SA5.0 THRU SA170CA TRANSZORB™ TRANSIENT VOLTAGE SUPPRESSOR Stand-off Voltage - 5.0 to 170 Volts Peak Pulse Power - 500 Watts FEATURES DO-204AC 0.034 (0.86) 1.0 (25.4) MIN. 0.028 (0.71) DIA. 0.300 (7.6) 0.230 (5.8) 0.140 (3.6) 0.104 (2.6) DIA. 1.0 (25.4) MIN. ♦ Plastic package has Underwriters Laboratory Flammability Classification 94V-0 ♦ Glass passivated junction ♦ 500W peak pulse power surge capability with a 10/1000µs waveform, repetition rate (duty cycle): 0.01% ♦ Excellent clamping capability ♦ Low incremental surge resistance ♦ Fast response time: typically less than 1.0ps from 0 Volts to V(BR) for uni-directional and 5.0ns for bi-directional types ♦ For devices with V(BR)≥10V, ID are typically less than 1.0µA ♦ High temperature soldering guaranteed: 265°C/10 seconds 0.375” (9.5mm) lead length, 5lbs (2.3 kg) tension MECHANICAL DATA Dimensions in inches and (millimeters) Case: JEDEC DO-204AC molded plastic body over passivated junction Terminals: Solder plated axial leads, solderable per MIL-STD-750, Method 2026 Polarity: For uni-directional types the color band denotes the cathode, which is positive with respect to the anode under normal TVS operation Mounting Position: Any Weight: 0.015 ounce, 0.4 gram DEVICES FOR BIDIRECTIONAL APPLICATIONS For bi-directional use C or CA Suffix. (e.g. SA5.0C, SA170CA). Electrical characteristics apply in both directions. MAXIMUM RATINGS AND CHARACTERISTICS Ratings at 25°C ambient temperature unless otherwise specified SYMBOL VALUE UNITS PPPM Minimum 500 Watts IPPM SEE TABLE 1 Amps PM(AV) 3.0 Watts IFSM 70 Amps Maximum instantaneous forward voltage at 35A for unidirectional only VF 3.5 Volts Operating junction and storage temperature range TJ, TSTG -55 to +175 °C Peak pulse power dissipation with a 10/1000µs waveform (NOTE 1, FIG. 1) Peak pulse current with a 10/1000µs waveform (NOTE 1) Steady state power dissipation at TL=75°C lead lengths 0.375" (9.5mm) (NOTE 2) Peak forward surge current, 8.3ms single half sine-wave superimposed on rated load, unidirectional only (JEDEC Method) (NOTE 3) NOTES (1) Non-repetitive current pulse, per Fig. 3 and derated above TA=25°C per Fig. 2 (2) Mounted on copper pad area of 1.6 x 1.6” (40 x 40mm) per Fig. 5 (3) 8.3ms single half sine-wave or equivalent square wave, duty cycle=4 pulses per minute maximum 1/25/99 ELECTRICAL CHARACTERISTICS at (TA=25°C unless otherwise noted) TABLE 1 Breakdown Voltage V(BR) (Volts) (NOTE 1) Test Current at IT (mA) Stand-off Voltage VWM (Volts) Maximum Reverse Leakage at VWM ID (NOTE3) (µA) Maximum Peak Pulse Current IPPM (Amps) Maximum Clamping Voltage at IPPM VC (Volts) Maximum Temperature Coefficient of V(BR) (mV / °C) (NOTE 2) Device Type MIN MAX SA5.0 6.40 7.30 10 5.0 600 52.1 9.6 5.0 SA5.0A 6.40 7.00 10 5.0 600 54.3 9.2 5.0 SA6.0 6.67 8.15 10 6.0 600 43.9 11.4 5.0 SA6.0A 6.67 7.37 10 6.0 600 48.5 10.3 5.0 SA6.5 7.22 8.82 10 6.5 400 40.7 12.3 5.0 SA6.5A 7.22 7.98 10 6.5 400 44.7 11.2 5.0 SA7.0 7.78 9.51 10 7.0 150 37.6 13.3 6.0 SA7.0A 7.78 8.60 10 7.0 150 41.7 12.0 6.0 SA7.5 8.33 10.2 1.0 7.5 50 35.0 14.3 7.0 SA7.5A 8.33 9.21 1.0 7.5 50 38.8 12.9 7.0 SA8.0 8.89 10.9 1.0 8.0 25 33.3 15.0 7.0 SA8.0A 8.89 9.83 1.0 8.0 25 36.8 13.6 7.0 SA8.5 9.44 11.5 1.0 8.5 10 31.4 15.9 8.0 SA8.5A 9.44 10.4 1.0 8.5 10 34.7 14.4 8.0 SA9.0 10.0 12.2 1.0 9.0 5.0 29.6 16.9 9.0 SA9.0A 10.0 11.1 1.0 9.0 5.0 32.5 15.4 9.0 SA10 11.1 13.6 1.0 10.0 1.0 26.6 18.8 10.0 SA10A 11.1 12.3 1.0 10.0 1.0 29.4 17.0 10.0 SA11 12.2 14.9 1.0 11.0 1.0 24.9 20.1 11.0 SA11A 12.2 13.5 1.0 11.0 1.0 27.5 18.2 11.0 SA12 13.3 16.3 1.0 12.0 1.0 22.7 22.0 12.0 SA12A 13.3 14.7 1.0 12.0 1.0 25.1 19.9 12.0 SA13 14.4 17.6 1.0 13.0 1.0 21.0 23.8 13.0 SA13A 14.4 15.9 1.0 13.0 1.0 23.3 21.5 13.0 SA14 15.6 19.1 1.0 14.0 1.0 19.4 25.8 14.0 SA14A 15.6 17.2 1.0 14.0 1.0 21.6 23.2 14.0 SA15 16.7 20.4 1.0 15.0 1.0 18.6 26.9 16.0 SA15A 16.7 18.5 1.0 15.0 1.0 20.5 24.4 16.0 SA16 17.8 21.8 1.0 16.0 1.0 17.4 28.8 19.0 SA16A 17.8 19.7 1.0 16.0 1.0 19.2 26.0 17.0 SA17 18.9 23.1 1.0 17.0 1.0 16.4 30.5 20.0 SA17A 18.9 20.9 1.0 17.0 1.0 18.1 27.6 19.0 SA18 20.0 24.4 1.0 18.0 1.0 15.5 32.2 21.0 SA18A 20.0 22.1 1.0 18.0 1.0 17.1 29.2 20.0 SA20 22.2 27.1 1.0 20.0 1.0 14.0 35.8 25.0 SA20A 22.2 24.5 1.0 20.0 1.0 15.4 32.4 23.0 SA22 24.4 29.8 1.0 22.0 1.0 22.7 39.4 28.0 SA22A 24.4 26.9 1.0 22.0 1.0 14.1 35.5 25.0 SA24 26.7 32.6 1.0 24.0 1.0 11.6 43.0 31.0 SA24A 26.7 29.5 1.0 24.0 1.0 12.9 38.9 28.0 SA26 28.9 35.3 1.0 26.0 1.0 10.7 46.6 31.0 SA26A 28.9 31.9 1.0 26.0 1.0 11.9 42.1 30.0 SA28 31.1 38.0 1.0 28.0 1.0 10.0 50.1 35.0 SA28A 31.1 34.4 1.0 28.0 1.0 11.0 45.4 31.0 SA30 33.3 40.7 1.0 30.0 1.0 9.3 53.5 39.0 SA30A 33.3 36.8 1.0 30.0 1.0 10 48.4 36.0 SA33 36.7 44.9 1.0 33.0 1.0 8.5 59.0 42.0 SA33A 36.7 40.6 1.0 33.0 1.0 9.4 53.3 39.0 SA36 40.0 48.9 1.0 36.0 1.0 7.8 64.3 46.0 SA36A 40.0 44.2 1.0 36.0 1.0 8.6 58.1 41.0 SA40 44.4 54.3 1.0 40.0 1.0 7.0 71.4 51.0 SA40A 44.4 49.1 1.0 40.0 1.0 7.8 64.5 46.0 ELECTRICAL CHARACTERISTICS at (TA=25°C unless otherwise noted) TABLE 1 (Cont’d) Breakdown Voltage V(BR) Volts (NOTE 1) Stand-off Voltage VWM (Volts) Maximum Reverse Leakage at VWM ID (NOTE3) (µA) Maximum Peak Pulse Current IPPM (Amps) Maximum Clamping Voltage at IPPM VC (Volts) Maximum Temperature Coefficient of V(BR) (mV / °C) 55.0 Device Type MIN MAX Test Current at IT (mA) SA43 47.8 58.4 1.0 43.0 1.0 6.5 76.7 SA43A 47.8 52.8 1.0 43.0 1.0 7.2 69.4 SA45 50.0 61.1 1.0 45.0 1.0 6.2 80.3 58.0 SA45A 50.0 55.3 1.0 45.0 1.0 6.9 72.7 52.0 SA48 53.3 65.2 1.0 48.0 1.0 5.8 85.5 63.0 SA48A 53.3 58.9 1.0 48.0 1.0 6.5 77.4 56.0 SA51 56.7 69.3 1.0 51.0 1.0 5.5 91.1 66.0 SA51A 56.7 62.7 1.0 51.0 1.0 6.1 82.4 61.0 SA54 60.0 73.3 1.0 54.0 1.0 5.2 96.3 71.0 SA54A 60.0 66.3 1.0 54.0 1.0 5.7 87.1 65.0 SA58 64.4 78.7 1.0 58.0 1.0 4.9 103 78.0 SA58A 64.4 71.2 1.0 58.0 1.0 5.3 93.6 70.0 SA60 66.7 81.5 1.0 60.0 1.0 4.7 107 80.0 SA60A 66.7 73.7 1.0 60.0 1.0 5.2 96.8 71.0 SA64 71.1 86.9 1.0 64.0 1.0 4.4 114 86.0 SA64A 71.1 78.6 1.0 64.0 1.0 4.9 103 76.0 SA70 77.8 95.1 1.0 70.0 1.0 4.0 125 94.0 SA70A 77.8 86.0 1.0 70.0 1.0 4.4 113 85.0 SA75 83.3 102 1.0 75.0 1.0 3.7 134 101 SA75A 83.3 92.1 1.0 75.0 1.0 4.1 121 91.0 SA78 86.7 106 1.0 78.0 1.0 3.6 139 105 SA78A 86.7 95.8 1.0 78.0 1.0 4.0 126 95.0 SA85 94.4 115 1.0 85.0 1.0 3.3 151 114 SA85A 94.4 104 1.0 85.0 1.0 3.6 137 103 SA90 100 122 1.0 90.0 1.0 3.1 160 121 SA90A 100 111 1.0 90.0 1.0 3.4 146 110 SA100 111 136 1.0 100 1.0 2.8 179 135 SA100A 111 123 1.0 100 1.0 3.1 162 123 SA110 122 149 1.0 110 1.0 2.6 196 148 SA110A 122 135 1.0 110 1.0 2.8 177 133 SA120 133 163 1.0 120 1.0 2.3 214 162 SA120A 133 147 1.0 120 1.0 2.6 193 146 SA130 144 176 1.0 130 1.0 2.2 230 175 SA130A 144 159 1.0 130 1.0 2.4 209 158 SA150 167 204 1.0 150 1.0 1.9 268 203 SA150A 167 185 1.0 150 1.0 2.1 243 184 SA160 178 218 1.0 160 1.0 1.7 257 217 SA160A 178 197 1.0 160 1.0 1.9 259 196 SA170 189 231 1.0 170 1.0 1.6 304 230 SA170A 189 209 1.0 170 1.0 1.8 275 208 NOTES (1) V(BR) measured after IT applied for 300µs. IT=square wave pulse or equivalent (2) Surge current waveform per Fig. 3 and derate per Fig. 2 (3) For bidirectional types with VWM of 10 Volts and less, the ID limit is doubled. (4) All terms and symbols are consistent with ANSI/IEEE C62.35 (NOTE 2) 50.0 RATINGS AND CHARACTERISTIC CURVES SA5.0 THRU SA170CA FIG. 2 - PULSE DERATING CURVE 100 PPPM, PEAK PULSE POWER, kW NON-REPETITIVE PULSE WAVEFORM SHOWN in FIG. 3 TA=25°C 10 IMPULSE EXPONENTIAL DECAY PPK”.5” td 1.0 HALF SINE PPK td td = 7tp SQUARE PPK td 0.1 0.1µs CURRENT WAVEFORMS 1,000µs 100µs 10µs 1µs 10,000µs PEAK PULSE POWER (Ppp) or CURRENT (IPP) DERATING IN PERCENTAGE, % FIG. 1 - PEAK PULSE POWER RATING CURVE 30 75 50 25 0 td, PULSE WIDTH, sec. 25 0 50 75 100 125 150 175 200 TA, AMBIENT TEMPERATURE, °C FIG. 4 - MAXIMUM NON-REPETITIVE PEAK FORWARD SURGE CURRENT UNIDIRECTIONAL ONLY FIG. 3 - PULSE WAVEFORM PULSE WIDTH (td) is DEFINED as the POINT WHERE the PEAK CURRENT DECAYS to 50% of IPP tr=10µsec. IPPM PEAK PULSE CURRENT, % PEAK FORWARD SURGE CURRENT, AMPERES 150 PEAK VALUE IPPM 100 HALF VALUE - IPP 2 50 10/1000µsec. WAVEFORM as DEFINED by R.E.A. 200 8.3ms SINGLE HALF SINE-WAVE (JEDEC Method) 100 10 100 10 1 NUMBER OF CYCLES AT 60 Hz 0 td 4.0 3.0 2.0 1.0 0 t, TIME, ms FIG. 5 - STEADY STATE POWER DERATING CURVE FIG. 6 - CAPACITANCE 10,000 UNIDIRECTIONAL BIDIRECTIONAL 3.5 C - CAPACITANCE, pF PM(AV), STEADY STATE POWER DISSIPATION, WATTS 4.0 3.0 2.5 2.0 L =0.375”(9.5mm) 1.5 LEAD LENGTHS 1,000 VR = 0 100 VR = RATED STAND-OFF VOLTAGE 1.0 10 0.5 0 1.6 x 1.6 x 0.040” (40 x 40 x 1mm) COPPER HEAT SINKS 0 25 50 75 100 5 100 REVERSE VOLTAGE, VOLTS 125 150 TL, LEAD TEMPERATURE,°C 175 200 500 RATINGS AND CHARACTERISTIC CURVES SA5.0 THRU SA170CA FIG. 7 - INCREMENTAL CLAMPING VOLTAGE CURVE UNIDIRECTIONAL WAVEFORM: 8 X 20 IMPULSE ∆VC=VC-V(BR) 100 SA170 SA110 SA70 SA54 SA40 10 SA30 SA24 SA18 SA15 1.0 SA12 SA5.0 SA9.0 0.1 0.5 SA110 SA70 SA24 SA15 SA9.0 1.0 SA5.0 IPP, PEAK PULSE CURRENT, AMPS 50 10 1 IPP, PEAK PULSE CURRENT, AMPS FIG. 9 - INCREMENTAL CLAMPING VOLTAGE CURVE BIDIRECTIONAL FIG. 10 - INCREMENTAL CLAMPING VOLTAGE CURVE BIDIRECTIONAL 100 100 WAVEFORM: 8 X 20 IMPULSE ∆VC=VC-V(BR) SA110C SA170C SA70C SA60C 10 SA40C SA30C SA24C SA15C SA9.0C 1.0 0.1 0.5 SA6.5C 1 WAVEFORM: 10 X 1000 IMPULSE ∆VC=VC-V(BR) SA170C 10 IPP, PEAK PULSE CURRENT, AMPS 50 ∆Vc, INCREMENTAL CLAMPING VOLTAGE ∆Vc, INCREMENTAL CLAMPING VOLTAGE SA40 10 0.1 0.5 50 10 1 WAVEFORM: 10 X 1000 IMPULSE ∆VC=VC-V(BR) SA170 ∆Vc, INCREMENTAL CLAMPING VOLTAGE ∆Vc, INCREMENTAL CLAMPING VOLTAGE 100 FIG. 8 - INCREMENTAL CLAMPING VOLTAGE CURVE UNIDIRECTIONAL SA110C SA70C 10 SA40C SA24C SA15C SA9.0C SA6.5C 1.0 0.1 0.5 1 10 IPP, PEAK PULSE CURRENT, AMPS 50 RATINGS AND CHARACTERISTIC CURVES SA5.0 THRU SA170CA FIG. 11 - TYPICAL INSTANTANEOUS FORWARD VOLTAGE CHARACTERISTICS CURVE 100 IF, FORWARD CURRENT, AMPS TJ=25°C PULSE WIDTH=300µs 1% DUTY CYCLE 20 10 2 1 UNIDIRECTIONAL (ONLY) 0.2 0.1 0 0.5 1 2 1.5 2.5 VF, FORWARD VOLTAGE, VOLTS Θv, TEMPERATURE COEFFICIENT, mV/°C FIG. 12 - BREAKDOWN VOLTAGE TEMPERATURE COEFFICIENT CURVE 200 100 UNIDIRECTIONAL BIDIRECTIONAL 10 1.0 5.0 10 100 500 VWM, RATED STAND-OFF VOLTAGE, VOLTS APPLICATIONS This TVS series is a low cost, 500 watt commercial and industrial product for use in applications where space is a premium and where large voltage transients can permanently damage voltage-sensitive components. The response time of TVS clamping action is 1.0ns for uni-directional and 5.0ns for bi-directional; therefore, they can protect integrated circuits, MOS devices, hybrids, and other voltage-sensitive semiconductor components.