PD -97773 IRFR812TRPbF HEXFET® Power MOSFET Applications • Zero Voltage Switching SMPS • Uninterruptible Power Supplies • Motor Control applications VDSS RDS(on) typ. Trr typ. 500V Parameter 75ns 1.85Ω 3.6A D Features and Benefits • Fast body diode eliminates the need for external diodes in ZVS applications. • Lower Gate charge results in simpler drive requirements. • Higher Gate voltage threshold offers improved noise immunity. Absolute Maximum Ratings S G D-Pak IRFR812TRPbF Max. ID @ TC = 25°C Continuous Drain Current, VGS @ 10V ID Units 3.6 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V c 2.3 Pulsed Drain Current 14.4 78 W Linear Derating Factor Gate-to-Source Voltage 0.63 ± 20 W/°C V 32 -55 to + 150 V/ns IDM PD @TC = 25°C Power Dissipation VGS e dv/dt TJ Peak Diode Recovery dv/dt TSTG Storage Temperature Range Operating Junction and °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) 10lb in (1.1N m) x Mounting torque, 6-32 or M3 screw Diode Characteristics Symbol Parameter A x Min. Typ. Max. Units Continuous Source Current ––– ––– ISM (Body Diode) Pulsed Source Current ––– ––– 14.4 showing the integral reverse VSD (Body Diode) Diode Forward Voltage ––– ––– 1.2 V p-n junction diode. TJ = 25°C, IS = 3.6A, VGS = 0V trr Reverse Recovery Time ––– 75 110 ns TJ = 25°C, IF = 3.6A Qrr Reverse Recovery Charge ––– ––– 94 135 140 200 nC TJ = 125°C, di/dt = 100A/μs TJ = 25°C, IS = 3.6A, VGS = 0V f IRRM Reverse Recovery Current ––– ––– 220 3.2 330 4.8 A TJ = 125°C, di/dt = 100A/μs TJ = 25°C, IS = 3.6A, VGS = 0V f c 3.6 Conditions IS MOSFET symbol A D G f f S f di/dt = 100A/μs ton Forward Turn-On Time Notes through are on page 2 www.irf.com Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 1 4/10/12 IRFR812TRPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V(BR)DSS ΔV(BR)DSS/ΔTJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage 500 ––– ––– 3.0 ––– ––– ––– ––– ––– 0.37 1.85 ––– ––– ––– ––– ––– ––– ––– 2.2 5.0 25 2.0 100 -100 Conditions V VGS = 0V, ID = 250μA V/°C Reference to 25°C, ID = 250μA Ω VGS = 10V, ID = 2.2A V VDS = VGS, ID = 250μA μA VDS = 500V, VGS = 0V mA VDS = 400V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V f Dynamic @ TJ = 25°C (unless otherwise specified) Symbol gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff. Coss eff. (ER) Parameter Min. Typ. Max. Units Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance Effective Output Capacitance 7.6 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 14 22 24 17 810 47 7.3 610 16 5.9 37 ––– 20 7.3 7.1 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC ns Conditions VDS = 50V, ID = 2.2A ID = 3.6A VDS = 400V VGS = 10V, See Fig.14a &14b VDD = 250V ID = 3.6A RG = 17Ω VGS = 10V, See Fig. 15a & 15b VGS = 0V VDS = 25V ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 400V, ƒ = 1.0MHz f f pF VGS = 0V,VDS = 0V to 400V g (Energy Related) Avalanche Characteristics Symbol EAS IAR EAR Parameter Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy c d c Typ. ––– ––– ––– Max. 150 1.8 7.8 Units mJ A mJ Typ. Max. Units ––– ––– ––– 1.6 40 110 °C/W Thermal Resistance Symbol RθJC RθJA RθJA Parameter h Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient h Notes: Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11) Starting TJ = 25°C, L = 93mH, RG = 25Ω, IAS = 1.8A. (See Figure 13). ISD = 3.6A, di/dt ≤ 520A/μs, VDDV(BR)DSS, TJ ≤ 150°C. 2 hi Pulse width ≤ 300μs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff.(ER) is a fixed capacitance that stores the same energy as Coss while VDS is rising from 0 to 80% VDSS . Rθ is measured at TJ approximately 90°C When mounted on 1" square PCB (FR-4 or G-10 Material) www.irf.com IRFR812TRPbF 100 100 10 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 6.2V 5.9V 5.8V 5.6V 5.5V 5.3V 1 0.1 5.3V BOTTOM 0.01 ≤60μs PULSE WIDTH 1 Tj = 150°C 0.1 10 100 1 VDS, Drain-to-Source Voltage (V) 10 Fig 2. Typical Output Characteristics 100 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) Fig 1. Typical Output Characteristics ≤60μs PULSE WIDTH 10 TJ = 150°C 1 100 V DS, Drain-to-Source Voltage (V) VDS = 50V ID, Drain-to-Source Current(A) 5.3V 1 ≤60μs PULSE WIDTH Tj = 25°C 0.1 10 VGS 15V 10V 6.2V 5.9V 5.8V 5.6V 5.5V 5.3V TJ = 25°C ID = 3.6A 2.5 VGS = 10V 2.0 1.5 1.0 0.5 0.0 0.1 4 5 6 7 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 8 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) Fig 4. Normalized On-Resistance Vs. Temperature 3 100000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance (pF) 10000 Coss = Cds + Cgd 1000 Ciss 100 Coss Crss 10 1 1 10 100 1000 V(BR)DSS , Drain-to-Source Breakdown Voltage (V) IRFR812TRPbF 650 Id = 250uA 600 550 500 -60 -40 -20 0 VDS, Drain-to-Source Voltage (V) T J , Temperature ( °C ) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typ. Breadown Voltage vs. Temperature 100 16 VDS= 400V VDS= 250V 12 ISD, Reverse Drain Current (A) VGS, Gate-to-Source Voltage (V) ID= 3.6A VDS= 100V 8 4 T J = 150°C 10 1 T J = 25°C VGS = 0V 0 0 4 8 12 QG Total Gate Charge (nC) 4 20 40 60 80 100 120 140 160 16 0.1 0.2 0.4 0.6 0.8 1.0 VSD, Source-to-Drain Voltage (V) www.irf.com IRFR812TRPbF RDS (on) , Drain-to-Source On Resistance (Ω) ID , Drain Current (A) 4 3 2 1 0 25 50 75 100 125 150 3.0 2.5 VGS = 20V VGS = 10V 2.0 1.5 0 1 T C , CaseTemperature (°C) 2 3 4 5 6 7 ID , Drain Current (A) Fig 9. Maximum Drain Current Vs. Case Temperature Fig 9. Typical Rdson Vs. Drain Current Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFR812TRPbF ID, Drain-to-Source Current (A) 100 EAS, Single Pulse Avalanche Energy (mJ) 700 OPERATION IN THIS AREA LIMITED BY R DS(on) 10 100μsec 1msec 1 10msec 0.1 Tc = 25°C Tj = 150°C Single Pulse ID 0.4A 0.7A BOTTOM 1.8A TOP 600 500 400 300 200 100 0 DC 25 0.01 1 10 100 1000 VDS, Drain-toSource Voltage (V) Fig 12. Maximum Safe Operating Area 50 75 100 125 150 Starting T J, Junction Temperature (°C) Fig 13. Maximum Avalanche Energy vs. Drain Current V(BR)DSS 15V tp DRIVER L VDS D.U.T RG + V - DD IAS 20V tp A 0.01Ω I AS Fig 13a. Unclamped Inductive Test Circuit Fig 13b. Unclamped Inductive Waveforms Id Vds Vgs L DUT 0 1K S VCC Vgs(th) Qgs1 Qgs2 Fig 14a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 14b. Gate Charge Waveform www.irf.com IRFR812TRPbF RD VDS VDS 90% V GS D.U.T. RG + - VDD 10% VGS V10V GS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 td(on) Fig 15a. Switching Time Test Circuit D.U.T td(off) Driver Gate Drive + P.W. - Reverse Recovery Current VDD P.W. Period D.U.T. ISD Waveform + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test D= * • • • • Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - tf Fig 15b. Switching Time Waveforms + RG tr + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs www.irf.com 7 IRFR812TRPbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information EXAMPLE: T HIS IS AN IRFR120 WITH AS S EMBLY LOT CODE 1234 AS S EMBLED ON WW 16, 2001 IN THE AS S EMBLY LINE "A" PART NUMBER INTERNATIONAL RECTIFIER LOGO Note: "P" in as s embly line pos ition indicates "Lead-F ree" IRFR120 12 116A 34 AS S EMBLY LOT CODE DATE CODE YEAR 1 = 2001 WEEK 16 LINE A "P" in as s embly line position indicates "Lead-Free" qualification to the cons umer-level OR INT ERNATIONAL RE CT IFIER LOGO PART NUMBER IRF R120 12 AS S EMBLY LOT CODE 34 DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) P = DES IGNAT ES LEAD-FREE PRODUCT QUALIF IED TO THE CONS UMER LEVEL (OPTIONAL) YEAR 1 = 2001 WEEK 16 A = AS S EMBLY S ITE CODE D-Pak (TO-252AA) packages are not recommended for Surface Mount Application. Note:For the most current drawing please refer to IR website at http://www.irf.com/package/ 8 www.irf.com IRFR812TRPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 101N Sepulveda., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.04/12 www.irf.com 9