PD -91703A IRF7341 l l l l l l l Generation V Technology Ultra Low On-Resistance Dual N-Channel Mosfet Surface Mount Available in Tape & Reel Dynamic dv/dt Rating Fast Switching HEXFET® Power MOSFET S1 G1 S2 G2 Description 1 8 D1 2 7 D1 3 6 4 5 VDSS = 55V D2 D2 RDS(on) = 0.050Ω Top View Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The SO-8 has been modified through a customized leadframe for enhanced thermal characteristics and multiple-die capability making it ideal in a variety of power applications. With these improvements, multiple devices can be used in an application with dramatically reduced board space. The package is designed for vapor phase, infra red, or wave soldering techniques. Power dissipation of greater than 0.8W is possible in a typical PCB mount application. SO-8 Absolute Maximum Ratings Parameter VDS ID @ TC = 25°C ID @ TC = 70°C IDM PD @TC = 25°C PD @TC = 70°C VGS VGSM EAS dv/dt TJ, TSTG Drain- Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation Linear Derating Factor Gate-to-Source Voltage Gate-to-Source Voltage Single Pulse tp<10µs Single Pulse Avalanche Energy Peak Diode Recovery dv/dt Junction and Storage Temperature Range Max. Units 55 4.7 3.8 38 2.0 1.3 0.016 ± 20 30 72 5.0 -55 to + 150 V A W W/°C V V V/ns °C Thermal Resistance Parameter RθJA www.irf.com Maximum Junction-to-Ambient Typ. Max. Units ––– 62.5 °C/W 1 4/11/05 IRF7341 Electrical Characteristics @ TJ = 25°C (unless otherwise specified) ∆V(BR)DSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) gfs Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance V(BR)DSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Min. 55 ––– ––– ––– 1.0 7.9 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.059 0.043 0.056 ––– ––– ––– ––– ––– ––– 24 2.3 7.0 8.3 3.2 32 13 740 190 71 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 0.050 VGS = 10V, ID = 4.7A Ω 0.065 VGS = 4.5V, I D = 3.8A ––– V VDS = VGS, ID = 250µA ––– S VDS = 10V, ID = 4.5A 2.0 VDS = 55V, VGS = 0V µA 25 VDS = 55V, VGS = 0V, TJ = 55°C -100 VGS = -20V nA 100 VGS = 20V 36 ID = 4.5A 3.4 nC VDS = 44V 10 VGS = 10V, See Fig. 10 12 VDD = 28V 4.8 ID = 1.0A ns 48 RG = 6.0Ω 20 RD = 28Ω, ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz, See Fig. 9 Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Min. Typ. Max. Units 2.0 38 ––– ––– ––– ––– 60 120 1.2 90 170 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 2.0A, VGS = 0V TJ = 25°C, IF = 2.0A di/dt = -100A/µs D S Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25°C, L = 6.5mH RG = 25Ω, IAS = 4.7A. (See Figure 8) 2 ISD ≤ 4.7A, di/dt ≤ 220A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C Pulse width ≤ 300µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board, t<10 sec www.irf.com IRF7341 100 100 VGS 15V 12V 10V 8.0V 6.0V 4.5V 4.0V 3.5V BOTTOM 3.0V VGS 15V 12V 10V 8.0V 6.0V 4.5V 4.0V 3.5V BOTTOM 3.0V TOP I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 10 3.0V 10 3.0V 20µs PULSE WIDTH TJ = 25 °C 1 0.1 1 10 100 VDS , Drain-to-Source Voltage (V) 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 100 ISD , Reverse Drain Current (A) I D , Drain-to-Source Current (A) 20µs PULSE WIDTH TJ = 150 °C 1 0.1 TJ = 25 ° C TJ = 150 ° C 10 TJ = 150 ° C 10 TJ = 25 ° C 1 V DS = 25V 20µs PULSE WIDTH 1 3 4 5 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 6 0.1 0.2 V GS = 0 V 0.5 0.8 1.1 1.4 VSD ,Source-to-Drain Voltage (V) Fig 4. Typical Source-Drain Diode Forward Voltage 3 RDS(on) , Drain-to-Source On Resistance (Normalized) 2.5 ID = 4.7A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 VGS = 10V 0 20 40 60 80 100 120 140 160 R DS (on), Drain-to-Source On Resistance (Ω) IRF7341 0.120 0.100 0.080 VGS = 4.5V 0.060 VGS = 10V 0.040 0 10 TJ , Junction Temperature ( °C) 200 0.10 0.08 I D = 4.7A 0.06 0.04 A 0 2 4 6 8 V GS , Gate-to-Source Voltage (V) Fig 7. Typical On-Resistance Vs. Gate Voltage 10 EAS , Single Pulse Avalanche Energy (mJ) 0.12 RDS(on) , Drain-to-Source On Resistance ( Ω ) 30 40 Fig 6. Typical On-Resistance Vs. Drain Current Fig 5. Normalized On-Resistance Vs. Temperature 4 20 I D , Drain Current (A) TOP 160 BOTTOM ID 2.1A 3.8A 4.7A 120 80 40 0 25 50 75 100 125 150 Starting TJ , Junction Temperature ( °C) Fig 8. Maximum Avalanche Energy Vs. Drain Current www.irf.com IRF7341 1200 VGS , Gate-to-Source Voltage (V) 1000 C, Capacitance (pF) 20 VGS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + Cgd Ciss 800 600 400 Coss 200 ID = 4.5A VDS = 48V VDS = 30V VDS = 12V 16 12 8 4 Crss 0 0 1 10 0 100 10 20 30 40 QG , Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 9. Typical Capacitance Vs. Drain-to-Source Voltage Fig 10. Typical Gate Charge Vs. Gate-to-Source Voltage Thermal Response (Z thJA ) 100 D = 0.50 0.20 10 0.10 0.05 0.02 1 PDM 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJA + TA 0.1 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 IRF7341 SO-8 Package Outline Dimensions are shown in millimeters (inches) D 5 A 8 7 6 5 6 H 0.25 [.010] 1 2 3 A 4 MAX MIN .0532 .0688 1.35 1.75 A1 .0040 e e1 0.25 .0098 0.10 .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° A C y 0.10 [.004] 8X b 0.25 [.010] MAX b e1 6X MILLIMETERS MIN A E INCHES DIM B A1 8X L 8X c 7 C A B F OOTPRINT NOT ES : 1. DIMENS IONING & TOLERANCING PER ASME Y14.5M-1994. 8X 0.72 [.028] 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010]. 6.46 [.255] 7 DIMENS ION IS T HE LENGT H OF LEAD FOR SOLDERING TO A S UBST RAT E. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: T HIS IS AN IRF7101 (MOSFET ) INT ERNAT IONAL RECT IFIER LOGO XXXX F7101 DAT E CODE (YWW) P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) Y = LAS T DIGIT OF T HE YEAR WW = WEEK A = AS S EMBLY S IT E CODE LOT CODE PART NUMBER 6 www.irf.com IRF7341 SO-8 Tape and Reel Dimensions are shown in millimeters (inches) TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/05 www.irf.com 7