49 Unit Remarks V BIAS[1:0]=00 Other BIAS[1:0]setting is inhibited 11 0101 2.01 2.30 2.55 11 0110 2.06 2.35 2.60 11 0111 2.11 2.40 2.65 11 1000 2.17 2.45 2.75 2.2 2.3 2.4 V 3.3 3.45 3.6 V VV1=1.15 V BIAS1=1 *4 BIAS0=0 VV1=1.5 V BIAS1=0 *3 BIAS0=1 4.4 4.6 4.8 V 2.9 3.0 3.1 V =VV2 4.3 VV1=2.25 V BIAS1=0 *2 BIAS0=0 4.3 4.5 V 4.7 V =VV1 V 4.7 VV1=1.15[v] VV1<(VCC-0.35)[V] V =VV1 4.5 *1 VV1<(VCC-0.35)[V] V *1: Other setting combinations are inhibited *2: Charge pump 1/2 mode *3: Charge pump 1/3 mode *4: Charge pump 1/4 mode Transient Electrical Specifications Parameter Startup time (VCC =AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol Pin Name Min Value Typ Max tST VV4 - - 500 Document Number: 001-99223 Rev.*A Unit Remarks mS When BSTPD change from 1 to 0 Page 79 of 129 S6E1B8 Series 11.4 AC Characteristics 11.4.1 Main Clock Input Characteristics Parameter Symbol Input frequency Pin Name fCH X0, X1 (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Conditions Value Unit Remarks Min Max VCC ≥ 2.7 V VCC < 2.7 V 4 4 48 20 MHz When the crystal oscillator is connected - 4 48 MHz When the external clock is used - 20.83 250 ns PWH/tCYLH, PWL/tCYLH 45 55 % - - 5 ns Input clock pulse width - Input clock rising time and falling time tCF, tCR fCM - - - 40.8 MHz When the external clock is used When the external clock is used When the external clock is used Master clock fCC fCP0 fCP1 - - - 40.8 40.8 40.8 MHz MHz MHz Base clock (HCLK/FCLK) 2 APB0 bus clock* 2 APB1 bus clock* Input clock cycle tCYLH Internal operating *1 clock frequency Base clock (HCLK/FCLK) tCYCC 24.5 ns 2 APB0 bus clock* tCYCP0 24.5 ns 2 APB1 bus clock* tCYCP1 24.5 ns *1: For details of each internal operating clock, refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual". Internal operating *1 clock cycle time *2: For details of the APB bus to which a peripheral is connected, see "8. Block Diagram". tCYLH X0 0.8 × Vcc 0.8 × Vcc 0.2 × Vcc PWH PWL tCF Document Number: 001-99223 Rev.*A 0.8 × Vcc 0.2 × Vcc tCR Page 80 of 129 S6E1B8 Series 11.4.2 Sub Clock Input Characteristics Parameter Input frequency Input clock cycle Symbol (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Pin Name fCL tCYLL X0A, X1A Conditions Value Unit Min Typ Max - - 32.768 - kHz - 32 - 100 kHz - 10 - 31.25 μs 55 % Input clock pulse PWH/tCYLL, 45 width PWL/tCYLL *: See "Sub crystal oscillator" in "7. Handling Devices" for the crystal oscillator used. Remarks When the crystal oscillator is connected* When the external clock is used When the external clock is used When the external clock is used tCYLL 0.8 × Vcc 0.8 × Vcc 0.2 × Vcc X0A PWH Document Number: 001-99223 Rev.*A 0.8 × Vcc 0.2 × Vcc PWL Page 81 of 129 S6E1B8 Series 11.4.3 Built-in CR Oscillation Characteristics Built-in High-Speed CR Parameter (VCC=AVCC=1.65 V to 3.6 V, VSS =AVSS=0 V, TA=- 40°C to +105°C) Symbol Value Conditions TA = -20°C to +85°C Min Typ Max 3.96 4 4.04 Unit Remarks During trimming Clock frequency Frequency stabilization time fCRH tCRWT TA = -40°C to +105°C 3.92 4 4.08 TA = - 40°C to +105°C 2.6 4 5.2 - - - *1 MHz Not during trimming 30 μs 300 μs *1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming/temperature trimming. *2 If TRT is changed. *2 *2: This is time from the trim value setting to stable of the frequency of the High-speed CR clock. After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock. Built-in Low-Speed CR Parameter Clock frequency (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol Conditions fCRL - Document Number: 001-99223 Rev.*A Value Min Typ Max 50 100 150 Unit Remarks kHz Page 82 of 129 S6E1B8 Series 11.4.4 Operating Conditions of Main PLL (In the Case of Using the Main Clock as the Input Clock of the PLL) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Value Unit Min Typ Max 100 - - μs PLL input clock frequency fPLLI 4 PLL multiple rate 5 PLL macro oscillation clock frequency fPLLO 75 2 Main PLL clock frequency* fCLKPLL 3 USB clock frequency* fCLKSPLL *1: The wait time is the time it takes for PLL oscillation to stabilize. - 16 37 150 40.8 48 MHz multiple MHz MHz MHz 1 PLL oscillation stabilization wait time* (LOCK UP time) tLOCK Remarks *2: For details of the main PLL clock (CLKPLL), refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual". *3: For more information about USB clock, see "Chapter: USB Clock Generation" in "FM0+ Family Peripheral Manual Communication Macro Part”. 11.4.5 Operating Conditions of Main PLL (In the Case of Using the Built-in High-Speed CR Clock as the Input Clock of the Main PLL) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Value Unit Min Typ Max 100 - - μs PLL input clock frequency fPLLI 3.8 PLL multiple rate 19 PLL macro oscillation clock frequency fPLLO 72 2 Main PLL clock frequency* fCLKPLL *1: The wait time is the time it takes for PLL oscillation to stabilize. 4 - 4.2 35 150 40.8 MHz multiple MHz MHz 1 PLL oscillation stabilization wait time* (LOCK UP time) tLOCK Remarks *2: For details of the main PLL clock (CLKPLL), refer to "Chapter: Clock" in "FM0+ Family Peripheral Manual". Note: For the main PLL source clock, input the high-speed CR clock (CLKHC) whose frequency has been trimmed. When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account and prevent the master clock from exceeding the maximum frequency. − Main PLL connection Main clock (CLKMO) High-speed CR clock (CLKHC) PLL input clock K divider Main PLL PLL macro oscillation clock M divider Main PLL clock (CLKPLL) N divider Document Number: 001-99223 Rev.*A Page 83 of 129 S6E1B8 Series USB PLL connection PLL input clock K divider Main clock (CLKMO) PLL macro oscillation clock M divider USB PLL USB clock N divider 11.4.6 Reset Input Characteristics Parameter (VCC =AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol Pin Name Conditions tINITX INITX - Reset input time 11.4.7 Power-on Reset Timing Parameter Value Min Max 500 - Unit Remarks ns (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol Power supply rising time tVCCR Power supply shut down time Time until releasing Power-on reset tOFF Pin Name Value Max 0 - ms 1 - ms 0.43 3.4 ms VCC tPRT Unit Min Remarks VCC < 0.2V VCC_minimum VDH_minimum VCC 0.2V 0.2V tVCCR tOFF tPRT Internal reset Reset active CPU Operation 0.2V Release start Glossary VCC_minimum : Minimum VCC of recommended operating conditions. VDH_minimum : Minimum detection voltage of Low-Voltage detection reset. See "11.7 Low-Voltage Detection Characteristics". Document Number: 001-99223 Rev.*A Page 84 of 129 S6E1B8 Series 11.4.8 Base Timer Input Timing Timer Input Timing Parameter Input pulse width (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol Pin Name Conditions tTIWH, tTIWL TIOAn/TIOBn (when using as ECK, TIN) - Min Value 2 tCYCP Max - Unit Remarks ns tTIWL tTIWH ECK VIHS VIHS TIN Trigger Input Timing Parameter Input pulse width VILS VILS (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol Pin Name Conditions tTRGH, tTRGL TIOAn/TIOBn (when using as TGIN) - VIHS Value 2 tCYCP Max - Unit Remarks ns tTRGL tTRGH TGIN Min VIHS VILS VILS Note: − tCYCP indicates the APB bus clock cycle time. For the number of the APB bus to which the Base Timer has been connected, see "8. Block Diagram". Document Number: 001-99223 Rev.*A Page 85 of 129 S6E1B8 Series 11.4.9 CSIO/SPI/UART Timing CSIO (SPI=0, SCINV=0) Parameter (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol Serial clock cycle time tSCYC SCK ↓ → SOT delay time tSLOVI SIN → SCK ↑ setup time tIVSHI SCK ↑ → SIN hold time tSHIXI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK falling time SCK rising time tF tR Pin Name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Conditions Master mode Slave mode VCC < 2.7 V Min Max 4 tCYCP - VCC ≥ 2.7 V Min Max 4 tCYCP - Unit ns - 30 + 30 - 20 + 20 ns 60 - 50 - ns 0 - 0 - ns 2 tCYCP - 10 tCYCP +10 - 2 tCYCP - 10 tCYCP +10 - ns ns - 65 - 52 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above AC characteristics are for clock synchronous mode. − tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ". − The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1. − External load capacitance CL=30 pF Document Number: 001-99223 Rev.*A Page 86 of 129 S6E1B8 Series tSCYC VOH SCK VOL VOL tSLOVI VOH SOT VOL tIVSHI SIN tSHIXI VIH VIH VIL VIL Master mode tSLSH SCK VIH tF tSHSL VIL VIL tSLOVE SOT VIH tR VOH VOL tIVSHE SIN VIH VIH VIL tSHIXE VIH VIL Slave mode Document Number: 001-99223 Rev.*A Page 87 of 129 S6E1B8 Series CSIO (SPI=0, SCINV=1) Parameter (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol Serial clock cycle time tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓ → SIN hold time tSLIXI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓ → SIN hold time tSLIXE SCK falling time SCK rising time tF tR Pin Name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Conditions Master mode Slave mode VCC < 2.7 V Min Max 4 tCYCP - VCC ≥ 2.7 V Min Max 4 tCYCP - Unit ns - 30 + 30 - 20 + 20 ns 60 - 50 - ns 0 - 0 - ns 2 tCYCP - 10 tCYCP +10 - 2 tCYCP - 10 tCYCP +10 - ns ns - 65 - 52 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above AC characteristics are for clock synchronous mode. − tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ". − The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1. − External load capacitance CL=30 pF Document Number: 001-99223 Rev.*A Page 88 of 129 S6E1B8 Series tSCYC SCK VOH VOH VOL tSHOVI VOH SOT VOL tIVSLI VIH SIN tSLIXI VIH VIL VIL Master mode tSHSL SCK tSLSH VIH VIH VIL tR tF tSHOVE SOT VOH VOL tIVSLE SIN VIL VIL VIH VIL tSLIXE VIH VIL Slave mode Document Number: 001-99223 Rev.*A Page 89 of 129 S6E1B8 Series SPI (SPI=1, SCINV=0) Parameter (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol Serial clock cycle time tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓→ SIN hold time tSLIXI SOT → SCK ↓ delay time tSOVLI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓→ SIN hold time tSLIXE SCK falling time SCK rising time tF tR Pin Name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx, SOTx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Conditions Master mode Slave mode VCC < 2.7 V Min Max 4 tCYCP - VCC ≥ 2.7 V Min Max 4 tCYCP - Unit ns - 30 + 30 - 20 + 20 ns 60 - 50 - ns 0 - 0 - ns 2 tCYCP - 30 - 2 tCYCP - 30 - ns 2 tCYCP - 10 tCYCP +10 - 2 tCYCP - 10 tCYCP +10 - ns ns - 65 - 52 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above AC characteristics are for clock synchronous mode. − tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ". − The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1. − External load capacitance CL=30 pF Document Number: 001-99223 Rev.*A Page 90 of 129 S6E1B8 Series tSCYC SCK tSOVLI SOT VOH VOL VOH VOL VOH VOL VIH VIL SIN VOL tSHOVI tIVSLI tSLIXI VIH VIL Master mode tSLSH VIH SCK * SOT VIL tSHSL VIL tF tR VOH VOL SIN VIH VIL tIVSLE *: Changes when writing to TDR register Document Number: 001-99223 Rev.*A tSLIXE VIH VIH tSHOVE VOH VOL VIH VIL Slave mode Page 91 of 129 S6E1B8 Series SPI (SPI=1, SCINV=1) Parameter (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol Serial clock cycle time tSCYC SCK ↓ → SOT delay time tSLOVI SIN → SCK ↑ setup time tIVSHI SCK ↑ → SIN hold time tSHIXI SOT → SCK ↑ delay time tSOVHI Serial clock L pulse width Serial clock H pulse width tSLSH tSHSL SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK falling time SCK rising time tF tR Pin Name SCKx Conditions SCKx, SOTx SCKx, SINx SCKx, SINx SCKx, SOTx SCKx SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Master mode Slave mode VCC < 2.7 V Min Max 4 tCYCP - VCC ≥ 2.7 V Min Max 4 tCYCP - Unit ns -30 +30 -20 +20 ns 60 - 50 - ns 0 - 0 - ns 2 tCYCP - 30 - 2 tCYCP - 30 - ns 2 tCYCP - 10 tCYCP +10 - 2 tCYCP - 10 tCYCP +10 - ns ns - 65 - 52 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns Notes: − The above AC characteristics are for clock synchronous mode. − tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ". − The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCKx_0 and SOTx_1. − External load capacitance CL=30 pF Document Number: 001-99223 Rev.*A Page 92 of 129 S6E1B8 Series tSCYC VOH SCK tSOVHI SOT tSLOVI VOH VOL VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL Master mode tR SCK SOT VIL VIH VIH tSLSH VIL tSLOVE VOH VOL tIVSHE SIN tF tSHSL VIL VOH VOL tSHIXE VIH VIL VIH VIL Slave mode Document Number: 001-99223 Rev.*A Page 93 of 129 S6E1B8 Series When Using CSIO/SPI Chip Select (SCINV=0, CSLVL=1) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Conditions VCC < 2.7 V Min VCC ≥ 2.7 V Max Unit Max Min (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns (*2)+0 (*2)+50 (*2)+0 (*2)+50 ns SCS↓→SCK↓ setup time tCSSI SCK↑→SCS↑ hold time tCSHI SCS deselect time tCSDI (*3)-50 (*3)+50 (*3)-50 (*3)+50 ns SCS↓→SCK↓ setup time tCSSE 3tCYCP+30 - 3tCYCP+30 - ns SCK↑→SCS↑ hold time tCSHE 0 - 0 - ns SCS deselect time tCSDE 3tCYCP+30 - 3tCYCP+30 - ns SCS↓→SOT delay time tDSE - 55 - 43 ns SCS↑→SOT delay time tDEE 0 - 0 - ns Master mode Slave mode *1: CSSU bit value × serial chip select timing operating clock cycle. *2: CSHD bit value × serial chip select timing operating clock cycle. *3: CSDS bit value × serial chip select timing operating clock cycle. Irrespective of CSDS bit setting, 5tCYCP or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again. Notes: − tCYCP indicates the APB bus clock cycle time. For information about the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ". − − For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual". − When the external load capacitance CL=30 pF. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed. Document Number: 001-99223 Rev.*A Page 94 of 129 S6E1B8 Series SCSO tCSSI tCSHI tCSDI tCSHE tCSDE SCK SOT (SPI=0) SOT (SPI=1) Master mode SCSI tCSSE SCK tDEE SOT (SPI=0) tDSE SOT (SPI=1) Slave mode Document Number: 001-99223 Rev.*A Page 95 of 129 S6E1B8 Series When Using CSIO/SPI Chip Select (SCINV=1, CSLVL=1) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol SCS↓→SCK↑ setup time tCSSI SCK↓→SCS↑ hold time tCSHI Conditions Master mode VCC < 2.7 V VCC ≥ 2.7 V Unit Min Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns (*2)+0 (*2)+50 (*2)+0 (*2)+50 ns SCS deselect time tCSDI (*3)-50 (*3)+50 (*3)-50 (*3)+50 ns SCS↓→SCK↑ setup time tCSSE 3tCYCP+30 - 3tCYCP+30 - ns SCK↓→SCS↑ hold time tCSHE 0 - 0 - ns SCS deselect time tCSDE 3tCYCP+30 - 3tCYCP+30 - ns SCS↓→SOT delay time tDSE - 55 - 43 ns SCS↑→SOT delay time tDEE 0 - 0 - ns Slave mode *1: CSSU bit value × serial chip select timing operating clock cycle. *2: CSHD bit value × serial chip select timing operating clock cycle. *3: CSDS bit value × serial chip select timing operating clock cycle. Irrespective of CSDS bit setting, 5tCYCP or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again. Notes: − tCYCP indicates the APB bus clock cycle time. For information about the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ". − − For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual". − When the external load capacitance CL=30 pF. These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed. Document Number: 001-99223 Rev.*A Page 96 of 129 S6E1B8 Series SCSO tCSSI tCSHI tCSDI tCSHE tCSDE SCK SOT (SPI=0) SOT (SPI=1) Master mode SCSI tCSSE SCK tDEE SOT (SPI=0) tDSE SOT (SPI=1) Slave mode Document Number: 001-99223 Rev.*A Page 97 of 129 S6E1B8 Series When Using CSIO/SPI Chip Select (SCINV=0, CSLVL=0) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter SCS↑→SCK↓ setup time Symbol Conditions tCSSI VCC < 2.7 V VCC ≥ 2.7 V Min Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 Unit ns SCK↑→SCS↓ hold time tCSHI (*2)+0 (*2)+50 (*2)+0 (*2)+50 ns SCS deselect time tCSDI (*3)-50 (*3)+50 (*3)-50 (*3)+50 ns SCS↑→SCK↓ setup time tCSSE 3tCYCP+30 - 3tCYCP+30 - ns SCK↑→SCS↓ hold time tCSHE SCS deselect time tCSDE SCS↑→SOT delay time SCS↓→SOT delay time Master mode 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns tDSE - 55 - 43 ns tDEE 0 - 0 - ns Slave mode *1: CSSU bit value × serial chip select timing operating clock cycle. *2: CSHD bit value × serial chip select timing operating clock cycle. *3: CSDS bit value × serial chip select timing operating clock cycle. Irrespective of CSDS bit setting, 5tCYCP or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again. Notes: − tCYCP indicates the APB bus clock cycle time. For information about the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ". − For information About CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual". − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed. − When the external load capacitance CL=30 pF. Document Number: 001-99223 Rev.*A Page 98 of 129 S6E1B8 Series tCSDI SCSO tCSSI tCSHI SCK SOT (SPI=0) SOT (SPI=1) Master mode tCSDE SCSI tCSSE tCSHE SCK tDEE SOT (SPI=0) SOT tDSE (SPI=1) Slave mode Document Number: 001-99223 Rev.*A Page 99 of 129 S6E1B8 Series When Using CSIO/SPI Chip Select (SCINV=1, CSLVL=0) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter SCS↑→SCK↑ setup time Symbol Conditions tCSSI VCC < 2.7 V VCC ≥ 2.7 V Min Max Min Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 Unit ns SCK↓→SCS↓ hold time tCSHI (*2)+0 (*2)+50 (*2)+0 (*2)+50 ns SCS deselect time tCSDI (*3)-50 (*3)+50 (*3)-50 (*3)+50 ns SCS↑→SCK↑ setup time tCSSE 3tCYCP+30 - 3tCYCP+30 - ns SCK↓→SCS↓ hold time tCSHE SCS deselect time tCSDE SCS↑→SOT delay time SCS↓→SOT delay time Master mode 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns tDSE - 55 - 43 ns tDEE 0 - 0 - ns Slave mode *1: CSSU bit value × serial chip select timing operating clock cycle. *2: CSHD bit value × serial chip select timing operating clock cycle. *3: CSDS bit value × serial chip select timing operating clock cycle. Irrespective of CSDS bit setting, 5tCYCP or more are required for the period the time when the serial chip select pin becomes inactive to the time when the serial chip select pin becomes active again. Notes: − tCYCP indicates the APB bus clock cycle time. For information about the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ". − For information about CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family Peripheral Manual". − These characteristics only guarantee the same relocate port number. For example, the combination of SCKx_0 and SCSIx_1 is not guaranteed. − When the external load capacitance CL=30 pF. Document Number: 001-99223 Rev.*A Page 100 of 129 S6E1B8 Series tCSDI SCSO tCSSI tCSHI SCK SOT (SPI=0) SOT (SPI=1) Master mode tCSDE SCSI tCSSE tCSHE SCK tDEE SOT (SPI=0) tDSE SOT (SPI=1) Slave mode Document Number: 001-99223 Rev.*A Page 101 of 129 S6E1B8 Series UART external clock input (EXT=1) Parameter Serial clock L pulse width Serial clock H pulse width SCK falling time SCK rising time (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol tSLSH tSHSL tF tR Document Number: 001-99223 Rev.*A VIL Min tCYCP +10 tCYCP +10 - CL=30 pF tR SCK Value Conditions tF tSHSL VIH VIH VIL Max 5 5 Unit Remarks ns ns ns ns tSLSH VIL Page 102 of 129 S6E1B8 Series 11.4.10 External Input Timing Parameter (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Symbol Pin Name Value Min Conditions Max Unit ADTGx Input pulse width 1 - FRCKx 2 tCYCP* - ns ICxx tINH, tINL DTTIxX 1 - 2 tCYCP* 1 Remarks A/D converter trigger input - ns INTxx, NMIX *2 *3 2 tCYCP +100* 500 - ns ns WKUPx *4 500 - ns Free-run timer input clock Input capture Wave form generator External interrupt, NMI Deep standby wake up *1: tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which the Multi-function Timer is connected and that of the APB bus to which the External Interrupt Controller is connected, see "8. Block Diagram". *2: In Run mode and Sleep mode *3: In Timer mode and RTC mode and Stop mode *4: In Deep Standby RTC mode and Deep Standby Stop mode tINH VILS Document Number: 001-99223 Rev.*A tINL VILS VIHS VIHS Page 103 of 129 S6E1B8 Series 2 11.4.11 I C Timing (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Conditions Standard-Mode Min Max 0 100 Fast-Mode Min Max 0 400 Unit Remarks SCL clock frequency fSCL kHz (Repeated) Start condition hold time tHDSTA 4.0 0.6 μs SDA ↓ → SCL ↓ SCL clock L width tLOW 4.7 1.3 μs SCL clock H width tHIGH 4.0 0.6 μs (Repeated) Start setup time tSUSTA 4.7 0.6 μs SCL ↑ → SDA ↓ CL=30 pF, 1 Data hold time 2 3 R=(VP/IOL)* tHDDAT 0 3.45* 0 0.9* μs SCL ↓ → SDA ↓ ↑ Data setup time tSUDAT 250 100 ns SDA ↓ ↑ → SCL ↑ Stop condition setup time tSUSTO 4.0 0.6 μs SCL ↑ → SDA ↑ Bus free time between Stop condition and tBUF 4.7 1.3 μs Start condition 4 4 Noise filter tSP 2 tCYCP* 2 tCYCP* ns *1: R represents the pull-up resistance of the SCL and SDA lines, and CL the load capacitance of the SCL and SDA lines. VP represents the power supply voltage of the pull-up resistance, and IOL the VOL guaranteed current. *2: The maximum tHDDAT must satisfy at least the condition that the period during which the device is holding the SCL signal at L (tLOW) does not extend. 2 2 *3: A Fast-mode I C bus device can be used in a Standard-mode I C bus system, provided that the condition of tSUDAT ≥ 250 ns is fulfilled. *4: tCYCP represents the APB bus clock cycle time. 2 For the number of the APB bus to which the I C is connected, see "8. Block Diagram". To use Standard-mode, set the APB bus clock at 2 MHz or more. To use Fast-mode, set the APB bus clock at 8 MHz or more. SDA tSUDAT tLOW tSUSTA tBUF SCL tHDSTA Document Number: 001-99223 Rev.*A tHDDAT tHIGH tHDSTA tSP tSUSTO Page 104 of 129 S6E1B8 Series 2 11.4.12 I S Timing (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Pin Name MI2SCK max frequency* 2 1 I S clock cycle time* 2 I S clock Duty cycle fMI2SCK tICYC ∆ MI2SCK↓ → MI2SWS delay time tSWDT MI2SCK↓ → MI2SDO delay time tSDDT MI2SDI → MI2SCK ↑ setup time tDSST MI2SCK ↑ → MI2SDI hold time tSDHT MI2SCKx MI2SCKx MI2SCKx MI2SCKx, MI2SWSx MI2SCKx, MI2SDOx MI2SCKx, MI2SDIx MI2SCKx, MI2SDIx MI2SCKx MI2SCKx 1 MI2SCK falling time MI2SCK rising time tF tR Conditions CL=30 pF VCC < 2.7 V Min Max 6.144 4 tCYCP 45% 55% VCC ≥ 2.7 V Min Max 6.144 4 tCYCP 45% 55% Unit MHz ns -30 +30 -20 +20 ns -30 +30 -20 +20 ns 50 - 36 - ns 0 - 0 - ns - 5 5 - 5 5 ns ns *1: I2S clock should meet the multiple of PCLK (tICYC) and the frequency less than fMI2SCK meantime. The detail information please refer to Chapter I2S of Communication Macro Part of Peripheral Manual. VIH MI2SCK tF MI2SWS and MI2SDO VIH VIL VIL tR tSWDT, tSDDT VOH VOL tDSST MI2SDI Document Number: 001-99223 Rev.*A tSDHT VIH VIH VIL VIL Page 105 of 129 S6E1B8 Series 11.4.13 Smart Card Interface Characteristics (VCC=1.65 V to 3.3 V, VSS=0 V, TA=- 40°C to +105°C) Parameter Symbol Output rising time tR Output falling time tF Output clock frequency Duty cycle fCLK ∆ Pin Name Conditions ICx_VCC, ICx_RST, ICx_CLK, ICx_DATA ICx_CLK CL=30 pF Value Unit Min Max 4 20 ns 4 20 ns - 20 MHz 45% 55% Remarks External pull-up resistor (20 kΩ to 50 kΩ) must be applied to ICx_CIN pin when it’s used as smart card reader function. Document Number: 001-99223 Rev.*A Page 106 of 129 S6E1B8 Series 11.4.14 SW-DP Timing Parameter (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Value Unit Symbol Pin Name Conditions SWDIO setup time tSWS SWCLK, SWDIO - 15 - ns SWDIO hold time tSWH SWCLK, SWDIO - 15 - ns SWDIO delay time tSWD SWCLK, SWDIO - - 45 ns Min Max Remarks Note: − External load capacitance CL=30 pF SWCLK VOH VOL tJTAGS VOH VOL SWDIO (When input) tJTAGH VOH VOL tSWD JTAGD SWDIO (When output) Document Number: 001-99223 Rev.*A VOH VOL Page 107 of 129 S6E1B8 Series 11.5 12-bit A/D Converter Electrical Characteristics of A/D Converter (Preliminary Values) (VCC=AVCC=1.65 V to 3.6 V, VSS=AVSS=0 V, TA=- 40°C to +105°C) Parameter Resolution Integral Nonlinearity Differential Nonlinearity Zero transition voltage Full-scale transition voltage 1 Conversion time * 2 Sampling time * 3 Compare clock cycle * Symbol Pin Name VZT VFST ANxx ANxx - - tS - tCCK - Min - 4.5 - 2.5 - 15 AVRH - 15 1.0 4.0 10 0.3 1.2 3.0 50 200 500 Value Typ - Max 12 4.5 + 2.5 + 15 AVRH + 15 - Unit bit LSB LSB mV mV μs 10 μs 1000 ns State transition time to operation permission Analog input capacity tSTT - - - 1.0 μs CAIN - - - pF Analog input resistance RAIN - - - - ANxx ANxx 9.7 2.2 5.5 10.5 4 5 AVRH Interchannel disparity Analog port input leak current Analog input voltage kΩ Remarks AVCC ≥ 2.7 V 1.8 ≤ AVCC < 2.7 V 1.65 ≤ AVCC < 1.8 V AVCC ≥ 2.7 V 1.8 ≤ AVCC < 2.7 V 1.65 ≤ AVCC < 1.8 V AVCC ≥ 2.7 V 1.8 ≤ AVCC < 2.7 V 1.65 ≤ AVCC < 1.8 V AVCC ≥ 2.7 V 1.8 ≤ AVCC < 2.7 V 1.65 ≤ AVCC < 1.8 V LSB μA AVSS V AVCC ≥ 2.7V 2.7 Reference voltage AVCC V AVRH AVCC < 2.7V AVCC *1: The conversion time is the value of sampling time (tS) + compare time (tC). The minimum conversion time is computed according to the following conditions: sampling time=0.3 μs, compare time=0.7 μs AVCC ≥ 2.7 V sampling time=1.2 μs, compare time=2.8 μs 1.8 ≤ AVCC < 2.7 V 1.65 ≤ AVCC < 1.8 V sampling time=3.0 μs, compare time=7.0 μs Ensure that the conversion time satisfies the specifications of the sampling time (tS) and compare clock cycle (tCCK). For details of the settings of the sampling time and compare clock cycle, refer to "Chapter: A/D Converter" in "FM0+ Family Peripheral Manual Analog Macro Part". The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing. For the number of the APB bus to which the A/D Converter is connected, see "8. Block Diagram". The base clock (HCLK) is used to generate the sampling time and the compare clock cycle. *2: The required sampling time varies according to the external impedance. Set a sampling time that satisfies (Equation 1). *3: The compare time (tC) is the result of (Equation 2). Document Number: 001-99223 Rev.*A Page 108 of 129 S6E1B8 Series ANxx Analog input pins Analog signal source REXT Comparator RAIN CAIN (Equation 1) tS ≥ (RAIN + REXT ) × CAIN × 9 tS: Sampling time RAIN: Input resistance of A/D Converter = 2.2 kΩ with 2.7 < AVCC < 3.6 ch.1 to ch.14, ch.16 to ch.19 Input resistance of A/D Converter = 1.9 kΩ with 2.7 < AVCC < 3.6 ch.15 Input resistance of A/D Converter = 2.3 kΩ with 2.7 < AVCC < 3.6 ch.20 to ch.23 Input resistance of A/D Converter = 5.7 kΩ with 1.8 < AVCC < 2.7 ch.1 to ch.14, ch.16 to ch.19 Input resistance of A/D Converter = 5.6 kΩ with 1.8 < AVCC < 2.7 ch.15 Input resistance of A/D Converter = 5.8 kΩ with 1.8 < AVCC < 2.7 ch.20 to ch.23 Input resistance of A/D Converter = 12.6 kΩ with 1.65 < AVCC < 1.8 ch.1 to ch.19 Input resistance of A/D Converter = 12.7 kΩ with 1.65 < AVCC < 1.8 ch.20 to ch.23 CAIN: Input capacitance of A/D Converter = 9.7 pF with 2.7 < AVCC < 3.6 REXT: Output impedance of external circuit (Equation 2) tC=tCCK × 14 tC: Compare time tCCK : Compare clock cycle Document Number: 001-99223 Rev.*A Page 109 of 129 S6E1B8 Series Definitions of 12-bit A/D Converter Terms Resolution: Analog variation that is recognized by an A/D converter. Integral Nonlinearity: Deviation of the line between the zero-transition point (0b000000000000 ←→ 0b000000000001) and the full-scale transition point (0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics. Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB. Integral Nonlinearity 0xFFF Actual conversion characteristics 0xFFE 0x(N+1) {1 LSB(N-1) + VZT} VFST VNT 0x004 (Actuallymeasured value) (Actually-measured value) 0x003 Digital output Digital output 0xFFD Differential Nonlinearity 0x001 Analog input : : : : (Actually-measured value) 0x(N-2) AVRH Differential Nonlinearity of digital output N = N VZT VFST VNT (Actually-measured value) Actual conversion characteristics Integral Nonlinearity of digital output N = 1LSB = V(N+1)T VNT VZT (Actually-measured value) AVSS Ideal characteristics 0x(N-1) Actual conversion characteristics Ideal characteristics 0x002 0xN Actual conversion characteristics AVSS Analog input VNT - {1LSB × (N - 1) + VZT} 1LSB V(N + 1) T - VNT 1LSB AVRH [LSB] - 1 [LSB] VFST – VZT 4094 A/D converter digital output value. Voltage at which the digital output changes from 0x000 to 0x001. Voltage at which the digital output changes from 0xFFE to 0xFFF. Voltage at which the digital output changes from 0x(N − 1) to 0xN. Document Number: 001-99223 Rev.*A Page 110 of 129 S6E1B8 Series 11.6 USB Characteristics (VCC=3.0 V to 3.6 V, VSS=0 V, TA=- 40°C to +105°C) Parameter Input characteristics Symbol Pin Name Conditions Input H level voltage VIH - Input L level voltage VIL - Differential input sensitivity VDI - Differential common mode range VCM - Value Min 2.0 VSS – VCC + 0.3 Unit V Remarks *1 *1 0.8 V 0.2 - V *2 0.8 2.5 V *2 2.8 3.6 V 0.0 0.3 V 0.3 External pull-down Max *3 Output H level voltage VOH Output L level voltage VOL Crossover voltage VCRS - 1.3 2.0 V *4 resistance = 15 kΩ UDP0, External pull-up UDM0 resistance = 1.5 kΩ *3 Output Rising time tFR Full-speed 4 20 ns *5 characteristic Falling time tFF Full-speed 4 20 ns *5 Rising/Falling time matching tFRFM Full-speed 90 111.11 % *5 Output impedance ZDRV Full-speed 28 44 Ω *6 tLR Low-speed 75 300 ns *7 tLF Low-speed 75 300 ns *7 tLRFM Low-speed 80 125 % *7 Rising time Falling time Rising/Falling time matching *1 : Minimum differential input sensitivity [V] *2 : The switching threshold voltage of single-end-receiver of USB I/O buffer is set as within VIL(Max)=0.8 V, VIH(Min)=2.0 V (TTL input standard). There are some hysteresis to lower noise sensitivity. Use differential-receiver to receive USB differential data signal. Differential-receiver has 200 mV of differential input sensitivity when the differential data input is within 0.8 V to 2.5 V to the local ground reference level. Above voltage range is the common mode input voltage range. 1.0 0.2 Document Number: 001-99223 Rev.*A 0.8 2.5 Common mode input voltage [V] Page 111 of 129 S6E1B8 Series *3 : *4 : The output drive capability of the driver is below 0.3 V at Low-state (VOL) (to 3.6 V and 1.5 kΩ load), and 2.8 V or above (to the VSS and 1.5 kΩ load) at high-state (VOH) The cross voltage of the external differential output signal (D+ / D-) of USB I/O buffer is within 1.3 V to 2.0 V. D+ Max 2.0V VCRS specified range Min 1.3V D- *5 : The indicate rising time (Trise) and falling time (Tfall) of the full-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. For full-speed buffer, Tr/Tf ratio is regulated as within ±10% to minimize RFI emission. D+ 90% 90% 10% 10% DTrise Rising time Tfall Falling time Full-speed buffer Rs=27 Ω TxD+ CL=50 pF Rs=27 Ω TxDCL=50 pF 3-state enable *6 : USB Full-speed connection is performed via twist pair cable shield with 90 Ω ± 15% characteristic impedance (Differential Mode). USB standard defines that output impedance of USB driver must be in range from 28Ω to 44Ω. So, discrete series resistor (Rs) addition is defined in order to satisfy the above definition and keep balance. When using this USB I/O, use it with 25 Ω to 33 Ω (recommendation value : 27 Ω) series resistor Rs. Document Number: 001-99223 Rev.*A Page 112 of 129 S6E1B8 Series Full-speed buffer Rs TxD+ 28 Ω to 44 Ω equivalent impedance Rs TxD- 28 Ω to 44 Ω equivalent impedance Mount it as external resistance. 3-state enable Rs series resistor 25 Ω to 30 Ω Series resistor of 27 Ω (recommendation value) must be added. And, use “resistance with an uncertainty of 5% by E24 sequence”. *7 : They indicate rising time (Trise) and falling time (Tfall) of the low-speed differential data signal. They are defined by the time between 10% and 90% of the output signal voltage. D+ 90% 90% 10% 10% DTrise Rising time Tfall Falling time See “Low-speed load (Compliance Load)” for condition of external load. Document Number: 001-99223 Rev.*A Page 113 of 129 S6E1B8 Series ・ Low-Speed Load (Upstream Port Load) – Reference 1 Low-speed buffer Rs=27 Ω TxD+ Rpd CL=50 pF to 150 pF Rs=27 Ω TxDRpd 3-state enable CL=50 pF to 150 pF Rpd=15 kΩ ・ Low-Speed Load (Downstream Port Load) – Reference 2 Low-speed buffer Rs=27 Ω VTERM TxD+ CL=200 pF to 600 pF Rs=27 Ω TxD- CL=50 pF to 150 pF 3-state enable Document Number: 001-99223 Rev.*A Rpu=1.5 kΩ VTERM=3.6 V Page 114 of 129 S6E1B8 Series ・ Low-Speed Load (Compliance Load) Low-speed buffer Rs=27 Ω TxD+ CL=200 pF to 450 pF Rs=27 Ω TxDCL=200 pF to 450 pF 3-state enable Document Number: 001-99223 Rev.*A Page 115 of 129 S6E1B8 Series 11.7 Low-Voltage Detection Characteristics 11.7.1 Low-Voltage Detection Reset Parameter Symbol (TA=-40°C to +105°C) Conditions Min 1.38 1.43 Value Typ 1.50 1.55 Max 1.60 1.65 Unit Detected voltage Released voltage VDL VDH LVD stabilization wait time tLVDW - - - 8160× *2 tCYCP μs LVD detection delay time tLVDDL - - - 200 μs Fixed *1 V V Remarks When voltage drops When voltage rises *1: The value of low voltage detection reset is always fixed. *2: tCYCP indicates the APB1 bus clock cycle time. Document Number: 001-99223 Rev.*A Page 116 of 129 S6E1B8 Series 11.7.2 Low-Voltage Detection Interrupt Parameter (TA=-40°C to +105°C) SVHI=00100 SVHRLI=00100 SVHI=00101 SVHRLI=00101 SVHI=00110 SVHRLI=00110 SVHI=00111 SVHRLI=00111 SVHI=01000 SVHRLI=01000 SVHI=01001 SVHRLI=01001 SVHI=01010 SVHRLI=01010 SVHI=01011 SVHRLI=01011 SVHI=01100 SVHRLI=01100 SVHI=01101 SVHRLI=01101 SVHI=01110 SVHRLI=01110 SVHI=01111 SVHRLI=01111 SVHI=10000 SVHRLI=10000 SVHI=10001 SVHRLI=10001 SVHI=10010 SVHRLI=10010 SVHI=10011 SVHRLI=10011 Min 1.56 1.61 1.61 1.66 1.66 1.70 1.70 1.75 1.75 1.79 1.79 1.84 1.84 1.89 1.89 1.93 2.30 2.39 2.39 2.48 2.48 2.58 2.58 2.67 2.67 2.76 2.76 2.85 2.85 2.94 2.94 3.04 Value Typ 1.70 1.75 1.75 1.80 1.80 1.85 1.85 1.90 1.90 1.95 1.95 2.00 2.00 2.05 2.05 2.10 2.50 2.60 2.60 2.70 2.70 2.80 2.80 2.90 2.90 3.00 3.00 3.10 3.10 3.20 3.20 3.30 tLVDW - - - tLVDDL - - - Symbol Conditions Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH LVD stabilization wait time LVD detection delay time *: Max 1.84 1.89 1.89 1.94 1.94 2.00 2.00 2.05 2.05 2.11 2.11 2.16 2.16 2.21 2.21 2.27 2.70 2.81 2.81 2.92 2.92 3.02 3.02 3.13 3.13 3.24 3.24 3.35 3.35 3.46 3.46 3.56 8160 × tCYCP* 200 Unit V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises μs μs tCYCP represents the APB1 bus clock cycle time. Document Number: 001-99223 Rev.*A Page 117 of 129 S6E1B8 Series 11.7.3 Low-Voltage Detection Interrupt 2 Parameter (TA=- 40°C to +105°C) SVH2I=00100 SVH2RLI=00100 SVH2I=00101 SVH2RLI=00101 SVH2I=00110 SVH2RLI=00110 SVH2I=00111 SVH2RLI=00111 SVH2I=01000 SVH2RLI=01000 SVH2I=01001 SVH2RLI=01001 SVH2I=01010 SVH2RLI=01010 SVH2I=01011 SVH2RLI=01011 SVH2I=01100 SVH2RLI=01100 SVH2I=01101 SVH2RLI=01101 SVH2I=01110 SVH2RLI=01110 SVH2I=01111 SVH2RLI=01111 SVH2I=10000 SVH2RLI=10000 SVH2I=10001 SVH2RLI=10001 SVH2I=10010 SVH2RLI=10010 SVH2I=10011 SVH2RLI=10011 Min 1.56 1.61 1.61 1.66 1.66 1.70 1.70 1.75 1.75 1.79 1.79 1.84 1.84 1.89 1.89 1.93 2.30 2.39 2.39 2.48 2.48 2.58 2.58 2.67 2.67 2.76 2.76 2.85 2.85 2.94 2.94 3.04 Value Typ 1.70 1.75 1.75 1.80 1.80 1.85 1.85 1.90 1.90 1.95 1.95 2.00 2.00 2.05 2.05 2.10 2.50 2.60 2.60 2.70 2.70 2.80 2.80 2.90 2.90 3.00 3.00 3.10 3.10 3.20 3.20 3.30 tLVDW - - - tLVDDL - - - Symbol Conditions Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH LVD stabilization wait time LVD detection delay time Max 1.84 1.89 1.89 1.94 1.94 2.00 2.00 2.05 2.05 2.11 2.11 2.16 2.16 2.21 2.21 2.27 2.70 2.81 2.81 2.92 2.92 3.02 3.02 3.13 3.13 3.24 3.24 3.35 3.35 3.46 3.46 3.56 8160 × tCYCP* 200 Unit V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V V Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises μs μs *: tCYCP represents the APB1 bus clock cycle time. Document Number: 001-99223 Rev.*A Page 118 of 129 S6E1B8 Series 11.8 Flash Memory Write/Erase Characteristics Parameter Sector erase time Large sector Small sector (VCC=1.65 V to 3.6 V, TA=- 40°C to +105°C) Min - Value Typ* 1.1 Max* 2.7 - 0.3 0.9 Unit s Remarks The sector erase time includes the time of writing prior to internal erase. The halfword (16-bit) write time excludes the system-level overhead. The chip erase time includes the time of writing Chip erase time 11.2 28.8 s prior to internal erase. *: The typical value is immediately after shipment, the maximum value is guarantee value under 10,000 cycle of erase/write. Halfword (16-bit) write time - 30 528 μs Write/Erase Cycle and Data Hold Time (Target Value) Write/Erase Cycle Data Hold Time (Year) 1,000 20* 10,000 10* Remarks *: At average + 85°C Document Number: 001-99223 Rev.*A Page 119 of 129 S6E1B8 Series 11.9 Return Time from Low-Power Consumption Mode 11.9.1 Return Factor: Interrupt/WKUP The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation. Return Count Time Parameter (VCC=1.65 V to 3.6 V, TA=-40°C to +105°C) Symbol Sleep mode High-speed CR Timer mode, Main Timer mode, PLL Timer mode Low-speed CR Timer mode Sub Timer mode tICNT Typ 6*HCLK Value *1 Max 7*HCLK Unit μs 12*HCLK 13*HCLK μs 20+12*HCLK 42+13*HCLK μs 20+12*HCLK 42+13*HCLK μs 71 (*2*4) 71+tOSCWT μs 80 μs (*3) RTC mode, 38 (*2*4) Stop mode 38+tOSCWT Deep RTC mode, 45 Deep Stop mode *1: The maximum value depends on the condition of environment. Remarks The count time is different in different clock mode *2: tOSCWT : Oscillator stabilization time. *3: It is for HCR mode. *4: For clock mode except HCR mode. Operation Example of Return from Low-Power Consumption Mode (by External Interrupt*) External interrupt Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: External interrupt is set to detecting fall edge. Document Number: 001-99223 Rev.*A Page 120 of 129 S6E1B8 Series Operation Example of Return from Low-Power Consumption Mode (by Internal Resource Interrupt*) Internal resource interrupt Interrupt factor accept Active tICNT CPU Operation Interrupt factor clear by CPU Start *: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode. Notes: − The return factor is different in each Low-Power consumption modes. See "Chapter: Low Power Consumption Mode" and "Operations of Standby Modes" in FM0+ Family Peripheral Manual. − When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "Chapter: Low Power Consumption Mode" in "FM0+ Family Peripheral Manual". Document Number: 001-99223 Rev.*A Page 121 of 129 S6E1B8 Series 11.9.2 Return Factor: Reset The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation. Return Count Time Parameter (VCC=1.65 V to 3.6 V, TA=-40°C to +105°C) Symbol Typ Value *1 Max* Unit 10 *2 40 70 μs 20 30 μs 61 114 μs Sub Timer mode 61 114 μs RTC/Stop mode 38 85 μs 95 μs Sleep mode High-speed CR Timer mode, Main Timer mode, PLL Timer mode Low-speed CR Timer mode tRCNT Deep RTC mode, 46 Deep Stop mode *: The maximum value depends on the accuracy of built-in CR. Remarks *1 : HCR ON.(HCR/MOSC/PLL mode) *2 : HCR OFF.(LCR/SOS mode) Operation Example of Return from Low-Power Consumption Mode (by INITX) INITX Internal reset Reset active Release tRCNT CPU Operation Document Number: 001-99223 Rev.*A Start Page 122 of 129 S6E1B8 Series Operation Example of Return from Low Power Consumption Mode (by Internal Resource Reset*) Internal resource reset Internal reset Reset active Release tRCNT CPU Operation Start *: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode. Notes: − The return factor is different in each Low-Power consumption modes. See "Chapter: Low Power Consumption Mode" and "Operations of Standby Modes" in FM0+ Family Peripheral Manual. − When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "Chapter: Low Power Consumption Mode" in "FM0+ Family Peripheral Manual". − The time during the power-on reset/low-voltage detection reset is excluded. See "11.4.7 Power-on Reset Timing in 11.4 AC Characteristics in 11. Electrical Characteristics" for the detail on the time during the power-on reset/low -voltage detection reset. − When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time. − The internal resource reset means the watchdog reset and the CSV reset. Document Number: 001-99223 Rev.*A Page 123 of 129 S6E1B8 Series 12. Ordering Information Part Number S6E1B84E0AGV2000A S6E1B86E0AGV2000A S6E1B84EHAGV2000A S6E1B86EHAGV2000A S6E1B84F0AGV20000 S6E1B86F0AGV20000 S6E1B84FHAGV20000 S6E1B86FHAGV20000 S6E1B84G0AGV20000 S6E1B86G0AGV20000 S6E1B84GHAGV20000 S6E1B86GHAGV20000 On-Chip Flash Memory 304 560 304 560 304 560 304 560 304 560 304 560 Document Number: 001-99223 Rev.*A On-Chip SRAM 32 64 32 64 32 64 32 64 32 64 32 64 AES Calculator Package Packing N/A Plastic LQFP (0.50 mm pitch), 80 pins (LQH080-02) Tray Plastic LQFP (0.50 mm pitch), 100 pins (LQI100) Tray Plastic LQFP (0.50 mm pitch), 120 pins (LQM120) Tray Yes N/A Yes N/A Yes Page 124 of 129 S6E1B8 Series 13. Package Dimensions Document Number: 001-99223 Rev.*A Page 125 of 129 S6E1B8 Series Document Number: 001-99223 Rev.*A Page 126 of 129 S6E1B8 Series Document Number: 001-99223 Rev.*A Page 127 of 129 S6E1B8 Series Document History Document Title: S6E1B8 Series 32-bit ARM® Cortex®-M0+ FM0+ Microcontroller Document Number: 001-99223 Revision ** ECN 4889752 Orig. of Change TEKA Submission Date 08/31/2015 Description of Change New Spec. Corrected Channel of Serial chip select function on CSIO in “Features” Changed Conversion time of A/D Converter in “Features” and “11.5 12-bit A/D Converter” Changed the package code on “2. Packages” Deleted pin function of “CEC0_1”. *A 5208992 SHNA 04/07/2016 Corrected Current Rating. Added the condition for CEC0_0, CEC1_0 and CEC1_1 to “Input Leak Current” on “11.3.2 Pin Characteristics”. Corrected the condition of Power supply shut down time on “11.4.7 Power-on Reset Timing”. Corrected the Part Number on “12. Ordering Information”. Changed the package dimensions on “13.Package Dimensions”. Document Number: 001-99223 Rev.*A Page 128 of 129 S6E1B8 Series Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. Products ® PSoC® Solutions ® ARM Cortex Microcontrollers Automotive Clocks & Buffers Interface Lighting & Power Control Memory PSoC Touch Sensing USB Controllers Wireless/RF cypress.com/arm cypress.com/automotive cypress.com/clocks cypress.com/interface cypress.com/powerpsoc cypress.com/memory cypress.com/psoc PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP Cypress Developer Community Community | Forums | Blogs | Video | Training Technical Support cypress.com/support cypress.com/psoc cypress.com/touch cypress.com/usb cypress.com/wireless ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. © Cypress Semiconductor Corporation, 2015-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 001-99223 Rev.*A April 7, 2016 Page 129 of 129