S6E1A11B0A/C0A S6E1A12B0A/C0A 32-Bit ARM® Cortex® FM0+ based Microcontroller The S6E1A1 Series is a series of highly integrated 32-bit microcontrollers designed for embedded controllers aiming at low power consumption and low cost. This series has the ARM Cortex-M0+ Processor with on-chip Flash memory and SRAM, and consists of peripheral functions such as various timers, ADCs and communication interfaces (UART, CSIO, I2C, LIN). The products which are described in this data sheet are placed into TYPE1-M0+ product categories in "FM0+ Family PERIPHERAL MANUAL". Features CSIO 32-bit ARM Cortex-M0+ Core Full duplex double buffer dedicated baud rate generator Overrun error detection function Serial chip select function (ch.1 and ch.3 only) Data length: 5 to 16 bits Processor version: r0p1 Built-in Maximum operating frequency: 40 MHz Nested Vectored Interrupt Controller (NVIC): 1 NMI (non-maskable interrupt) and 32 peripheral interrupt with 4 selectable interrupt priority levels LIN LIN protocol Rev.2.1 supported duplex double buffer Master/Slave mode supported LIN break field generation function (The length is variable between 13 bits and 16 bits.) LIN break delimiter generation function (The length is variable between 1 bit and 4 bits.) Various error detection functions available (parity errors, framing errors, and overrun errors) 24-bit System timer (Sys Tick): System timer for OS task Full management Bit Band operation Compatible with Cortex-M3 bit band operation On-Chip Memories Flash memory I2 C Up to 88 Kbyte Read cycle:0 wait-cycle Security function for code protection Standard-mode (Max: 100 kbps) supported / Fast-mode (Max 400kbps) supported. SRAM DMA Controller (2 channels) The on-chip SRAM of this series has one independent SRAM. SRAM: 6 Kbyte The DMA Controller has its own bus independent of the CPU, and CPU and DMA Controller can process simultaneously. 2 independently configurable and operable channels Multi-function Serial Interface (Max 3channels) 128 bytes with FIFO in all channels (The number of FIFO steps varies depending on the settings of the communication mode or bit length.) The operation mode of each channel can be selected from It can start a transfer with a software request or a request from a built-in peripheral. Transfer address area: 32 bits (4 Gbyte) Transfer mode: block transfer/burst transfer/demand transfer Transfer data type: byte/halfword/word one of the following. UART CSIO LIN 2 I C Transfer block count: 1 to 16 Number of transfers: 1 to 65536 UART Full duplex double buffer can be enabled or disabled. Built-in dedicated baud rate generator External clock available as a serial clock Parity Various error detection functions (parity errors, framing errors, and overrun errors) Cypress Semiconductor Corporation Document Number: 002-05091 Rev.*A • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised February 10, 2016 S6E1A11B0A/C0A S6E1A12B0A/C0A A/D Converter (Max: 8 channels) 12-bit A/D Converter Successive approximation type Conversion time: 0.8 μs @ 5 V (S6E1A1xC0A) / 2.0 μs (S6E1A1xB0A) Priority conversion available (2 levels of priority) Scan conversion mode Built-in FIFO for conversion data storage (for scan conversion: 16 steps, for priority conversion: 4 steps) Base Timer (Max: 4 channels) The operation mode of each channel can be selected from one of the following. 16-bit PWM timer Quadrature Position/Revolution Counter (QPRC) The Quadrature Position/Revolution Counter (QPRC) is used to measure the position of the position encoder. In addition, it can be used as an up/down counter. The detection edge for the three external event input pins AIN, BIN and ZIN is configurable. 16-bit position counter 16-bit revolution counter Two 16-bit compare registers Multi-function Timer The Multi-function Timer consists of the following blocks. 16-bit PPG timer 16-bit free-run timer × 3 channels 16/32-bit reload timer Input capture × 4 channels 16/32-bit PWC timer Output compare × 6 channels General-purpose I/O Port ADC start compare × 6 channel This series can use its pin as a general-purpose I/O port when it is not used for an external bus or a peripheral function. All ports can be set to fast general-purpose I/O ports or slow general-purpose I/O ports. In addition, this series has a port relocate function that can set to which I/O port a peripheral function can be allocated. Waveform generator × 3 channels All ports are Fast GPIO which can be accessed by 1cycle PWM signal output function Capable of controlling the pull-up of each pin DC chopper waveform output function Capable of reading pin level directly Dead time function Port relocate function Input capture function Up to 37 fast general-purpose I/O ports @48pin package ADC start function Certain ports are 5 V tolerant. DTIF (motor emergency stop) interrupt function See "3. Pin Assignment" and "5. I/O Circuit Type" for details of such pins. Dual Timer (32/16-bit Down Counter) The Dual Timer consists of two programmable 32/16-bit down counters. The operation mode of each timer channel can be selected from one of the following. Free-running mode Periodic mode (= Reload mode) One-shot mode 16-bit PPG timer × 3 channels IGBT mode is contained. The following function can be used to achieve the motor control. Real-time Clock (RTC) The Real-time Clock counts year/month/day/hour/minute/second/day of the week from year 01 to year 99. The RTC can generate an interrupt at a specific time (year/month/day/hour/minute/second/day of the week) and can also generate an interrupt in a specific year, in a specific month, on a specific day, at a specific hour or at a specific minute. It has a timer interrupt function generating an interrupt upon a specific time or at specific intervals. It can keep counting while rewriting the time. It can count leap years automatically. Document Number: 002-05091 Rev.*A Page 2 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Watch Counter The Watch Counter wakes up the microcontroller from the low power consumption mode. The clock source can be selected from the main clock, the sub clock, the built-in high-speed CR clock or the built-in low-speed CR clock. Low-voltage Detector (LVD) Interval timer: up to 64 s (sub clock: 32.768 kHz) LVD1: error reporting via an interrupt This series monitors the voltage on the VCC pin with a 2-stage mechanism. When the voltage falls below a designated voltage, the Low-voltage Detector generates an interrupt or a reset. External Interrupt Controller Unit LVD2: auto-reset operation Up to 8 external interrupt input pins Low Power Consumption Mode Non-maskable interrupt (NMI) input pin: 1 This series has four low power consumption modes. SLEEP Watchdog Timer (2 channels) The watchdog timer generates an interrupt or a reset when the counter reaches a time-out value. TIMER RTC This series consists of two different watchdogs, "hardware" watchdog and "software" watchdog. STOP The "hardware" watchdog timer is clocked by the built-in low-speed CR oscillator. Therefore, the "hardware" watchdog is active in any low-power consumption modes except RTC mode and STOP mode. Peripheral Clock Gating Clock and Reset Debug Clocks Serial Wire Debug Port (SW-DP) A clock can be selected from five clock sources (two external oscillators, two built-in CR oscillator, and main PLL). Main clock : 4 MHz to 40MHz Sub clock : 32.768 kHz Built-in high-speed CR clock : 4 MHz Built-in low-speed CR clock : 100 kHz Main PLL clock Micro Trace Buffer (MTB) Resets The system can reduce the current consumption of the total system with gating the operation clocks of peripheral functions not used. Unique ID A 41-bit unique value of the device has been set. Power Supply Wide voltage range: VCC = 2.7 V to 5.5 V Reset request from the INITX pin on reset Software reset Watchdog timer reset Low-voltage detection reset Clock supervisor reset Power Clock Supervisor (CSV) The Clock Supervisor monitors the failure of external clocks with a clock generated by a built-in CR oscillator. If an external clock failure (clock stop) is detected, a reset is asserted. If an external frequency anomaly is detected, an interrupt or a reset is asserted. Document Number: 002-05091 Rev.*A Page 3 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Contents 1. Product Lineup .................................................................................................................................................................. 5 2. Packages ........................................................................................................................................................................... 6 3. Pin Assignment ................................................................................................................................................................. 7 4. Pin Descriptions .............................................................................................................................................................. 12 5. I/O Circuit Type ............................................................................................................................................................... 23 6. Handling Precautions ..................................................................................................................................................... 28 6.1 Precautions for Product Design ................................................................................................................................... 28 6.2 Precautions for Package Mounting .............................................................................................................................. 29 6.3 Precautions for Use Environment ................................................................................................................................ 31 7. Handling Devices ............................................................................................................................................................ 32 8. Block Diagram ................................................................................................................................................................. 35 9. Memory Size .................................................................................................................................................................... 36 10. Memory Map .................................................................................................................................................................... 36 11. Pin Status in Each CPU State ........................................................................................................................................ 39 12. Electrical Characteristics ............................................................................................................................................... 43 12.1 Absolute Maximum Ratings ......................................................................................................................................... 43 12.2 Recommended Operating Conditions ......................................................................................................................... 44 12.3 DC Characteristics ...................................................................................................................................................... 45 12.3.1 Current Rating .............................................................................................................................................................. 45 12.3.2 Pin Characteristics ....................................................................................................................................................... 48 12.4 AC Characteristics ....................................................................................................................................................... 49 12.4.1 Main Clock Input Characteristics .................................................................................................................................. 49 12.4.2 Sub Clock Input Characteristics ................................................................................................................................... 50 12.4.3 Built-in CR Oscillation Characteristics .......................................................................................................................... 51 12.4.4 Operating Conditions of Main PLL (In the case of using the main clock as the input clock of the PLL) ....................... 52 12.4.5 Operating Conditions of Main PLL (In the case of using the built-in high-speed CR clock as the input clock of the main PLL) .............................................................................................................................. 52 12.4.6 Reset Input Characteristics .......................................................................................................................................... 53 12.4.7 Power-on Reset Timing ................................................................................................................................................ 53 12.4.8 Base Timer Input Timing .............................................................................................................................................. 54 12.4.9 CSIO Timing................................................................................................................................................................. 55 12.4.10 External Input Timing ................................................................................................................................................ 71 12.4.11 QPRC Timing ........................................................................................................................................................... 72 12.4.12 I2C Timing ................................................................................................................................................................. 74 12.4.13 SW-DP Timing .......................................................................................................................................................... 75 12.5 12-bit A/D Converter .................................................................................................................................................... 76 12.6 Low-voltage Detection Characteristics ........................................................................................................................ 79 12.6.1 Low-voltage Detection Reset ....................................................................................................................................... 79 12.6.2 Low-voltage Detection Interrupt ................................................................................................................................... 80 12.7 Flash Memory Write/Erase Characteristics ................................................................................................................. 81 12.8 Return Time from Low-Power Consumption Mode ...................................................................................................... 82 12.8.1 Return Factor: Interrupt ................................................................................................................................................ 82 12.8.2 Return Factor: Reset .................................................................................................................................................... 84 13. Ordering Information ...................................................................................................................................................... 86 14. Package Dimensions ...................................................................................................................................................... 87 15. Major Changes ................................................................................................................................................................ 92 Document Number: 002-05091 Rev.*A Page 4 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 1. Product Lineup Memory Size S6E1A11B0A S6E1A11C0A Product name On-chip Flash memory On-chip SRAM 56 Kbyte 6 Kbyte S6E1A12B0A S6E1A12C0A 88 Kbyte 6 Kbyte Function S6E1A11B0A S6E1A12B0A Product name Pin count 32 Cortex-M0+ 40 MHz 2.7 V to 5.5 V 2 ch. 3 ch. (Max) ch.0/ch.1/ch.3: FIFO CPU Frequency Power supply voltage range DMAC Multi-function Serial Interface (UART/CSIO/I2C) Base Timer (PWC/Reload timer/PWM/PPG) Multi-functio n Timer 48/52 4 ch. (Max) A/D start compare 6 ch. Input capture Free-run timer Output compare Waveform generator PPG 4 ch. 3 ch. 6 ch. QPRC Dual Timer Real-time Clock Watch Counter Watchdog timer External Interrupt I/O port 12-bit A/D converter CSV (Clock Supervisor) LVD (Low-voltage Detection) High-speed Built-in CR Low-speed Debug Function Unique ID S6E1A11C0A S6E1A12C0A 1 unit 3 ch. 3 ch. 1 ch. 1 unit 1 unit 1 unit 1 ch. (SW) + 1 ch. (HW) 8 pins (Max) + NMI × 1 23 pins (Max) 5 ch. (1 unit) Yes 2 ch. 4 MHz 100 kHz SW-DP Yes 37 pins (Max) 8 ch. (1 unit) Note: • All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the I/O port according to your function use. See "14. ELECTRICAL CHARACTERISTICS 14.4 AC Characteristics 14.4.3 Built-in CR Oscillation Characteristics" for accuracy of built-in CR. Document Number: 002-05091 Rev.*A Page 5 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 2. Packages Product name Package LQFP: FPT-32P-M30 (0.80 mm pitch) QFN: LCC-32P-M73 (0.50 mm pitch) LQFP: FPT-48P-M49 (0.50 mm pitch) QFN: LCC-48P-M74 (0.50 mm pitch) LQFP: FPT-52P-M02 (0.65 mm pitch) : Supported S6E1A11B0A S6E1A12B0A - S6E1A11C0A S6E1A12C0A Note: • See "14. Package Dimensions" for detailed information on each package. Document Number: 002-05091 Rev.*A Page 6 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 3. Pin Assignment FPT-32P-M30 25 P21/SIN0_0/INT06_1/TIOB1_1/IC01_1/BIN0_1/FRCK0_0 26 P01/SWCLK 27 P03/SWDIO 28 P04/SCK3_0/INT03_2/TIOB0_1/IGTRG0_1 29 P0F/NMIX/SUBOUT_0/CROUT_1/RTCCO_0 30 P61/SOT3_0/TIOB2_2/DTTI0X_2/SCS11_2 31 P60/SIN3_0/TIOA2_2/INT15_1/IC00_0/IGTRG0_0/SCS10_2 32 VSS (TOP VIEW) P3A/RTO00_0/TIOA0_1/AIN0_3/SUBOUT_2/RTCCO_2/INT03_0/SCK0_2 1 24 P22/AN07/SOT0_0/TIOB2_0/IC03_1/ZIN0_1/INT05_1 P3B/RTO01_0/TIOA1_1/BIN0_3/SOT0_2/INT04_0/SCS31_2 2 23 P23/AN06/SCK0_0/TIOA2_0/IC02_1/AIN0_1/INT04_1 P3C/RTO02_0/TIOA2_1/ZIN0_3/SIN0_2/INT05_0/SCS30_2 3 22 AVSS P3D/RTO03_0/TIOA3_1/INT06_0/AIN0_0/SCK3_2 4 21 AVCC LQFP - 32 P3E/RTO04_0/TIOA0_0/BIN0_0/SOT3_2/INT15_0 5 20 P13/AN03/SCK1_1/SUBOUT_1/IC01_2/RTCCO_1/INT00_1 P3F/RTO05_0/TIOA1_0/ZIN0_0/SIN3_2 6 19 P12/AN02/SOT1_1/IC00_2/INT01_1 VSS 7 18 P11/AN01/SIN1_1/INT02_1/FRCK0_2/IC02_0 PE3/X1 16 PE2/X0 15 MD0 14 PE0/ADTG_1/DTTI0X_1/INT02_2 13 INITX 12 P47/X1A 11 VCC 9 17 VSS P46/X0A 10 C 8 Note: • The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05091 Rev.*A Page 7 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A LCC-32P-M73 25 P21/SIN0_0/INT06_1/TIOB1_1/IC01_1/BIN0_1/FRCK0_0 26 P01/SWCLK 27 P03/SWDIO 28 P04/SCK3_0/INT03_2/TIOB0_1/IGTRG0_1 29 P0F/NMIX/SUBOUT_0/CROUT_1/RTCCO_0 30 P61/SOT3_0/TIOB2_2/DTTI0X_2/SCS11_2 31 P60/SIN3_0/TIOA2_2/INT15_1/IC00_0/IGTRG0_0/SCS10_2 32 VSS (TOP VIEW) P3A/RTO00_0/TIOA0_1/AIN0_3/SUBOUT_2/RTCCO_2/INT03_0/SCK0_2 1 24 P22/AN07/SOT0_0/TIOB2_0/IC03_1/ZIN0_1/INT05_1 P3B/RTO01_0/TIOA1_1/BIN0_3/SOT0_2/INT04_0/SCS31_2 2 23 P23/AN06/SCK0_0/TIOA2_0/IC02_1/AIN0_1/INT04_1 P3C/RTO02_0/TIOA2_1/ZIN0_3/SIN0_2/INT05_0/SCS30_2 3 22 AVSS P3D/RTO03_0/TIOA3_1/INT06_0/AIN0_0/SCK3_2 4 21 AVCC QFN - 32 P3E/RTO04_0/TIOA0_0/BIN0_0/SOT3_2/INT15_0 5 20 P13/AN03/SCK1_1/SUBOUT_1/IC01_2/RTCCO_1/INT00_1 P3F/RTO05_0/TIOA1_0/ZIN0_0/SIN3_2 6 19 P12/AN02/SOT1_1/IC00_2/INT01_1 VSS 7 18 P11/AN01/SIN1_1/INT02_1/FRCK0_2/IC02_0 PE3/X1 16 PE2/X0 15 MD0 14 PE0/ADTG_1/DTTI0X_1/INT02_2 13 INITX 12 P47/X1A 11 VCC 9 17 VSS P46/X0A 10 C 8 Note: • The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05091 Rev.*A Page 8 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A FPT-48P-M49 37 P00 38 P01/SWCLK 39 P02 40 P03/SWDIO 41 P04/SCK3_0/INT03_2/TIOB0_1/IGTRG0_1 42 P0F/NMIX/SUBOUT_0/CROUT_1/RTCCO_0 43 P61/SOT3_0/TIOB2_2/DTTI0X_2/SCS11_2 44 P60/SIN3_0/TIOA2_2/INT15_1/IC00_0/IGTRG0_0/SCS10_2 45 P80/SCK1_2/FRCK0_1 46 P81/SOT1_2 47 P82/SIN1_2 48 VSS (TOP VIEW) VCC 1 36 P21/SIN0_0/INT06_1/TIOB1_1/IC01_1/BIN0_1/FRCK0_0 P50/INT00_0/AIN0_2/SIN3_1/IC01_0 2 35 P22/AN07/SOT0_0/TIOB2_0/IC03_1/ZIN0_1/INT05_1 P51/INT01_0/BIN0_2/SOT3_1 3 34 P23/AN06/SCK0_0/TIOA2_0/IC02_1/AIN0_1/INT04_1 P52/INT02_0/ZIN0_2/SCK3_1 4 33 AVSS P39/DTTI0X_0/ADTG_2 5 32 AVRH LQFP - 48 P3A/RTO00_0/TIOA0_1/AIN0_3/SUBOUT_2/RTCCO_2/INT03_0/SCK0_2 6 31 AVCC P3B/RTO01_0/TIOA1_1/BIN0_3/SOT0_2/INT04_0/SCS31_2 7 30 P15/AN05/SOT0_1/SCS11_1/IC03_2/INT15_2 P3C/RTO02_0/TIOA2_1/ZIN0_3/SIN0_2/INT05_0/SCS30_2 8 29 P14/AN04/SIN0_1/SCS10_1/INT03_1/IC02_2 P3D/RTO03_0/TIOA3_1/INT06_0/AIN0_0/SCK3_2 9 28 P13/AN03/SCK1_1/SUBOUT_1/IC01_2/RTCCO_1/INT00_1 P3E/RTO04_0/TIOA0_0/BIN0_0/SOT3_2/INT15_0 10 27 P12/AN02/SOT1_1/IC00_2/INT01_1 P3F/RTO05_0/TIOA1_0/ZIN0_0/SIN3_2 11 26 P11/AN01/SIN1_1/INT02_1/FRCK0_2/IC02_0 VSS 24 PE3/X1 23 PE2/X0 22 MD0 21 PE0/ADTG_1/DTTI0X_1/INT02_2 20 P4A/TIOB1_0 19 P49/TIOB0_0 18 INITX 17 P47/X1A 16 P46/X0A 15 C 13 25 P10/AN00 VCC 14 VSS 12 Note: • The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05091 Rev.*A Page 9 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A LCC-48P-M74 37 P00 38 P01/SWCLK 39 P02 40 P03/SWDIO 41 P04/SCK3_0/INT03_2/TIOB0_1/IGTRG0_1 42 P0F/NMIX/SUBOUT_0/CROUT_1/RTCCO_0 43 P61/SOT3_0/TIOB2_2/DTTI0X_2/SCS11_2 44 P60/SIN3_0/TIOA2_2/INT15_1/IC00_0/IGTRG0_0/SCS10_2 45 P80/SCK1_2/FRCK0_1 46 P81/SOT1_2 47 P82/SIN1_2 48 VSS (TOP VIEW) VCC 1 36 P21/SIN0_0/INT06_1/TIOB1_1/IC01_1/BIN0_1/FRCK0_0 P50/INT00_0/AIN0_2/SIN3_1/IC01_0 2 35 P22/AN07/SOT0_0/TIOB2_0/IC03_1/ZIN0_1/INT05_1 P51/INT01_0/BIN0_2/SOT3_1 3 34 P23/AN06/SCK0_0/TIOA2_0/IC02_1/AIN0_1/INT04_1 P52/INT02_0/ZIN0_2/SCK3_1 4 33 AVSS P39/DTTI0X_0/ADTG_2 5 32 AVRH QFN- 48 P3A/RTO00_0/TIOA0_1/AIN0_3/SUBOUT_2/RTCCO_2/INT03_0/SCK0_2 6 31 AVCC P3B/RTO01_0/TIOA1_1/BIN0_3/SOT0_2/INT04_0/SCS31_2 7 30 P15/AN05/SOT0_1/SCS11_1/IC03_2/INT15_2 P3C/RTO02_0/TIOA2_1/ZIN0_3/SIN0_2/INT05_0/SCS30_2 8 29 P14/AN04/SIN0_1/SCS10_1/INT03_1/IC02_2 P3D/RTO03_0/TIOA3_1/INT06_0/AIN0_0/SCK3_2 9 28 P13/AN03/SCK1_1/SUBOUT_1/IC01_2/RTCCO_1/INT00_1 P3E/RTO04_0/TIOA0_0/BIN0_0/SOT3_2/INT15_0 10 27 P12/AN02/SOT1_1/IC00_2/INT01_1 P3F/RTO05_0/TIOA1_0/ZIN0_0/SIN3_2 11 26 P11/AN01/SIN1_1/INT02_1/FRCK0_2/IC02_0 VSS 24 PE3/X1 23 PE2/X0 22 MD0 21 PE0/ADTG_1/DTTI0X_1/INT02_2 20 P4A/TIOB1_0 19 P49/TIOB0_0 18 INITX 17 P47/X1A 16 P46/X0A 15 C 13 25 P10/AN00 VCC 14 VSS 12 Note: • The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Document Number: 002-05091 Rev.*A Page 10 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A FPT-52P-M02 40 NC 41 P00 42 P01/SWCLK 43 P02 44 P03/SWDIO 45 P04/SCK3_0/INT03_2/TIOB0_1/IGTRG0_1 46 P0F/NMIX/SUBOUT_0/CROUT_1/RTCCO_0 47 P61/SOT3_0/TIOB2_2/DTTI0X_2/SCS11_2 48 P60/SIN3_0/TIOA2_2/INT15_1/IC00_0/IGTRG0_0/SCS10_2 49 P80/SCK1_2/FRCK0_1 50 P81/SOT1_2 51 P82/SIN1_2 52 VSS (TOP VIEW) VCC 1 39 P21/SIN0_0/INT06_1/TIOB1_1/IC01_1/BIN0_1/FRCK0_0 P50/INT00_0/AIN0_2/SIN3_1/IC01_0 2 38 P22/AN07/SOT0_0/TIOB2_0/IC03_1/ZIN0_1/INT05_1 P51/INT01_0/BIN0_2/SOT3_1 3 37 P23/AN06/SCK0_0/TIOA2_0/IC02_1/AIN0_1/INT04_1 P52/INT02_0/ZIN0_2/SCK3_1 4 36 NC NC 5 35 AVSS P39/DTTI0X_0/ADTG_2 6 34 AVRH LQFP - 52 P3A/RTO00_0/TIOA0_1/AIN0_3/SUBOUT_2/RTCCO_2/INT03_0/SCK0_2 7 33 AVCC P3B/RTO01_0/TIOA1_1/BIN0_3/SOT0_2/INT04_0/SCS31_2 8 32 P15/AN05/SOT0_1/SCS11_1/IC03_2/INT15_2 P3C/RTO02_0/TIOA2_1/ZIN0_3/SIN0_2/INT05_0/SCS30_2 9 31 P14/AN04/SIN0_1/SCS10_1/INT03_1/IC02_2 P3D/RTO03_0/TIOA3_1/INT06_0/AIN0_0/SCK3_2 10 30 P13/AN03/SCK1_1/SUBOUT_1/IC01_2/RTCCO_1/INT00_1 P3E/RTO04_0/TIOA0_0/BIN0_0/SOT3_2/INT15_0 11 29 P12/AN02/SOT1_1/IC00_2/INT01_1 P3F/RTO05_0/TIOA1_0/ZIN0_0/SIN3_2 12 28 P11/AN01/SIN1_1/INT02_1/FRCK0_2/IC02_0 VSS 26 PE3/X1 25 PE2/X0 24 MD0 23 PE0/ADTG_1/DTTI0X_1/INT02_2 22 NC 21 P4A/TIOB1_0 20 P49/TIOB0_0 19 INITX 18 P47/X1A 17 P46/X0A 16 C 14 27 P10/AN00 VCC 15 VSS 13 Note: • The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used. Document Number: 002-05091 Rev.*A Page 11 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 4. Pin Descriptions List of Pin Functions The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin. Pin no. LQFP-48 QFN-48 LQFP-52 1 1 Pin name LQFP-32 QFN-32 - VCC I/O circuit type Pin state type - P50 INT00_0 2 2 - AIN0_2 I* J I* J I* J E I F J F J SIN3_1 IC01_0 P51 3 3 - INT01_0 BIN0_2 SOT3_1 P52 4 4 - INT02_0 ZIN0_2 SCK3_1 P39 6 5 - DTTI0X_0 ADTG_2 P3A RTO00_0 TIOA0_1 7 6 1 AIN0_3 SUBOUT_2 RTCCO_2 INT03_0 SCK0_2 P3B RTO01_0 TIOA1_1 8 7 2 BIN0_3 SOT0_2 INT04_0 SCS31_2 Document Number: 002-05091 Rev.*A Page 12 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Pin no. LQFP-48 QFN-48 LQFP-52 Pin name LQFP-32 QFN-32 I/O circuit type Pin state type P3C RTO02_0 TIOA2_1 9 8 3 ZIN0_3 F J F J F J F I SIN0_2 INT05_0 SCS30_2 P3D RTO03_0 10 9 4 TIOA3_1 INT06_0 AIN0_0 SCK3_2 P3E RTO04_0 11 10 5 TIOA0_0 BIN0_0 SOT3_2 INT15_0 P3F RTO05_0 12 11 6 TIOA1_0 ZIN0_0 SIN3_2 13 12 7 VSS - 14 13 8 C - 15 14 9 VCC - 16 15 10 17 16 11 18 17 12 19 18 - 20 19 - Document Number: 002-05091 Rev.*A P46 X0A P47 X1A INITX P49 TIOB0_0 P4A TIOB1_0 D E D F B C E I E I Page 13 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Pin no. LQFP-48 QFN-48 LQFP-52 Pin name LQFP-32 QFN-32 I/O circuit type Pin state type PE0 22 20 13 ADTG_1 C J J D A A A B DTTI0X_1 INT02_2 23 21 14 24 22 15 25 23 16 26 24 17 27 25 - MD0 PE2 X0 PE3 X1 VSS P10 AN00 G K H* L H* L H* L H* L P11 AN01 28 26 18 SIN1_1 INT02_1 FRCK0_2 IC02_0 P12 AN02 29 27 19 SOT1_1 IC00_2 INT01_1 P13 AN03 SCK1_1 30 28 20 SUBOUT_1 IC01_2 RTCCO_1 INT00_1 P14 AN04 31 29 - SIN0_1 SCS10_1 INT03_1 IC02_2 Document Number: 002-05091 Rev.*A Page 14 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Pin no. LQFP-48 QFN-48 LQFP-52 Pin name LQFP-32 QFN-32 I/O circuit type Pin state type P15 AN05 32 30 - SOT0_1 H* L SCS11_1 IC03_2 33 31 21 INT15_2 AVCC 34 32 - AVRH - 35 33 22 AVSS - - P23 AN06 SCK0_0 37 34 23 TIOA2_0 G L G L E J E I E H E I E H IC02_1 AIN0_1 INT04_1 P22 AN07 SOT0_0 38 35 24 TIOB2_0 IC03_1 ZIN0_1 INT05_1 P21 SIN0_0 INT06_1 39 36 25 TIOB1_1 IC01_1 BIN0_1 FRCK0_0 41 37 - 42 38 26 43 39 - 44 40 27 Document Number: 002-05091 Rev.*A P00 P01 SWCLK P02 P03 SWDIO Page 15 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Pin no. LQFP-48 QFN-48 LQFP-52 Pin name LQFP-32 QFN-32 I/O circuit type Pin state type P04 SCK3_0 45 41 28 INT03_2 I* J E G I* I I* J K I K I K I TIOB0_1 IGTRG0_1 P0F NMIX 46 42 29 SUBOUT_0 CROUT_1 RTCCO_0 P61 SOT3_0 47 43 30 TIOB2_2 DTTI0X_2 SCS11_2 P60 SIN3_0 TIOA2_2 48 44 31 INT15_1 IC00_0 IGTRG0_0 SCS10_2 P80 49 45 - SCK1_2 FRCK0_1 P81 50 46 - 51 47 - 52 48 32 VSS - 5,21,36,40 - - NC - SOT1_2 P82 SIN1_2 *:5V tolerant I/O Document Number: 002-05091 Rev.*A Page 16 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A List of pin functions The number after the underscore ("_") in a pin name such as XXX_1 and XXX_2 indicates the relocated port number. The channel on such pin has multiple functions, each of which has its own pin name. Use the Extended Port Function Register (EPFR) to select the pin to be used. Pin function Pin no. Pin name ADTG_1 20 13 5 - AN00 27 25 - AN01 28 26 18 AN02 29 27 19 30 28 20 31 29 - AN05 32 30 - AN06 37 34 23 AN07 38 35 24 11 10 5 7 6 1 19 18 - 45 41 28 12 11 6 8 7 2 20 19 - 39 36 25 37 34 23 9 8 3 48 44 31 38 35 24 47 43 30 AN03 TIOA0_0 TIOA0_1 TIOB0_0 TIOB0_1 TIOA1_0 Base Timer 1 TIOA1_1 TIOB1_0 TIOB1_1 A/D converter external trigger input pin A/D converter analog input pin. ANxx describes ADC ch.xx. Base timer ch.0 TIOA pin Base timer ch.0 TIOB pin Base timer ch.1 TIOA pin Base timer ch.1 TIOB pin TIOA2_0 TIOA2_1 Base Timer 2 TIOB2_2 Debugger Base timer ch.2 TIOA pin TIOA2_2 TIOB2_0 Base Timer 3 LQFP-32 QFN-32 6 AN04 Base Timer 0 LQFP-48 QFN-48 LQFP-52 22 ADTG_2 ADC Function description Base timer ch.2 TIOB pin TIOA3_1 Base timer ch.3 TIOA pin 10 9 4 SWCLK Serial wire debug interface clock input pin Serial wire debug interface data input / output pin 42 38 26 44 40 27 SWDIO Document Number: 002-05091 Rev.*A Page 17 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Pin function Pin no. Pin name INT00_0 Function description LQFP-32 QFN-32 2 2 - 30 28 20 3 3 - 29 27 19 4 4 - 28 26 18 INT02_2 22 20 13 INT03_0 7 6 1 31 29 - 45 41 28 8 7 2 37 34 23 9 8 3 38 35 24 10 9 4 39 36 25 11 10 5 48 44 31 32 30 - 46 42 29 INT00_1 INT01_0 INT01_1 External interrupt request 00 input pin External interrupt request 01 input pin INT02_0 INT02_1 INT03_1 External Interrupt LQFP-48 QFN-48 LQFP-52 External interrupt request 02 input pin External interrupt request 03 input pin INT03_2 INT04_0 INT04_1 INT05_0 INT05_1 INT06_0 INT06_1 External interrupt request 04 input pin External interrupt request 05 input pin External interrupt request 06 input pin INT15_0 INT15_1 External interrupt request 15 input pin INT15_2 NMIX Document Number: 002-05091 Rev.*A Non-Maskable Interrupt input pin Page 18 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Pin function Pin no. Pin name LQFP-32 QFN-32 41 37 - P01 42 38 26 43 39 - 44 40 27 P04 45 41 28 P0F 46 42 29 P10 27 25 - P11 28 26 18 29 27 19 30 28 20 P14 31 29 - P15 32 30 - P21 39 36 25 38 35 24 P23 37 34 23 P39 6 5 - P3A 7 6 1 P3B 8 7 2 9 8 3 P3D 10 9 4 P3E 11 10 5 P3F 12 11 6 P46 16 15 10 17 16 11 P03 P12 P13 P22 P3C P47 P49 General-purpose I/O port 0 General-purpose I/O port 1 General-purpose I/O port 2 General-purpose I/O port 3 General-purpose I/O port 4 19 18 - P4A 20 19 - P50 2 2 - 3 3 - 4 4 - 48 44 31 47 43 30 49 45 - P51 General-purpose I/O port 5 P52 GPIO LQFP-48 QFN-48 LQFP-52 P00 P02 GPIO Function description P60 P61 General-purpose I/O port 6 P80 P81 50 46 - P82 51 47 - PE0* 22 20 13 24 22 15 25 23 16 PE2 PE3 Document Number: 002-05091 Rev.*A General-purpose I/O port 8 General-purpose I/O port E Page 19 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Pin function Pin no. Pin name Function description SIN0_0 SIN0_1 Multi-functio n Serial 0 SIN0_2 SOT0_0 (SDA0_0) SOT0_1 (SDA0_1) SOT0_2 (SDA0_2) SCK0_0 (SCL0_0) SCK0_2 (SCL0_2) SIN1_1 SIN1_2 SOT1_1 (SDA1_1) SOT1_2 (SDA1_2) Multi-functio n Serial 1 SCK1_1 (SCL1_1) SCK1_2 (SCL1_2) SCS10_1 SCS10_2 SCS11_1 SCS11_2 Multifunction Serial 3 SIN3_2 SOT3_0 (SDA3_0) SOT3_1 (SDA3_1) SOT3_2 (SDA3_2) SCK3_0 (SCL3_0) SCK3_1 (SCL3_1) SCK3_2 (SCL3_2) SCS30_2 SCS31_2 Document Number: 002-05091 Rev.*A LQFP-32 QFN-32 39 36 25 31 29 - 9 8 3 38 35 24 32 30 - 8 7 2 37 34 23 7 6 1 28 26 18 51 47 - 29 27 19 50 46 - 30 28 20 49 45 - Multi-function serial interface ch.1 serial chip select 0 output/input pin. 31 29 - 48 44 31 Multi-function serial interface ch.1 serial chip select 1 output pin. 32 30 - 47 43 30 48 44 31 2 2 - 12 11 6 47 43 30 3 3 - 11 10 5 45 41 28 4 4 - 10 9 4 9 8 3 8 7 2 Multi-function serial interface ch.0 input pin Multi-function serial interface ch.0 output pin. This pin operates as SOT0 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) and as SDA0 when used as an I2C pin (operation mode 4). Multi-function serial interface ch.0 clock I/O pin. This pin operates as SCK0 when used as a CSIO pin (operation mode 2) and as SCL0 when used as an I2C pin (operation mode 4). Multi-function serial interface ch.1 input pin Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) and as SDA1 when used as an I2C pin (operation mode 4). Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when used as a CSIO pin (operation mode 2) and as SCL1 when used as an I2C pin (operation mode 4). SIN3_0 SIN3_1 LQFP-48 QFN-48 LQFP-52 Multi-function serial interface ch.3 input pin Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when used as a UART/CSIO/LIN pin (operation mode 0 to 3) and as SDA3 when used as an I2C pin (operation mode 4). Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when used as a CSIO (operation mode 2) and as SCL3 when used as an I2C pin (operation mode 4). Multi-function serial interface ch.3 serial chip select 0 input/output pin. Multi-function serial interface ch.3 serial chip select 1 output pin. Page 20 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Pin function Pin no. Pin name DTTI0X_0 Function description LQFP-32 QFN-32 6 5 - 22 20 13 47 43 30 39 36 25 49 45 - FRCK0_2 28 26 18 IC00_0 48 44 31 IC00_2 29 27 19 IC01_0 2 2 - IC01_1 39 36 25 30 28 20 28 26 18 IC02_1 37 34 23 IC02_2 31 29 - IC03_1 38 35 24 32 30 - 7 6 1 8 7 2 9 8 3 10 9 4 11 10 5 12 11 6 48 44 31 45 41 28 DTTI0X_1 DTTI0X_2 Input signal of waveform generator controlling RTO00 to RTO05 outputs of Multi-function Timer 0. FRCK0_0 FRCK0_1 IC01_2 IC02_0 16-bit free-run timer ch.0 external clock input pin. 16-bit input capture input pin of Multi-function timer 0. ICxx describes channel number. IC03_2 Multi-functio n Timer 0 LQFP-48 QFN-48 LQFP-52 RTO00_0 (PPG00_0) RTO01_0 (PPG00_0) RTO02_0 (PPG02_0) RTO03_0 (PPG02_0) RTO04_0 (PPG04_0) RTO05_0 (PPG04_0) IGTRG0_0 IGTRG0_1 Document Number: 002-05091 Rev.*A Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode. Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode. PPG IGBT mode external trigger input pin Page 21 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Pin no. Pin function Pin name 10 9 4 37 34 23 2 2 - AIN0_3 7 6 1 BIN0_0 11 10 5 39 36 25 3 3 - BIN0_3 8 7 2 ZIN0_0 12 11 6 ZIN0_1 38 35 24 4 4 - 9 8 3 46 42 29 30 28 20 RTCCO_2 7 6 1 SUBOUT_0 46 42 29 30 28 20 7 6 1 18 17 12 23 21 14 1 1 - BIN0_1 BIN0_2 QPRC ch.0 AIN input pin QPRC ch.0 BIN input pin QPRC ch.0 ZIN input pin ZIN0_3 RTCCO_0 RTCCO_1 SUBOUT_1 0.5-seconds pulse output pin of Real-time clock Sub clock output pin SUBOUT_2 VCC External Reset Input pin. A reset is valid when INITX="L". Mode 0 pin. During normal operation, input MD0="L". During serial programming to Flash memory, input MD0="H". Power supply pin VCC Power supply pin 15 14 9 VSS GND pin 13 12 7 VSS GND pin 26 24 17 VSS GND pin 52 48 32 X0 Main clock (oscillation) input pin 24 22 15 X0A Sub clock (oscillation) input pin 16 15 10 X1 Main clock (oscillation) I/O pin 25 23 16 17 16 11 46 42 29 33 31 21 34 32 - 35 33 22 14 13 8 RESET INITX Mode MD0 POWER GND CLOCK LQFP-32 QFN-32 AIN0_1 ZIN0_2 Real-time clock LQFP-48 QFN-48 LQFP-52 AIN0_0 AIN0_2 Quadrature Position/ Revolution Counter Function description X1A Sub clock (oscillation) I/O pin Built-in high-speed CR oscillation clock CROUT_1 output port AVCC A/D converter analog power supply pin Analog A/D converter analog reference voltage POWER AVRH input pin Analog A/D converter analog reference voltage AVSS GND input pin Power supply stabilization capacitance C pin C pin *: PE0 is an open drain pin, cannot output high. Document Number: 002-05091 Rev.*A Page 22 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 5. I/O Circuit Type Type Circuit P-ch P-ch Remarks Digital output X1 N-ch Digital output R Pull-up resistor control Digital input Standby mode control Clock input A Standby mode control Digital input Standby mode control It is possible to select the main oscillation / GPIO function When the main oscillation is selected. • Oscillation feedback resistor : Approximately 1MΩ • With standby mode control When the GPIO is selected. • CMOS level output. • CMOS level hysteresis input • With pull-up resistor control • With standby mode control • Pull-up resistor : Approximately 50kΩ • IOH= -4mA, IOL= 4mA R P-ch P-ch Digital output N-ch Digital output X0 Pull-up resistor control Pull-up resistor B Digital input Document Number: 002-05091 Rev.*A • CMOS level hysteresis input • Pull-up resistor : Approximately 50kΩ Page 23 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Type Circuit Remarks Digital input C Digital output N-ch P-ch P-ch • Open drain output • CMOS level hysteresis input Digital output X1A N-ch Digital output R Pull-up resistor control Digital input Standby mode control Clock input D Standby mode control Digital input Standby mode control It is possible to select the sub oscillation / GPIO function When the sub oscillation is selected. • Oscillation feedback resistor : Approximately 5MΩ • With standby mode control When the GPIO is selected. • CMOS level output. • CMOS level hysteresis input • With pull-up resistor control • With standby mode control • Pull-up resistor : Approximately 50kΩ • IOH= -4mA, IOL= 4mA R P-ch P-ch Digital output N-ch Digital output X0A Pull-up resistor control Document Number: 002-05091 Rev.*A Page 24 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Type Circuit P-ch E P-ch N-ch Remarks Digital output Digital output R Pull-up resistor control • • • • • CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50kΩ • IOH= -4mA, IOL= 4mA • When this pin is used as an I2C pin, the digital output P-ch transistor is always off Digital input Standby mode control P-ch P-ch Digital output F N-ch Digital output R • • • • • CMOS level output CMOS level hysteresis input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50kΩ • IOH= -12mA, IOL= 12mA • When this pin is used as an I2C pin, the digital output P-ch transistor is always off Pull-up resistor control Digital input Standby mode control Document Number: 002-05091 Rev.*A Page 25 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Type Circuit P-ch P-ch N-ch Remarks Digital output Digital output G Pull-up resistor control R Digital input Standby mode control • • • • • • • CMOS level output CMOS level hysteresis input With input control Analog input With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50kΩ • IOH= -4mA, IOL= 4mA • When this pin is used as an I2C pin, the digital output P-ch transistor is always off Analog input Input control P-ch P-ch N-ch Digital output Digital output H R Pull-up resistor control Digital input Standby mode control • • • • • • • • CMOS level output CMOS level hysteresis input With input control Analog input 5V tolerant With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50kΩ • IOH= -4mA, IOL= 4mA • Available to control of PZR registers. • When this pin is used as an I2C pin, the digital output P-ch transistor is always off Analog input Input control Document Number: 002-05091 Rev.*A Page 26 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Type Circuit P-ch P-ch Remarks Digital output I N-ch Digital output R Pull-up resistor control • • • • • • CMOS level output CMOS level hysteresis input 5V tolerant With pull-up resistor control With standby mode control Pull-up resistor : Approximately 50kΩ • IOH= -4mA, IOL= 4mA • Available to control PZR registers • When this pin is used as an I2C pin, the digital output P-ch transistor is always off Digital input Standby mode control Mode input J P-ch Digital output K N-ch CMOS level hysteresis input Digital output R • • • • • CMOS level output CMOS level hysteresis input With standby mode control IOH= -4mA, IOL= 4mA 2 When this pin is used as an I C pin, the digital output P-ch transistor is always off Digital input Standby mode control Document Number: 002-05091 Rev.*A Page 27 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 6. Handling Precautions Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices. 6.1 Precautions for Product Design This section describes precautions when designing electronic equipment using semiconductor devices. Absolute Maximum Ratings Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings. Recommended Operating Conditions Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges. Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand. Processing and Protection of Pins These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions. 1. Preventing Over-Voltage and Over-Current Conditions Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage. 2. Protection of Output Pins Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection. 3. Handling of Unused Input Pins Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin. Code: DS00-00004-2Ea Document Number: 002-05091 Rev.*A Page 28 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Latch-up Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up. CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following: 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc. 2. Be sure that abnormal current flows do not occur during the power-on sequence. Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. Precautions Related to Usage of Devices Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. 6.2 Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative. Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions. Document Number: 002-05091 Rev.*A Page 29 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Lead-Free Packaging CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. 2. Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. When you open Dry Package that recommends humidity 40% to 70% relative humidity. 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust. Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking. Condition: 125°C/24 h Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. 4. Ground all fixtures and instruments, or protect with anti-static measures. 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies. Document Number: 002-05091 Rev.*A Page 30 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 6.3 Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: 1. Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. 2. Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. 3. Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. 4. Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. 5. Smoke, Flame CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases. Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives. Document Number: 002-05091 Rev.*A Page 31 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 7. Handling Devices Power Supply Pins In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source with each POWER pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between VCC and VSS, between AVCC and AVSS and between AVRH and AVRL near this device. A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the VCC power supply voltage. As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard VCC value, and the transient fluctuation rate does not exceed 0.1 V/μs at a momentary fluctuation such as switching the power supply. Crystal Oscillator Circuit Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located as close to the device as possible. It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation. Evaluate oscillation of your using crystal oscillator by your mount board. Sub Crystal Oscillator This series sub oscillator circuit is low gain to keep the low current consumption. The crystal oscillator to fill the following conditions is recommended for sub crystal oscillator to stabilize the oscillation. Surface mount type Size: Load capacitance: Load capacitance: More than 3.2 mm × 1.5 mm Approximately 6 pF to 7 pF When the Standard setting (CCS/CCB=11001110) Approximately 4 pF to 7 pF When the low power setting (CCS/CCB=00000100) Lead type Load capacitance: Load capacitance: Approximately 6 pF to 7 pF When the Standard setting (CCS/CCB=11001110) Approximately 4 pF to 7 pF When the low power setting (CCS/CCB=00000100) Document Number: 002-05091 Rev.*A Page 32 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Using an External Clock When using an external clock as an input of the main clock, set X0/X1 to the external clock input, and input the clock to X0. X1(PE3) can be used as a general-purpose I/O port. Similarly, when using an external clock as an input of the sub clock, set X0A/X1A to the external clock input, and input the clock to X0A. X1A (P47) can be used as a general-purpose I/O port. Example of Using an External Clock Device X0(X0A) Set as External clock input Can be used as general-purpose I/O ports. X1(PE3), X1A (P47) Handling when Using Multi-Function Serial Pin as I2C Pin If it is using the multi-function serial pin as I2C pins, P-ch transistor of digital output is always disabled. 2 2 However, I C pins need to keep the electrical characteristic like other pins and not to connect to the external I C bus system with power OFF. C Pin This series contains the regulator. Be sure to connect a smoothing capacitor (CS) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor. However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor. A smoothing capacitor of about 4.7 μF would be recommended for this series. C Device CS VSS GND Mode Pins (MD0) Connect the MD pin (MD0) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise. Document Number: 002-05091 Rev.*A Page 33 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Notes on Power-on Turn power on/off in the following order or at the same time. Turning on : VBAT → VCC VCC → AVCC → AVRH Turning off : VCC → VBAT AVRH → AVCC → VCC Serial Communication There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a printed circuit board so as to avoid noise. Consider the case of receiving wrong data due to noise, perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data. Differences in Features among the Products with Different Memory Sizes and between Flash Products and MASK Products The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash products and MASK products are different because chip layout and memory structures are different. If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics. Pull-Up Function of 5V Tolerant I/O Please do not input the signal more than VCC voltage at the time of Pull-Up function use of 5V tolerant I/O. Document Number: 002-05091 Rev.*A Page 34 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 8. Block Diagram S6E1A11/S6E1A12 SWCLK, SWDIO To PIN-Function-Ctrl SW-DP Fast GPIO Cortex-M0+ Core @40MHz(Max) MTB AHB-APB Bridge: APB0(Max 40MHz) System ROM table Dual-Timer WatchDog Timer (Software) Clock Reset Generator WatchDog Timer (Hardware) Multi-layer AHB (Max 40MHz) Bit Band Wrapper NVIC INITX On-Chip SRAM 6 Kbyte Flash I/F Security On-Chip Flash 56 Kbyte/ 88 Kbyte DMAC 2ch. CSV CLK X0A X1A Main Osc Sub Osc PLL CR 4MHz Source Clock AHB-AHB Bridge X0 X1 CR 100kHz CROUT AVCC, AVSS AVRH (only 48/52pin PKG) 12-bit A/D Converter Power-On Reset Unit 0 ANxx TIOAx TIOBx AINx BINx ZINx Base Timer 16-bit 4ch./ 32-bit 2ch. QPRC 1ch. A/D Activation Compare 6ch. IC0x FRCKx 16-bit Input Capture 4ch. 16-bit Free-run Timer 3ch. AHB-APB Bridge : APB1 (Max 40MHz) ADTG LVD Ctrl LVD IRQ-Monitor Regulator Watch Counter RTCCO, SUBOUT Real-Time Clock External Interrupt Controller 8pin + NMI INTx MODE-Ctrl MD0 NMIX Low-speed CR Prescaler Peripheral Clock Gating To Fast GPIO 16-bit Output Compare 6ch. DTTI0X RTO0x Waveform Generator 3ch. C GPIO PIN-Function-Ctrl P0x, P1x, . . . Pxx SCKx IGTRGx 16-bit PPG 3ch. Multi-function Timer Document Number: 002-05091 Rev.*A Multi-function Serial I/F 3ch. (with FIFO) SINx SOTx SCSx Page 35 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 9. Memory Size See Memory size in 1. Product Lineup to confirm the memory size. 10. Memory Map Memory Map (1) 0x41FF_FFFF Peripheral area 0xFFFF_FFFF Reserved 0xF802_0000 0xF800_0000 Fast GPIO (Single-cycle I/O port) Reserved Reserved 0xF000_3000 ROM table 0xF000_2000 0xF000_1000 0xF000_0000 MTB_DWT MTB registers(SFR) Cortex-M0+ Private Peripherals 0xE000_0000 0x4006_1000 0x4006_0000 0x4003_C800 0x4003_C100 0x4003_C000 0x4003_B000 0x4003_A000 0x4003_9000 0x4003_8000 32 Mbytes Bit Band alias 0x4200_0000 Peripherals 0x4000_0000 0x4003_5100 0x4003_5000 0x4003_4000 0x4003_3000 0x4003_2000 0x4003_1000 0x4003_0000 0x4002_F000 0x4002_E000 32 Mbytes Bit Band alias 0x2200_0000 Reserved RTC Watch Counter Reserved MFS LVD Reserved GPIO Reserved INT-Req READ EXTI Reserved CR Trim Reserved Reserved 0x2400_0000 Peripheral Clock Gating Low Speed CR Prescaler Reserved Reserved 0x4400_0000 DMAC Reserved 0x4002_8000 0x4002_7000 0x4002_6000 0x4002_5000 0x4002_4000 A/DC QPRC Base Timer PPG 0x2008_0000 SRAM Reserved 0x2000_0000 0x4002_1000 0x4002_0000 Reserved Reserved See map(2)" See "Memory “Memory map (2)” forfor the memory memory size the sizedetails. details. 0x4001_6000 0x4001_5000 Dual Timer Reserved 0x0010_0008 0x0010_0004 0x0010_0000 CR Trim Security Flash 0x4001_3000 0x4001_2000 0x4001_1000 0x4001_0000 SW WDT HW WDT Clock/Reset Reserved 0x0000_0000 0x4000_1000 0x4000_0000 Document Number: 002-05091 Rev.*A MFT unit 0 Flash I/F Page 36 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Memory Map(2) S6E1A12B0A S6E1A12C0A 0x2008_0000 S6E1A11B0A S6E1A11C0A 0x2008_0000 Reserved 0x2000_1800 Reserved 0x2000_1800 SRAM 6K bytes 0x2000_0000 SRAM 6K bytes 0x2000_0000 Reserved 0x0010_0004 0x0010_0000 CR trimming Security Reserved 0x0010_0004 0x0010_0000 CR trimming Security Reserved Reserved 0x0001_6000 0x0000_E000 Flash 88K bytes * Flash 56Kbytes * 0x0000_0000 Document Number: 002-05091 Rev.*A 0x0000_0000 Page 37 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Peripheral Address Map Start address End address Bus Peripheral 0x4000_0000 0x4000_0FFF 0x4000_1000 0x4000_FFFF 0x4001_0000 0x4001_0FFF Clock/Reset Control 0x4001_1000 0x4001_1FFF Hardware Watchdog Timer 0x4001_2000 0x4001_2FFF 0x4001_3000 0x4001_4FFF 0x4001_5000 0x4001_5FFF Dual-Timer 0x4001_6000 0x4001_FFFF Reserved 0x4002_0000 0x4002_0FFF Multi-function Timer unit0 0x4002_1000 0x4002_3FFF Reserved 0x4002_4000 0x4002_4FFF PPG 0x4002_5000 0x4002_5FFF Base Timer 0x4002_6000 0x4002_6FFF Quadrature Position/Revolution Counter 0x4002_7000 0x4002_7FFF A/D Converter 0x4002_8000 0x4002_DFFF Reserved 0x4002_E000 0x4002_EFFF Built-in CR trimming 0x4002_F000 0x4002_FFFF Reserved 0x4003_0000 0x4003_0FFF External Interrupt Controller 0x4003_1000 0x4003_1FFF Interrupt Request Batch-Read Function 0x4003_2000 0x4003_2FFF 0x4003_3000 0x4003_3FFF GPIO 0x4003_4000 0x4003_4FFF Reserved 0x4003_5000 0x4003_57FF Low-Voltage Detection 0x4003_5800 0x4003_7FFF Reserved 0x4003_8000 0x4003_8FFF Multi-function Serial Interface 0x4003_9000 0x4003_9FFF Reserved 0x4003_A000 0x4003_AFFF Watch Counter 0x4003_B000 0x4003_BFFF Real-time clock 0x4003_C000 0x4003_C0FF Low-speed CR Prescaler 0x4003_C100 0x4003_C7FF Peripheral Clock Gating 0x4003_C800 0x4003_FFFF Reserved 0x4004_0000 0x4005_FFFF Reserved 0x4006_0000 0x4006_0FFF 0x4006_1000 0x41FF_FFFF Document Number: 002-05091 Rev.*A AHB APB0 APB1 AHB Flash memory I/F register Reserved Software Watchdog Timer Reserved Reserved DMAC register Reserved Page 38 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 11. Pin Status in Each CPU State The terms used for pin status have the following meanings. INITX=0 This is the period when the INITX pin is the L level. INITX=1 This is the period when the INITX pin is the H level. SPL=0 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0. SPL=1 This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1. Input enabled Indicates that the input function can be used. Internal input fixed at 0 This is the status that the input function cannot be used. Internal input is fixed at L. Hi-Z Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state. Setting disabled Indicates that the setting is disabled. Maintain previous state Maintains the state that was immediately prior to entering the current mode. If a built-in peripheral function is operating, the output follows the peripheral function. If the pin is being used as a port, that output is maintained. Analog input is enabled Indicates that the analog input is enabled. Document Number: 002-05091 Rev.*A Page 39 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Pin status type List of Pin Status Function group State upon power-on reset or low-voltage detection Power supply unstable - State at INITX input State upon device internal reset Power supply stable INITX = 0 - INITX = 1 - State in Run mode or SLEEP mode State in TIMER mode, RTC mode, or STOP mode Power supply stable Power supply stable INITX = 1 - INITX = 1 SPL = 0 SPL = 1 Hi-Z / Internal Maintain input fixed at previous state "0" GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Main crystal A oscillator input pin/ External main clock input selected Input enabled Input enabled Input enabled Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state External main clock input selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Maintain previous state/When oscillation stops*1, Hi-Z / Internal input fixed at "0" Hi-Z / Internal input fixed at "0" Hi-Z / Internal input fixed at "0" Maintain previous state/When oscillation stops*1, Hi-Z / Internal input fixed at "0" Input enabled Hi-Z / Internal input fixed at "0"/ Input enabled Hi-Z / Internal input fixed at "0" Hi-Z / Internal input fixed at "0" Maintain previous state/When oscillation stops*1, Hi-Z / Internal input fixed at "0" C INITX input pin Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled Pull-up / Input enabled D Mode input pin Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at "0" Sub crystal E oscillator input pin / External sub clock input selected Input enabled Input enabled Input enabled Input enabled Input enabled Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state External sub clock input selected Setting disabled Setting disabled Setting disabled Maintain previous state Maintain previous state B Main crystal oscillator output pin F Document Number: 002-05091 Rev.*A Hi-Z / Internal input fixed at "0" Hi-Z / Internal input fixed at "0" Page 40 of 95 Pin status type S6E1A11B0A/C0A S6E1A12B0A/C0A Function group State upon power-on reset or low-voltage detection Power supply unstable - Power supply stable INITX = 0 - INITX = 1 - Hi-Z / Internal input fixed at "0"/ Input enabled Hi-Z / Internal input fixed at "0" Hi-Z / Internal input fixed at "0" NMIX selected Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Serial wire debug selected Hi-Z Pull-up / Input enabled Pull-up / Input enabled GPIO selected Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Setting disabled Setting disabled Setting disabled Hi-Z Hi-Z / Input enabled Hi-Z / Input enabled Hi-Z Hi-Z / Internal input fixed at "0" / Analog input enabled Setting disabled Hi-Z GPIO selected H Resource selected GPIO selected External interrupt enabled selected J State upon device internal reset Sub crystal oscillator output pin Resource other G than the above selected I State at INITX input Resource other than the above selected GPIO selected Analog input selected K Resource other than the above selected State in Run mode or SLEEP mode State in TIMER mode, RTC mode, or STOP mode Power supply stable Power supply stable INITX = 1 - Maintain previous state INITX = 1 SPL = 0 SPL = 1 Maintain Maintain previous previous state/When state/When oscillation oscillation stops*2, stops*2, Hi-Z / Internal Hi-Z / Internal input fixed at input fixed at "0" "0" Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Maintain previous state Analog input selected Document Number: 002-05091 Rev.*A Maintain previous state Hi-Z / Internal input fixed at "0" Hi-Z / Internal input fixed at "0" Maintain previous state Maintain previous state Maintain previous state Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Setting disabled Setting disabled Maintain previous state Maintain previous state Hi-Z / Internal input fixed at "0" Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled Hi-Z / Internal input fixed at "0" / Analog input enabled GPIO selected L Hi-Z / Internal input fixed at "0" Hi-Z / Internal input fixed at "0" Page 41 of 95 Pin status type S6E1A11B0A/C0A S6E1A12B0A/C0A Function group State upon power-on reset or low-voltage detection Power supply unstable - State at INITX input State upon device internal reset Power supply stable INITX = 0 - INITX = 1 - State in Run mode or SLEEP mode State in TIMER mode, RTC mode, or STOP mode Power supply stable Power supply stable INITX = 1 - INITX = 1 SPL = 0 SPL = 1 External interrupt enabled selected Resource other than the above selected Maintain previous state Setting disabled Setting disabled Setting disabled Maintain previous state GPIO selected Maintain previous state Hi-Z / Internal input fixed at "0" *1:Oscillation stops in Sub timer mode, Low-speed CR timer mode, STOP mode, RTC mode. *2:Oscillation stops in STOP mode. Document Number: 002-05091 Rev.*A Page 42 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12. Electrical Characteristics 12.1 Absolute Maximum Ratings Parameter Symbol Rating Power supply voltage*1, *2 Analog power supply voltage*1, *3 VCC AVCC Min VSS - 0.5 VSS - 0.5 Analog reference voltage*1, *3 AVRH VSS - 0.5 Input voltage*1 VI VSS - 0.5 VSS - 0.5 Analog pin input voltage* 1 VIA VSS - 0.5 Output voltage*1 VO VSS - 0.5 "L" level maximum output current*4 IOL - "L" level average output current*5 IOLAV - "L" level total maximum output current "L" level total average output current*6 ∑IOL ∑IOLAV - "H" level maximum output current*4 IOH - "H" level average output current* IOHAV - "H" level total maximum output current "H" level total average output current*6 Power consumption Storage temperature ∑IOH ∑IOHAV PD TSTG - 55 5 Unit Max VSS + 6.5 VSS + 6.5 V V VSS + 6.5 V VCC + 0.5 (≤ 6.5 V) VSS + 6.5 AVCC + 0.5 (≤ 6.5 V) Vcc + 0.5 (≤ 6.5 V) 10 20 4 12 100 50 - 10 - 20 -4 - 12 - 100 - 50 200 + 150 Remarks Only S6E1A1xC0A V V 5V tolerant V V mA mA mA mA mA mA mA mA mA mA mA mA mW °C 4 mA type 12 mA type 4 mA type 12 mA type 4 mA type 12 mA type 4 mA type 12 mA type *1:These parameters are based on the condition that VSS = AVss = 0 V. *2:Vcc must not drop below VSS - 0.5 V. *3:Ensure that the voltage does not to exceed VCC + 0.5 V at power-on. *4:The maximum output current is the peak value for a single pin. *5:The average output is the average current for a single pin over a period of 100 ms. *6:The total average output current is the average current for all pins over a period of 100 ms. Warning • Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings Document Number: 002-05091 Rev.*A Page 43 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.2 Recommended Operating Conditions (VSS = AVSS = 0.0V) Parameter Symbol Conditions Power supply voltage Analog power supply voltage VCC AVCC Analog reference voltage Smoothing capacitor Operating temperature Value Unit - Min 2.7*2 2.7 Max 5.5 5.5 AVRH - 2.7 AVCC V CS Ta - 1 - 40 10 + 105 μF °C V V Remarks AVCC = VCC Only S6E1A1xC0A For regulator*1 “1: See "C Pin" in "6. Handling Precautions" for the connection of the smoothing capacitor. *2: In between less than the minimum power supply voltage and low voltage reset/interrupt detection voltage or more, instruction execution and low voltage detection function by built-in High-speed CR(including Main PLL is used) or built-in Low-speed CR is possible to operate only. Warning 1. The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges. 2. Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. 3. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. 4. Users considering application outside the listed conditions are advised to contact their representatives beforehand. Document Number: 002-05091 Rev.*A Page 44 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.3 DC Characteristics 12.3.1 Current Rating Symbol (Pin name) Run mode, code executed from Flash Icc (VCC) Run mode, code executed from RAM Run mode, code executed from Flash Run mode, code executed from Flash Iccs (VCC) SLEEP operation Document Number: 002-05091 Rev.*A Conditions 4MHz external clock input, PLL ON*8 NOP code executed Built-in high speed CR stopped All peripheral clock stopped by CKENx 4MHz external clock input, PLL ON*8 Benchmark code executed Built-in high speed CR stopped PCLK1 stopped 4MHz crystal oscillation, PLL ON*8 NOP code executed Built-in high speed CR stopped All peripheral clock stopped by CKENx 4MHz external clock input, PLL ON*8 NOP code executed Built-in high speed CR stopped All peripheral clock stopped by CKENx 4MHz external clock input, PLL ON NOP code executed Built-in high speed CR stopped PCLK1 stopped Built-in high speed CR*5 NOP code executed All peripheral clock stopped by CKENx 32kHz crystal oscillation NOP code executed All peripheral clock stopped by CKENx Built-in low speed CR NOP code executed All peripheral clock stopped by CKENx 4MHz external clock input, PLL ON*8 All peripheral clock stopped by CKENx Built-in high speed CR*5 All peripheral clock stopped by CKENx 32kHz crystal oscillation All peripheral clock stopped by CKENx Built-in low speed CR All peripheral clock stopped by CKENx HCLK Frequency *4 4MHz 8MHz 20MHz Value 0.7 1.3 2.8 1.5 2.3 4.0 40MHz 5.7 7.3 4MHz 8MHz 20MHz 0.6 1.2 2.6 1.4 2.1 3.7 40MHz 4.8 6.3 4MHz 8MHz 20MHz 1.0 1.7 3.4 2.9 3.6 5.6 40MHz 5.7 8.2 4MHz 8MHz 20MHz 0.5 0.9 2.0 1.2 1.8 2.9 40MHz 3.7 4.8 40MHz 2.8 4MHz Unit Remarks mA *3 mA *3 mA *3 mA *3 3.7 mA *3,*6,*7 0.8 1.5 mA *3 32kHz 65 900 μA *3 100kHz 73 920 μA *3 4MHz 8MHz 20MHz 40MHz 0.4 0.7 1.5 2.7 1.2 1.6 2.4 3.7 mA *3 4MHz 0.5 1.2 mA *3 32kHz 63 880 μA *3 100kHz 66 890 μA *3 Typ*1 Max*2 Page 45 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A *1 : Ta=+25℃,VCC=3.0V *2 : Ta=+105℃,VCC=5.5V *3 : All ports are fixed *4 : PCLK0=HCLK/8 *5 : The frequency is set to 4MHz by trimming *6 : Flash sync down is set to FRWTR.RWT = 11 and FSYNDN.SD = 1111 *7 : VCC=2.7V *8 : When HCLK=4MHz, PLL OFF Symbol (Pin name) ICCH (VCC) ICCT (VCC) ICCR (VCC) Value Conditions STOP mode Sub timer mode RTC mode Ta=25℃ Vcc=3.0V LVD off Ta=25℃ Vcc=5.0V LVD off Ta=105℃ Vcc=5.5V LVD off Ta=25℃ Vcc=3.0V 32kHz crystal oscillation LVD off Ta=25℃ Vcc=5.0V 32kHz crystal oscillation LVD off Ta=105℃ Vcc=5.5V 32kHz crystal oscillation LVD off Ta=25℃ Vcc=3.0V 32kHz crystal oscillation LVD off Ta=25℃ Vcc=5.0V 32kHz crystal oscillation LVD off Ta=105℃ Vcc=5.5V 32kHz crystal oscillation LVD off Typ Max Uni t Remarks 5.6 28 μA *1 6.7 30 μA *1 - 540 μA *1 12 42 μA *1 13 44 μA *1 - 730 μA *1 9 36 μA *1 10 38 μA *1 - 570 μA *1 *1:All ports are fixed. Document Number: 002-05091 Rev.*A Page 46 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A LVD current (VCC = 2.7V to 5.5V, VSS = AVSS = 0V, Ta = - 40°C to + 105°C) Parameter Low-Voltage detection circuit (LVD) power supply current Pin name Symbol ICCLVD VCC Value Conditions Typ Max Unit Remarks 0.13 0.3 μA For occurrence of reset 0.13 0.3 μA For occurrence of interrupt At operation Flash memory current (VCC = 2.7V to 5.5V, VSS = AVSS = 0V, Ta = - 40°C to + 105°C) Parameter Flash memory write/erase current Pin name Symbol ICCFLASH VCC Value Conditions At Write/Erase Typ 9.5 Max 11.2 Unit Remarks mA A/D convertor current (S6E1A1xC0A) Parameter Power supply current Reference power supply current (AVRH) Pin name Symbol ICCAD AVCC ICCAVRH AVRH At operation At stop (VCC = 2.7V to 5.5V, VSS = AVSS = 0V, Ta = - 40°C to + 105°C) Value Unit Remarks Typ Max 0.7 0.9 mA 0.13 13 μA At operation 1.1 1.97 mA At stop 0.1 1.7 μA Conditions AVRH=5.5V A/D convertor current (S6E1A1xB0A) Parameter Symbol Pin name Power supply current ICCAD AVCC Conditions At operation At stop (VCC = 2.7V to 5.5V, VSS = AVSS = 0V, Ta = - 40°C to + 105°C) Value Unit Remarks Typ Max 1.8 0.23 2.87 14.7 mA μA Peripheral current dissipation Clock system HCLK PCLK1 Peripheral Conditions Frequency (MHz) 8 20 0.22 0.55 0.11 0.25 0.05 0.15 0.28 0.68 GPIO DMAC Base timer Multi-functional timer/PPG At all ports operation At 2ch operation At 4ch operation At 1unit/4ch operation 4 0.11 0.05 0.03 0.14 Quadrature position/Revolution counter At 1unit operation 0.02 0.04 0.11 0.22 ADC Multi-function serial At 1unit operation At 1ch operation 0.07 0.15 0.14 0.31 0.37 0.77 0.73 1.54 Document Number: 002-05091 Rev.*A 40 1.10 0.51 0.30 1.38 Unit Remarks mA mA Page 47 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.3.2 Pin Characteristics (VCC =AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Symbol "H" level input voltage (hysteresis input) VIHS "L" level input voltage (hysteresis input) VILS Pin name CMOS hysteresis input pin, MD0, PE0 5V tolerant input pin CMOS hysteresis input pin, MD0, PE0 5V tolerant input pin 4 mA type "H" level output voltage VOH 12 mA type 4 mA type "L" level output voltage VOL 12 mA type Input leak current Pull-up resistance value Input capacitance IIL - RPU Pull-up pin CIN Other than VCC, VSS, AVCC, AVSS, AVRH Document Number: 002-05091 Rev.*A Conditions Min Value Typ Max Unit - VCC × 0.8 - VCC + 0.3 V - VCC × 0.8 - VSS + 5.5 V - VSS - 0.3 - VCC × 0.2 V - VSS - 0.3 - VCC × 0.2 V VCC - 0.5 - VCC V VCC - 0.5 - VCC V VSS - 0.4 V VSS - 0.4 V - -5 - +5 μA VCC ≥ 4.5 V 33 50 90 VCC < 4.5 V - - 180 - - 5 15 VCC ≥ 4.5 V, IOH = - 4 mA VCC < 4.5 V, IOH = - 2 mA VCC ≥ 4.5 V, IOH = - 12 mA VCC < 4.5 V, IOH = - 8 mA VCC ≥ 4.5 V, IOL = 4 mA VCC < 4.5 V, IOL = 2 mA VCC ≥ 4.5 V, IOL = 12 mA VCC < 4.5 V, IOL = 8 mA Remarks kΩ pF Page 48 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.4 AC Characteristics 12.4.1 Main Clock Input Characteristics Parameter Input frequency Input clock cycle Input clock pulse width Input clock rising time and falling time Internal operating clock*1 frequency (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Value Conditions Unit Remarks Min Max Pin name Symbol FCH X0, X1 VCC ≥ 4.5V VCC < 4.5V 4 4 40 20 MHz When the crystal oscillator is connected - 4 40 MHz When the external clock is used - 25 250 ns PWH/tCYLH, PWL/tCYLH 45 55 % - - 5 ns tCF, tCR FCM - - - 41.2 MHz When the external clock is used When the external clock is used When the external clock is used Master clock FCC FCP0 FCP1 - - - 41.2 41.2 41.2 MHz MHz MHz Base clock (HCLK/FCLK) APB0 bus clock*2 APB1 bus clock*2 tCYLH - tCYCC tCYCP0 tCYCP1 24.27 ns Base clock (HCLK/FCLK) 24.27 ns APB0 bus clock*2 24.27 ns APB1 bus clock*2 *1: For details of each internal operating clock, refer to "CHAPTER: Clock" in "FM0+ Family PERIPHERAL MANUAL". Internal operating clock*1 cycle time *2: For details of the APB bus to which a peripheral is connected, see "8. Block Diagram". X0 Document Number: 002-05091 Rev.*A Page 49 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.4.2 Sub Clock Input Characteristics (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Value Pin Parameter Symbol Conditions Unit Remarks name Min Typ Max When the crystal 32.768 kHz oscillator is connected Input frequency 1/tCYLL When the external 32 100 kHz X0A, clock is used X1A When the external Input clock cycle tCYLL 10 31.25 μs clock is used Input clock pulse PWH/tCYLL, When the external 45 55 % width PWL/tCYLL clock is used *: See "Sub crystal oscillator" in "7. Handling Devices" for the crystal oscillator used. X0A Document Number: 002-05091 Rev.*A Page 50 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.4.3 Built-in CR Oscillation Characteristics Built-in high-speed CR (VCC = AVCC = 2.7 V to 5.5 V, VSS =AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Symbol Value Conditions Min Ta = + 25°C, 3.6V < VCC ≤ 5.5V Clock frequency FCRH Ta =0°C to + 85°C, 3.6V < VCC ≤ 5.5V Ta = - 40°C to + 105°C, 3.6V < VCC ≤ 5.5V Ta = + 25°C, 2.7V ≤ VCC ≤ 3.6V Ta = - 20°C to + 85°C, 2.7V ≤ VCC ≤ 3.6V Ta = - 20°C to + 105°C, 2.7V ≤ VCC ≤ 3.6V Ta = - 40°C to + 105°C, 2.7V ≤ VCC ≤ 3.6V Typ Max 3.92 4 4.08 3.9 4 4.1 3.88 4 4.12 3.94 4 4.06 3.92 4 4.08 3.9 4 4.1 3.88 4 4.12 2.8 4 5.2 Unit Remarks During trimming*1 MHz Ta = - 40°C to + 105°C Not during trimming Frequency tCRWT 30 μs stabilization time *1: In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming/temperature trimming. *2 *2: This is time from the trim value setting to stable of the frequency of the High-speed CR clock. After setting the trim value, the period when the frequency stability time passes can use the High-speed CR clock as a source clock. Built-in low-speed CR (VCC = AVCC = 2.7 V to 5.5 V, VSS =AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Clock frequency Symbol FCRL Document Number: 002-05091 Rev.*A Conditions - Value Min 50 Typ 100 Max 150 Unit Remarks kHz Page 51 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.4.4 Operating Conditions of Main PLL (In the case of using the main clock as the input clock of the PLL) (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Symbol Value Min PLL oscillation stabilization wait time*1 tLOCK 100 (LOCK UP time) PLL input clock frequency FPLLI 4 PLL multiple rate 5 PLL macro oscillation clock frequency FPLLO 75 Main PLL clock frequency*2 FCLKPLL *1: The wait time is the time it takes for PLL oscillation to stabilize. Typ Max Unit - - μs - 16 37 150 40 MHz multiple MHz MHz Remarks *2: For details of the main PLL clock (CLKPLL), refer to "CHAPTER: Clock" in "FM0+ Family PERIPHERAL MANUAL". 12.4.5 Operating Conditions of Main PLL (In the case of using the built-in high-speed CR clock as the input clock of the main PLL) (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Symbol Value Min PLL oscillation stabilization wait time*1 tLOCK 100 (LOCK UP time) PLL input clock frequency FPLLI 3.88 PLL multiple rate 19 PLL macro oscillation clock frequency FPLLO 72 Main PLL clock frequency*2 FCLKPLL *1: The wait time is the time it takes for PLL oscillation to stabilize. Typ Max Unit - - μs 4 - 4.12 35 150 41.2 MHz multiple MHz MHz Remarks *2: For details of the main PLL clock (CLKPLL), refer to "CHAPTER: Clock" in "FM0+ Family PERIPHERAL MANUAL". Note: For the main PLL source clock, input the high-speed CR clock (CLKHC) whose frequency has been trimmed. Document Number: 002-05091 Rev.*A Page 52 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.4.6 Reset Input Characteristics (VCC =AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Reset input time 12.4.7 Pin name Symbol tINITX INITX Value Conditions - Min Unit Max 500 - Remarks ns Power-on Reset Timing (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Power supply rising time Tr Power supply shut down time Time until releasing Power-on reset Toff Value Pin name Symbol VCC Tprt Min Max Unit 0 - ms 1 - ms 0.43 3.4 ms Remarks VCC_minimum VCC VDH_minimum 0.2V 0.2V 0.2V Tr Tprt Internal RST CPU Operation RST Active Toff Release start Glossary VCC_minimum : Minimum VCC of recommended operating conditions. VDH_minimum : Minimum release voltage (when SVHR=0000) of Low-Voltage detection reset. See "6. Low-Voltage Detection Characteristics". Document Number: 002-05091 Rev.*A Page 53 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.4.8 Base Timer Input Timing Timer input timing (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Input pulse width Symbol Pin name TIOAn/TIOBn (when using as ECK, TIN) tTIWH, tTIWL Conditions - Value Min 2 tCYCP tTIWH Max - Unit Remarks ns tTIWL ECK VIHS TIN VIHS VILS VILS Trigger input timing (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Input pulse width Symbol Pin name tTRGH, tTRGL TIOAn/TIOBn (when using as TGIN) Conditions - tTRGH TGIN VIHS Value Min 2 tCYCP Max - Unit Remarks ns tTRGL VIHS VILS VILS Note: • tCYCP indicates the APB bus clock cycle time. For the number of the APB bus to which the Base Timer has been connected, see "8. Block Diagram". Document Number: 002-05091 Rev.*A Page 54 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.4.9 CSIO Timing Synchronous serial (SPI = 0, SCINV = 0) (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Symbol Pin name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx Conditions VCC < 4.5 V Min Max 4 tCYCP - VCC ≥ 4.5 V Min Max 4 tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns - ns - ns Unit Serial clock cycle time tSCYC SCK ↓ → SOT delay time tSLOVI SIN → SCK ↑ setup time tIVSHI SCK ↑ → SIN hold time tSHIXI Serial clock "L" pulse width tSLSH SCKx 2 tCYCP 10 - Serial clock "H" pulse width tSHSL SCKx tCYCP + 10 - SCK ↓ → SOT delay time tSLOVE - 50 - 30 ns SIN → SCK ↑ setup time tIVSHE 10 - 10 - ns SCK ↑ → SIN hold time tSHIXE 20 - 20 - ns SCK falling time SCK rising time tF tR - 5 5 - 5 5 ns ns SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Internal shift clock operation External shift clock operation 2 tCYCP 10 tCYCP + 10 Notes: • The above AC characteristics are for CLK synchronous mode. • tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ". • The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCLKx_0 and SOTx_1. • External load capacitance CL = 30 pF tSCYC VOH SCK VOL VOL tSLOVI SOT SIN VOH VOL tIVSHI VIH VIL tSHIXI VIH VIL MS bit = 0 Document Number: 002-05091 Rev.*A Page 55 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A tSLSH VIH SCK tF tSHSL VIL VIH VIL tR tSLOVE SOT VIH VOH VOL tIVSHE VIH VIL SIN tSHIXE VIH VIL MS bit = 1 Synchronous serial (SPI = 0, SCINV = 1) (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Symbol Pin name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx Serial clock cycle time tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓ → SIN hold time tSLIXI Serial clock "L" pulse width tSLSH SCKx Serial clock "H" pulse width tSHSL SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓ → SIN hold time tSLIXE SCK falling time SCK rising time tF tR SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Conditions Internal shift clock operation VCC < 4.5V Min Max 4 tCYCP - VCC ≥ 4.5V Min Max 4 tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns - ns - ns 2 tCYCP 10 tCYCP + 10 External shift clock operation Unit - 2 tCYCP 10 tCYCP + 10 - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns - Notes: • The above AC characteristics are for CLK synchronous mode. • tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ". • The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCLKx_0 and SOTx_1. • External load capacitance CL = 30 pF Document Number: 002-05091 Rev.*A Page 56 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A tSCYC VOH SCK VOH VOL tSHOVI VOH VOL SOT tIVSLI VIH VIL SIN tSLIXI VIH VIL MS bit = 0 tSHSL SCK tSLSH VIH VIH VIL tR VIL tF tSHOVE SOT SIN VIL VOH VOL tIVSLE VIH VIL tSLIXE VIH VIL MS bit = 1 Document Number: 002-05091 Rev.*A Page 57 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Synchronous serial (SPI = 1, SCINV = 0) (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Symbol Pin name SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx, SOTx Serial clock cycle time tSCYC SCK ↑ → SOT delay time tSHOVI SIN → SCK ↓ setup time tIVSLI SCK ↓→ SIN hold time tSLIXI SOT → SCK ↓ delay time tSOVLI Serial clock "L" pulse width tSLSH SCKx Serial clock "H" pulse width tSHSL SCK ↑ → SOT delay time tSHOVE SIN → SCK ↓ setup time tIVSLE SCK ↓→ SIN hold time tSLIXE SCK falling time SCK rising time tF tR SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Conditions Internal shift clock operation VCC < 4.5 V Min Max 4 tCYCP - VCC ≥ 4.5 V Min Max 4 tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns - ns - ns - ns 2 tCYCP 30 2 tCYCP 10 tCYCP + 10 External shift clock operation Unit - 2 tCYCP 30 2 tCYCP 10 tCYCP + 10 - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns - Notes: • The above AC characteristics are for CLK synchronous mode. • tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ". • The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCLKx_0 and SOTx_1. • External load capacitance CL = 30 pF Document Number: 002-05091 Rev.*A Page 58 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A tSCYC VOH VOL SCK VOH VOL SOT VOH VOL tIVSLI tSLIXI VIH VIL SIN VOL tSHOVI tSOVLI VIH VIL MS bit = 0 tSLSH SCK VIH VIH VIL VIL tF * SOT tSHSL tR VIH tSHOVE VOH VOL VOH VOL tIVSLE SIN tSLIXE VIH VIL VIH VIL MS bit = 1 *: This changes as data is written to the TDR register. Document Number: 002-05091 Rev.*A Page 59 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Synchronous serial (SPI = 1, SCINV = 1) (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Symbol Pin name SCKx Serial clock cycle time tSCYC SCK ↓ → SOT delay time tSLOVI SIN → SCK ↑ setup time tIVSHI SCK ↑ → SIN hold time tSHIXI SOT → SCK ↑ delay time tSOVHI Serial clock "L" pulse width tSLSH SCKx Serial clock "H" pulse width tSHSL SCK ↓ → SOT delay time tSLOVE SIN → SCK ↑ setup time tIVSHE SCK ↑ → SIN hold time tSHIXE SCK falling time SCK rising time tF tR SCKx SCKx, SOTx SCKx, SINx SCKx, SINx SCKx SCKx Conditions SCKx, SOTx SCKx, SINx SCKx, SINx SCKx, SOTx Internal shift clock operation VCC < 4.5 V Min Max 4 tCYCP - VCC ≥ 4.5 V Min Max 4 tCYCP - ns - 30 + 30 - 20 + 20 ns 50 - 30 - ns 0 - 0 - ns - ns - ns - ns 2 tCYCP 30 2 tCYCP 10 tCYCP + 10 External shift clock operation Unit - 2 tCYCP 30 2 tCYCP 10 tCYCP + 10 - 50 - 30 ns 10 - 10 - ns 20 - 20 - ns - 5 5 - 5 5 ns ns - Notes: • The above AC characteristics are for CLK synchronous mode. • tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which Multi-function Serial has been connected, see "8. Block Diagram ". • The characteristics are only applicable when the relocate port numbers are the same. For instance, they are not applicable for the combination of SCLKx_0 and SOTx_1. • External load capacitance CL = 30 pF Document Number: 002-05091 Rev.*A Page 60 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A tSCYC VOH SCK tSOVHI tSLOVI VOH VOL SOT VOH VOL tSHIXI tIVSHI VIH VIL SIN VOH VOL VIH VIL MS bit = 0 tSHSL tR SCK VIL tSLSH VIH VIH VIL tF VIL VIH tSLOVE SOT VOH VOL VOH VOL tIVSHE SIN tSHIXE VIH VIL VIH VIL MS bit = 1 Document Number: 002-05091 Rev.*A Page 61 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A When using synchronous serial chip select (SPI = 1, SCINV = 0, MS=0, CSLVL=1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol SCS↓→SCK↓ setup time tCSSI SCK↑→SCS↑ hold time tCSHI SCS deselect time tCSDI SCS↓→SCK↓ setup time tCSSE SCK↑→SCS↑ hold time tCSHE SCS deselect time tCSDE SCS↓→SUT delay time tDSE SCS↑→SUT delay time tDEE Internal shift clock operation External shift clock operation VCC ≥ 4.5V VCC < 4.5V Conditions Min Max Min Unit Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns (*2)+0 (*3)-50 +5tCYCP 3tCYCP+30 (*2)+50 (*3)+50 +5tCYCP - (*2)+0 (*3)-50 +5tCYCP 3tCYCP+30 (*2)+50 (*3)+50 +5tCYCP - ns 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns - 40 - 40 ns 0 - 0 - ns ns ns (*1): CSSU bit value × serial chip select timing operating clock cycle [ns] (*2): CSHD bit value × serial chip select timing operating clock cycle [ns] (*3): CSDS bit value × serial chip select timing operating clock cycle [ns] Notes: • tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ". • About CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family PERIPHERAL MANUAL". • When the external load capacitance CL = 30pF. Document Number: 002-05091 Rev.*A Page 62 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A SCS output tCSDI tCSSI tCSHI tCSSE tCSHE SCK output SOT (SPI=0) SOT (SPI=1) SCS input tCSDE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) Document Number: 002-05091 Rev.*A Page 63 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A When using synchronous serial chip select (SPI = 1, SCINV = 1, MS=0, CSLVL=1) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol SCS↓→SCK↑ setup time tCSSI SCK↓→SCS↑ hold time tCSHI SCS deselect time tCSDI SCS↓→SCK↑ setup time tCSSE SCK↓→SCS↑ hold time tCSHE SCS deselect time tCSDE SCS↓→SOT delay time tDSE SCS↑→SOT delay time tDEE Internal shift clock operation External shift clock operation VCC ≥ 4.5V VCC < 4.5V Conditions Min Max Min Unit Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns (*2)+0 (*3)-50 +5tCYCP 3tCYCP+30 (*2)+50 (*3)+50 +5tCYCP - (*2)+0 (*3)-50 +5tCYCP 3tCYCP+30 (*2)+50 (*3)+50 +5tCYCP - ns 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns - 40 - 40 ns 0 - 0 - ns ns ns (*1): CSSU bit value × serial chip select timing operating clock cycle [ns] (*2): CSHD bit value × serial chip select timing operating clock cycle [ns] (*3): CSDS bit value × serial chip select timing operating clock cycle [ns] Notes: • tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ". • About CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family PERIPHERAL MANUAL". • When the external load capacitance CL = 30pF. Document Number: 002-05091 Rev.*A Page 64 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A SCS output tCSDI tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) SCS input tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) tDSE SOT (SPI=1) Document Number: 002-05091 Rev.*A Page 65 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A When using synchronous serial chip select (SPI = 1, SCINV = 0, MS=0, CSLVL=0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol SCS↑→SCK↓ setup time tCSSI SCK↑→SCS↓ hold time tCSHI SCS deselect time tCSDI SCS↑→SCK↓ setup time SCK↑→SCS↓ hold time SCS deselect time tCSDE SCS↑→SOT delay time tDSE SCS↓→SOT delay time tDEE VCC ≥ 4.5V VCC < 4.5V Conditions Min Max Min Unit Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns (*2)+50 (*3)+50 +5tCYCP - (*2)+0 (*3)-50 +5tCYCP 3tCYCP+30 (*2)+50 (*3)+50 +5tCYCP - ns tCSSE (*2)+0 (*3)-50 +5tCYCP 3tCYCP+30 tCSHE 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns - 40 - 40 ns 0 - 0 - ns Internal shift clock operation External shift clock operation ns ns (*1): CSSU bit value × serial chip select timing operating clock cycle [ns] (*2): CSHD bit value × serial chip select timing operating clock cycle [ns] (*3): CSDS bit value × serial chip select timing operating clock cycle [ns] Notes: • tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ". • About CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family PERIPHERAL MANUAL". • When the external load capacitance CL = 30pF. Document Number: 002-05091 Rev.*A Page 66 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A tCSDI SCS output tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) tCSDE SCS input tCSSE tCSHE SCK input tDEE SOT (SPI=0) SOT (SPI=1) Document Number: 002-05091 Rev.*A tDSE Page 67 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A When using synchronous serial chip select (SPI = 1, SCINV = 1, MS=0, CSLVL=0) (VCC = 2.7V to 5.5V, VSS = 0V) Parameter Symbol SCS↑→SCK↑ setup time tCSSI SCK↓→SCS↓ hold time tCSHI SCS deselect time tCSDI SCS↑→SCK↑ setup time SCK↓→SCS↓ hold time SCS deselect time tCSDE SCS↑→SOT delay time tDSE SCS↓→SOT delay time tDEE VCC ≥ 4.5V VCC < 4.5V Conditions Min Max Min Unit Max (*1)-50 (*1)+0 (*1)-50 (*1)+0 ns (*2)+50 (*3)+50 +5tCYCP - (*2)+0 (*3)-50 +5tCYCP 3tCYCP+30 (*2)+50 (*3)+50 +5tCYCP - ns tCSSE (*2)+0 (*3)-50 +5tCYCP 3tCYCP+30 tCSHE 0 - 0 - ns 3tCYCP+30 - 3tCYCP+30 - ns - 40 - 40 ns 0 - 0 - ns Internal shift clock operation External shift clock operation ns ns (*1): CSSU bit value × serial chip select timing operating clock cycle [ns] (*2): CSHD bit value × serial chip select timing operating clock cycle [ns] (*3): CSDS bit value × serial chip select timing operating clock cycle [ns] Notes: • tCYCP indicates the APB bus clock cycle time. About the APB bus number which Multi-function Serial is connected to, see "8. Block Diagram ". • About CSSU, CSHD, CSDS, serial chip select timing operating clock, see "FM0+ Family PERIPHERAL MANUAL". • When the external load capacitance CL = 30pF. Document Number: 002-05091 Rev.*A Page 68 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A tCSDI SCS output tCSSI tCSHI SCK output SOT (SPI=0) SOT (SPI=1) SCS input tCSDE tCSSE tCSHE SCK input tDEE SOT (SPI=0) SOT (SPI=1) Document Number: 002-05091 Rev.*A tDSE Page 69 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A External clock (EXT = 1): asynchronous only (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Serial clock "L" pulse width Serial clock "H" pulse width SCK falling time SCK rising time Symbol tSLSH tSHSL tF tR Conditions CL = 30 pF tR SCK VIL Document Number: 002-05091 Rev.*A Value Min tCYCP + 10 tCYCP + 10 - tSHSL VIH 5 5 VIL Remarks ns ns ns ns tF tSLSH VIH Unit Max VIL VIH Page 70 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.4.10 External Input Timing (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Symbol Pin name Conditions Value Min Max Unit ADTGx FRCKx Input pulse width tINH, tINL Remarks A/D converter trigger input - 2 tCYCP*1 - ns Free-run timer input clock ICxx Input capture Wave form DTTIxX 2 tCYCP* ns generator 2 tCYCP + 100*1 ns External INTxx, NMIX interrupt, NMI 500*2 ns *1: tCYCP represents the APB bus clock cycle time except when the APB bus clock stops in STOP mode or in TIMER mode. For the number of the APB bus to which the Multi-function Timer is connected and that of the APB bus to which the External Interrupt Controller is connected, see "8. Block Diagram". 1 *2: In STOP mode and TIMER mode Document Number: 002-05091 Rev.*A Page 71 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.4.11 QPRC Timing (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Symbol Value Conditions Unit Max AIN pin "H" width tAHL AIN pin "L" width tALL BIN pin "H" width tBHL BIN pin "L" width tBLL Time from AIN pin "H" level to BIN tAUBU PC_Mode2 or PC_Mode3 rise Time from BIN pin "H" level to AIN tBUAD PC_Mode2 or PC_Mode3 fall Time from AIN pin "L" level to BIN tADBD PC_Mode2 or PC_Mode3 fall Time from BIN pin "L" level to AIN tBDAU PC_Mode2 or PC_Mode3 rise Time from BIN pin "H" level to AIN 2 tCYCP* ns tBUAU PC_Mode2 or PC_Mode3 rise Time from AIN pin "H" level to BIN tAUBD PC_Mode2 or PC_Mode3 fall Time from BIN pin "L" level to AIN tBDAD PC_Mode2 or PC_Mode3 fall Time from AIN pin "L" level to BIN tADBU PC_Mode2 or PC_Mode3 rise ZIN pin "H" width tZHL QCR:CGSC="0" ZIN pin "L" width tZLL QCR:CGSC="0" Time from determined ZIN level to tZABE QCR:CGSC="1" AIN/BIN rise and fall Time from AIN/BIN rise and fall time tABEZ QCR:CGSC="1" to determined ZIN level *: tCYCP represents the APB bus clock cycle time except when the APB bus clock stops in STOP mode or in TIMER mode. For the number of the APB bus to which the QPRC is connected, see "8. Block Diagram". Min tALL tAHL AIN tAUBU tADBD tBUAD tBDAU BIN tBHL Document Number: 002-05091 Rev.*A tBLL Page 72 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A tBLL tBHL BIN tBUAU tBDAD tAUBD tADBU AIN tAHL tALL ZIN ZIN AIN/BIN Document Number: 002-05091 Rev.*A Page 73 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.4.12 I2C Timing (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Symbol Conditions Standard-mode Min Max 0 100 Fast-mode Min Max 0 400 Unit Remarks SCL clock frequency FSCL kHz (Repeated) START condition hold time tHDSTA 4.0 0.6 μs SDA ↓ → SCL ↓ SCL clock "L" width tLOW 4.7 1.3 μs SCL clock "H" width tHIGH 4.0 0.6 μs (Repeated) START setup time tSUSTA 4.7 0.6 μs SCL ↑ → SDA ↓ CL = 30 pF, R = (Vp/IOL)*1 Data hold time tHDDAT 0 3.45*2 0 0.9*3 μs SCL ↓ → SDA ↓ ↑ Data setup time tSUDAT 250 100 ns SDA ↓ ↑ → SCL ↑ STOP condition setup time tSUSTO 4.0 0.6 μs SCL ↑ → SDA ↑ Bus free time between "STOP condition" and tBUF 4.7 1.3 μs "START condition" Noise filter tSP 2 tCYCP*4 2 tCYCP*4 ns *1: R represents the pull-up resistance of the SCL and SDA lines, and CL the load capacitance of the SCL and SDA lines. Vp represents the power supply voltage of the pull-up resistance, and IOL the VOL guaranteed current. *2: The maximum tHDDAT must satisfy at least the condition that the period during which the device is holding the SCL signal at "L" (tLOW) does not extend. *3: A Fast-mode I2C bus device can be used in a Standard-mode I2C bus system, provided that the condition of "tSUDAT ≥ 250 ns" is fulfilled. *4: tCYCP represents the APB bus clock cycle time. For the number of the APB bus to which the I2C is connected, see "8. Block Diagram". To use Standard-mode, set the APB bus clock at 2MHz or more. To use Fast-mode, set the APB bus clock at 8 MHz or more. SDA SCL Document Number: 002-05091 Rev.*A Page 74 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.4.13 SW-DP Timing (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Symbol Pin name Value Conditions Min Max Unit SWDIO setup time tSWS SWCLK, SWDIO - 15 - ns SWDIO hold time tSWH SWCLK, SWDIO - 15 - ns SWDIO delay time tSWD SWCLK, SWDIO - - 45 ns Remarks Note: • External load capacitance CL = 30 pF SWCLK SWDIO (When input) SWD SWDIO (When output) Document Number: 002-05091 Rev.*A Page 75 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.5 12-bit A/D Converter Electrical characteristics of A/D Converter (VCC = AVCC = 2.7 V to 5.5 V, VSS = AVSS = 0 V, Ta = - 40°C to + 105°C) Parameter Symbol Pin name Resolution Integral Nonlinearity Differential Nonlinearity Zero transition voltage VZT ANxx Full-scale transition voltage VFST ANxx Conversion time - - Min - 4.5 - 2.5 - 20 AVRH - 20 AVCC-20 0.8*1 1 2.0* Value Typ - 12 4.5 + 2.5 + 20 AVRH+ 20 AVCC+20 bit LSB LSB mV mV - - μs 10 μs 1000 ns Max Unit 0.24 Sampling time* 2 Ts - 0.5 0.6 40 Compare clock cycle* 3 Tcck - 50 100 State transition time to operation permission Analog input capacity Tstt - - - 1.0 μs CAIN - - - pF Analog input resistance RAIN - - - Interchannel disparity Analog port input current - ANxx Analog input voltage - ANxx Reference voltage - AVRH AVSS AVSS 2.7 - 9.7 1.6 2.3 4 5 AVRH AVCC AVCC kΩ LSB μA V V Remarks S6E1A1xC0A S6E1A1xB0A S6E1A1xC0A AVCC ≥ 4.5V S6E1A1xB0A S6E1A1xC0A AVCC ≥ 4.5V S6E1A1xC0A AVCC < 4.5V S6E1A1xB0A S6E1A1xC0A AVCC ≥ 4.5V S6E1A1xC0A AVCC < 4.5V S6E1A1xB0A AVCC ≥ 4.5V AVCC < 4.5V S6E1A1xC0A S6E1A1xB0A Only S6E1A1xB0A *1: The conversion time is the value of "sampling time (Ts) + compare time (Tc)". The minimum conversion time is computed according to the following conditions: sampling time = 240 ns, compare time = 560 ns (AVcc ≥ 4.5 V). Must be set 25MHz to the Base clock (HCLK). Ensure that the conversion time satisfies the specifications of the sampling time (Ts) and compare clock cycle (Tcck). For details of the settings of the sampling time and compare clock cycle, refer to "CHAPTER: A/D Converter" in "FM0+ Family PERIPHERAL MANUAL Analog Macro Part". The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing. For the number of the APB bus to which the A/D Converter is connected, see "8. Block Diagram". The base clock (HCLK) is used to generate the sampling time and the compare clock cycle. *2: The required sampling time varies according to the external impedance. Set a sampling time that satisfies (Equation 1). *3: The compare time (Tc) is the result of (Equation 2). Document Number: 002-05091 Rev.*A Page 76 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A ANxx, Analog input pins Rext Comparator RAIN Analog signal source CAIN (Equation 1) Ts ≥ (RAIN + Rext ) × CAIN × 9 Ts: Sampling time RAIN: Input resistance of A/D Converter = 1.6 kΩ with 4.5 < AVCC < 5.5 ch.1 to ch.5 Input resistance of A/D Converter = 1.4 kΩ with 4.5 < AVCC < 5.5 ch.0, ch.6, ch.7 Input resistance of A/D Converter = 2.3 kΩ with 2.7 < AVCC < 4.5 ch.1 to ch.5 Input resistance of A/D Converter = 2.0 kΩ with 2.7 < AVCC < 4.5 ch.0, ch.6, ch.7 CAIN: Input capacitance of A/D Converter = 9.7 pF with 2.7 < AVCC < 5.5 Rext: Output impedance of external circuit (Equation 2) Tc = Tcck × 14 Tc: Compare time Tcck: Compare clock cycle Document Number: 002-05091 Rev.*A Page 77 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Definitions of 12-bit A/D Converter terms Resolution : Analog variation that is recognized by an A/D converter. Integral Nonlinearity : Deviation of the line between the zero-transition point (0b000000000000 ←→ 0b000000000001) and the full-scale transition point (0b111111111110 ←→ 0b111111111111) from the actual conversion characteristics. Differential Nonlinearity : Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB. Integral Nonlinearity Differential Nonlinearity 0xFFF Actual conversion characteristics 0xFFE 0x(N+1) {1 LSB(N-1) + VZT} VFST VNT 0x004 (Actuallymeasured value) (Actually-measured value) 0x003 Ideal characteristics Digital output Digital output 0xFFD Actual conversion characteristics 0xN V(N+1)T 0x(N-1) (Actually-measured value) Actual conversion characteristics Ideal characteristics 0x002 VNT (Actually-measured value) 0x(N-2) 0x001 VZT (Actually-measured value) Actual conversion characteristics AVRH*1 AVSS AVRH*1 AVSS Analog input Analog input *1: At the 32pin product, it is AVCC Integral Nonlinearity of digital output N = Differential Nonlinearity of digital output N = 1LSB = N VZT VFST VNT : : : : VNT - {1LSB × (N - 1) + VZT} 1LSB V(N + 1) T - VNT 1LSB [LSB] - 1 [LSB] VFST – VZT 4094 A/D converter digital output value. Voltage at which the digital output changes from 0x000 to 0x001. Voltage at which the digital output changes from 0xFFE to 0xFFF. Voltage at which the digital output changes from 0x(N − 1) to 0xN. Document Number: 002-05091 Rev.*A Page 78 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.6 Low-voltage Detection Characteristics 12.6.1 Low-voltage Detection Reset (Ta = - 40°C to + 105°C) Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH SVHR = 00000 SVHR*1 = 00001 SVHR*1 = 00010 SVHR*1 = 00011 SVHR*1 = 00100 SVHR*1 = 00101 SVHR*1 = 00110 SVHR*1 = 00111 SVHR*1 = 01000 SVHR*1 = 01001 SVHR*1 = 01010 Value Min Typ Max 2.25 2.45 2.65 2.30 2.50 2.70 2.39 2.60 2.81 Same as SVHR = 00000 value 2.48 2.70 2.92 Same as SVHR = 00000 value 2.58 2.80 3.02 Same as SVHR = 00000 value 2.76 3.00 3.24 Same as SVHR = 00000 value 2.94 3.20 3.46 Same as SVHR = 00000 value 3.31 3.60 3.89 Same as SVHR = 00000 value 3.40 3.70 4.00 Same as SVHR = 00000 value 3.68 4.00 4.32 Same as SVHR = 00000 value 3.77 4.10 4.43 Same as SVHR = 00000 value 3.86 4.20 4.54 Same as SVHR = 00000 value LVD stabilization wait time TLVDW - - - 8160× tCYCP*2 μs LVD detection delay time TLVDDL - - - 200 μs Parameter Symbol Conditions *1 Unit V V V V V V V V V V V V V V V V V V V V V V Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises *1: SVHR bit of Low-Voltage Detection Voltage Control Register (LVD_CTL) is reset to SVHR = 00000 by low voltage detection reset. *2: tCYCP indicates the APB1 bus clock cycle time. Document Number: 002-05091 Rev.*A Page 79 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.6.2 Low-voltage Detection Interrupt (Ta = - 40°C to + 105°C) Parameter Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage Detected voltage Released voltage LVD stabilization wait time LVD detection delay time Symbol VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH VDL VDH Conditions SVHI = 00011 SVHI = 00100 SVHI = 00101 SVHI = 00110 SVHI = 00111 SVHI = 01000 SVHI = 01001 SVHI = 01010 Min 2.58 2.67 2.76 2.85 2.94 3.04 3.31 3.40 3.40 3.50 3.68 3.77 3.77 3.86 3.86 3.96 Value Typ 2.80 2.90 3.00 3.10 3.20 3.30 3.60 3.70 3.70 3.80 4.00 4.10 4.10 4.20 4.20 4.30 TLVDW - - - TLVDDL - - - Max 3.02 3.13 3.24 3.35 3.46 3.56 3.89 4.00 4.00 4.10 4.32 4.43 4.43 4.54 4.54 4.64 8160 × tCYCP* 200 Uni t V V V V V V V V V V V V V V V V Remarks When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises When voltage drops When voltage rises μs μs *:tCYCP represents the APB1 bus clock cycle time. Document Number: 002-05091 Rev.*A Page 80 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.7 Flash Memory Write/Erase Characteristics (VCC = 2.7 V to 5.5 V, Ta = - 40°C to + 105°C) Parameter Sector erase time Min Large sector Small sector - Value Typ 0.7 Unit Max 2.2 s 0.3 0.9 Halfword (16-bit) write time - 30 528 μs Chip erase time - 2.6 8 s Remarks The sector erase time includes the time of writing prior to internal erase. The halfword (16-bit) write time excludes the system-level overhead. The chip erase time includes the time of writing prior to internal erase. Write/erase cycle and data hold time Write/erase cycle 1,000 Data hold time (year) Remarks 20* 10,000 10* *: This value was converted from the result of a technology reliability assessment. (This value was converted from the result of a high temperature accelerated test using the Arrhenius equation with the average temperature value being + 85°C). Document Number: 002-05091 Rev.*A Page 81 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.8 Return Time from Low-Power Consumption Mode 12.8.1 Return Factor: Interrupt The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation. Return Count Time (VCC = 2.7V to 5.5V, Ta = - 40°C to + 105°C) Parameter Symbol SLEEP mode High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode Low-speed CR TIMER mode Value* Typ Max Sub TIMER mode Remarks μs tCYCC Ticnt Unit 40 + 17×tCYCC 80 + 17×tCYCC μs 360 720 μs 191 381 μs RTC mode, 819 1090 STOP mode *: The value depends on the accuracy of built-in CR. The stabilization time of Main clock/Sub clock/Main PLL clock is not included. μs Operation example of return from Low-Power consumption mode (by external interrupt*) Ext.INT Interrupt factor accept Active Ticnt CPU Operation Interrupt factor clear by CPU Start *: External interrupt is set to detecting fall edge. Document Number: 002-05091 Rev.*A Page 82 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Operation example of return from Low-Power consumption mode (by internal resource interrupt*) Internal Resource INT Interrupt factor accept Active Ticnt CPU Operation Interrupt factor clear by CPU Start *: Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode. Notes: • The return factor is different in each Low-Power consumption modes. See "Chapter: Low Power Consumption Mode" and "Operations of Standby Modes" in FM0+ Family PERIPHERAL MANUAL. • When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "CHAPTER: Low Power Consumption Mode" in "FM0+ Family PERIPHERAL MANUAL". Document Number: 002-05091 Rev.*A Page 83 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 12.8.2 Return Factor: Reset The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation. Return Count Time (VCC = 2.7V to 5.5V, Ta = - 40°C to + 105°C) Parameter Value Symbol Typ Max* Unit 208 378 μs 208 378 μs 398 758 μs Sub TIMER mode 490 849 μs RTC/STOP mode 288 538 μs SLEEP mode High-speed CR TIMER mode, Main TIMER mode, PLL TIMER mode Low-speed CR TIMER mode Trcnt Remarks *: The maximum value depends on the accuracy of built-in CR. Operation example of return from Low-Power consumption mode (by INITX) INITX Internal RST RST Active Release Trcnt CPU Operation Document Number: 002-05091 Rev.*A Start Page 84 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Operation example of return from low power consumption mode (by internal resource reset*) Internal Resource RST Internal RST RST Active Release Trcnt CPU Operation Start *: Internal resource reset is not included in return factor by the kind of Low-Power consumption mode. Notes: • The return factor is different in each Low-Power consumption modes. See "Chapter: Low Power Consumption Mode" and "Operations of Standby Modes" in FM0+ Family PERIPHERAL MANUAL. • When interrupt recoveries, the operation mode that CPU recoveries depends on the state before the Low-Power consumption mode transition. See "CHAPTER: Low Power Consumption Mode" in "FM0+ Family PERIPHERAL MANUAL". • The time during the power-on reset/low-voltage detection reset is excluded. See "12.4.7 Power-on Reset Timing " for the detail on the time during the power-on reset/low -voltage detection reset. • When in recovery from reset, CPU changes to the high-speed CR run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the main PLL clock stabilization wait time. • The internal resource reset means the watchdog reset and the CSV reset. Document Number: 002-05091 Rev.*A Page 85 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 13. Ordering Information Part number S6E1A11B0AGP2 S6E1A12B0AGP2 S6E1A11B0AGN2 S6E1A12B0AGN2 S6E1A11C0AGV2 S6E1A12C0AGV2 S6E1A11C0AGN2 S6E1A12C0AGN2 S6E1A11C0AGF2 S6E1A12C0AGF2 Document Number: 002-05091 Rev.*A Package Plastic LQFP (0.80 mm pitch), 32 pins (FPT-32P-M30) Plastic QFN (0.50 mm pitch), 32 pins (LCC-32P-M73) Plastic LQFP (0.50 mm pitch), 48 pins (FPT-48P-M49) Plastic QFN (0.50 mm pitch), 48 pins (LCC-48P-M74) Plastic LQFP (0.65 mm pitch), 52 pins (FPT-52P-M02) Page 86 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 14. Package Dimensions Document Number: 002-05091 Rev.*A Page 87 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Document Number: 002-05091 Rev.*A Page 88 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 48-pin plastic LQFP Lead pitch 0.50 mm Package width × package length 7.00 mm × 7.00 mm Lead shape Gullwing Lead bend direction Normal bend Sealing method Plastic mold Mounting height 1.70 mm MAX Weight 0.17 g (FPT-48P-M49) 48-pin plastic LQFP (FPT-48P-M49) Note 1) * : These dimensions do not include resin protrusion. Note 2) Pins width and pins thickness include plating thickness. Note 3) Pins width do not include tie bar cutting remainder. 9.00 ± 0.20(.354 ± .008)SQ *7.00± 0.10(.276 ± .004)SQ 36 0.145± 0.055 (.006 ± .002) 25 37 24 0.08(.003) Details of "A" part +0.20 1.50 –0.10 (Mounting height) +.008 .059 –.004 INDEX 48 13 "A" 0°~8° 1 0.50(.020) C 12 0.22 ± 0.05 (.008 ± .002) 0.08(.003) 2010 FUJITSU SEMICONDUCTOR LIMITED HMbF48-49Sc-1-2 Document Number: 002-05091 Rev.*A 0.10 ± 0.10 (.004 ± .004) (Stand off) 0.25(.010) M 0.60 ± 0.15 (.024 ± .006) Dimensions in mm (inches). Note: The values in parentheses are reference values. Page 89 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Document Number: 002-05091 Rev.*A Page 90 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Document Number: 002-05091 Rev.*A Page 91 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A 15. Major Changes Spansion Publication Number: S6E1A1_DS710-00001 Page Section Revision 0.1 Revision 1.0 [July 16,2014] 3 1. Description 5 2. Features 6 2. Features 9 3. Product Lineup 21,22,23 6. List of Pin Functions , List of pin functions 24,25 6. List of Pin Functions 23 List of pin functions 12. Memory Map 40 Memory map (1) 12. Memory Map 41 Memory map (2) 14. Electrical Characteristics 46 14.1 Absolute Maximum Ratings 14. Electrical Characteristics 47 14.2 Recommended Operating Conditions 14. Electrical Characteristics 48,49,50 14.3 DC Characteristics 14.3.1 Current Rating 14. Electrical Characteristics 52 14.4 AC Characteristics 14.4.1 Main Clock Input Characteristics 14. Electrical Characteristics 14.4 AC Characteristics 54 14.4.3 Built-in CR Oscillation Characteristics 14. Electrical Characteristics 14.4 AC Characteristics 14.4.5 Operating Conditions of Main 55 PLL(In the case of using the built-in high-speed CR clock as the input clock of the main PLL) 14. Electrical Characteristics 56 14.4 AC Characteristics 14.4.7 Power-on Reset Timing 14. Electrical Characteristics 78 14.4 AC Characteristics 14.4.12 I2C Timing 80 83,84 85 14. Electrical Characteristics 14.5 12-bit A/D Converter 14. Electrical Characteristics 14.6 Low-voltage Detection Characteristics 14. Electrical Characteristics 14.7 Flash Memory Write/Erase Characteristics Document Number: 002-05091 Rev.*A Change Results Initial release Revised from "Preliminary" to "Full Production" Revised from "TYPE1" product to "TYPE1-M0+" product Revised "Processor version" Revised "Conversion time" of 12-bit A/D converter Added "Note" for accuracy of built-in CR Revised Pin number 30 and 31 of LQFP-32 and QFN-32 Revised Function description of SOT1_x(SDA1_x) Revised from "MTB resister" to "MTB resister(SFR)" Revised product name and RAM address Revised Analog pin input voltage Added note "*2" • Revised and added "Conditions" • Revised the value of "TBD" Revised the value of "Internal operating clock frequency" and "Internal operating clock cycle time" Revised the value of "TBD" • Revised the value of "TBD" • Revised the maximum value of "Main PLL clock frequency" • Revised the value of "TBD" • Revised from "LVDL_minimum" to "VDH_minimum" • Revised the condition of "Noise filter" • Revised the note for noise filter • Revised the value of "Conversion time", "Sampling time" and "Compare clock cycle" • Revised the value of "State transition time to operation permission" • Revised the note Revised the value of SVHR and SVHI • Revised the value of "TBD" • Revised the value of typical Page 92 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Page 86,88 90 Section 14. Electrical Characteristics 14.8 Return Time from Low-Power Consumption Mode 15. Ordering Information Change Results Revised the value of "TBD" Revised from "LCC-52P-M02" to "FPT-52P-M02" NOTE: Please see “Document History” about later revised information. Document Number: 002-05091 Rev.*A Page 93 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Document History Document Title: S6E1A11B0A/C0A, S6E1A12B0A/C0A 32-Bit ARM® Cortex® - FM0+ based Microcontroller Document Number: 002-05091 Revision ECN ** - Orig. of Submission Change Date AKIH 07/16/2014 Description of Change Migrated to Cypress and assigned document number 002-05091. No change to document contents or format. *A 5131394 AKIH Document Number: 002-05091 Rev.*A 02/10/2016 Updated to Cypress format. Page 94 of 95 S6E1A11B0A/C0A S6E1A12B0A/C0A Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products Automotive cypress.com/go/automotive Clocks & Buffers cypress.com/go/clocks Interface Lighting & Power Control cypress.com/go/interface cypress.com/go/powerpsoc Memory cypress.com/go/memory PSoC cypress.com/go/psoc Touch Sensing PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP Cypress Developer Community Community | Forums | Blogs | Video | Training Technical Support cypress.com/go/support cypress.com/go/touch USB Controllers cypress.com/go/USB Wireless/RF Spansion Products psoc.cypress.com/solutions cypress.com/go/wireless cypress.com/spansionproducts Cypress, the Cypress logo, Spansion®, the Spansion logo, MirrorBit®, MirrorBit® EclipseTM, ORNANDTM, Easy DesignSimTM, TraveoTM and combinations thereof, are trademarks and registered trademarks of Cypress Semiconductor Corp. ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries. All other trademarks or registered trademarks referenced herein are the property of their respective owners. © Cypress Semiconductor Corporation, 2014-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document Number: 002-05091 Rev.*A February 10, 2016 Page 95 of 95