!"#" $%$ &' !($$(#%$ ) *"$+ ,-$ $,(!$ + .-+" !%$ $$!!(%$/0+"-+ & #$"(1 2"$3#&4 53""%,*66&)7) 53""%,*66&)7)6.672)' .""%,628&2' 9:;""%,9#6482 *:;""%,0668& /*:;""%,&68'#6 .*:;""%,676'&<6#) /*""%,78'22 +-, - !=! !, + 0 -$($$ 0 3#&4 0 6 7 62#, ,(, 29(+,(1 !$$-1,>?@!$,A! &1 !$$- !$$-1, 0 3#&4 0 2 7 0 3#&4 ! ± ± ± ± " #± 0 & 7 2° ! !$% & ()*+ * , * $/0 *+ * # * 0 /$*+ * , * $$% & ' $ * 3 * 1+ % /45 °$ 6+ % /45 °$ , °$ &-. 1.. 2 &*+ 2 6+ % ' 6968B4 $%$ !$$- , !$$? !, 6.!-?,,(!,!"+ ,,-?($$(, ! (,+ , 2! $%$ ?!C#( (( !$$- , &!?%""$,%$ !$$- ?% 296.(, 0 3#&4 0 8 7 2° &-. 1.. 6 = $ !*+ * 7 * &8 ' ()$% & 7 7 µ' *8* $ $ 7 ! *838 9:; $$% & 7 7 ' *8*3&8 $/0 <*+ <* # 7 7 * &8 ' &8 0 /$ <*+ <* , 7 7 * &8 µ' &8 & 7 2 $%( $( 7 , = $/0 6%*+ * 7 7 * &8 ' &8 ' &( ( 7 Ω $* 4,=(: !+$ $ 7 , ! *838 >:; ( ( 7 # µ ( ! 7 # µ $$% ('-6!0( $:'('$0(&6&$6 " " #" ! × × ' &8 ' *8* *8*3&8 ' (8 Ω × 6 0 3#&4 0 7 3#&4 )B64 D 6&B24 2B8 / &B4 D/1 B4 2° 0 3#&4 0 4 7 Fig.1 Forword Current vs. Ambient Temperatute Fig.2 Collector Power Dissiption vs. Ambient Temperature Collector Power dissipation Pc (mW) 60 Forward current I F(mA) 50 40 30 20 10 0 -55 0 25 50 75 100 125 200 150 100 50 0 -55 o 7mA 100 125 o 4 3 2 1 Ta= 75 C 50 C o 200 o 25 C 0C -25 C o 100 o 50 20 10 5 2 1 5 0 10 15 0 0.5 1.0 1.5 2.0 2.5 3.0 Forward voltage VF(V) Forward current I F(mA) Fig.5 Current Transfer Ratio vs. Forward Current Fig.6 Collector Current vs. Collector-emitter Voltage 200 50 VCE= 5V Ta= 25 C 180 I F= 30mA 160 140 120 100 80 60 40 o Ta= 25 C 25mA o Collector current Ic (mA) Current transfer ratio CTR (%) 75 500 O Ta= 25 C 0 40 20mA 30 15mA Pc(MAX.) 20 10mA 10 5mA 20 0 0 1 2 5 10 20 Forward current I F(mA) 0 3#&4 50 Fig.4 Forward Current vs. Forward Voltage Forward current I F(mA) 1mA 3mA 5mA Ic= 0.5mA Collecotr-emitter saturation voltage VCE (sat) (V) 5 25 Ambient temperature Ta ( C) Fig.3 Collector-emitter Saturation Voltage vs. Forward Current 6 0 o Ambient temperature Ta ( C) 50 0 1 2 3 4 5 6 7 8 9 Collector-emitter voltage VCE(V) 0 ' 7 Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature Relative current transfer ratio (%) 150 I F= 5mA VCE= 2V 100 50 0.10 Collector-emitter saturation voltage VCE (sat) (V) Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature I F= 20mA I C= 1mA 0.08 0.06 0.04 0.02 0 0 20 40 60 80 100 20 40 Collector dark current ICEO (nA) 100 Fig.10 Response Time vs. Load Resistance 500 VCE= 20V Response time ( s) 1000 100 10 200 100 VCE= 2V IC= 2mA Ta= 25 C o 50 tr 20 10 td tf 5 ts 2 1 0.5 1 20 40 60 80 0.2 0.05 100 o Ambient temperature Ta ( C) 0.1 0.2 0.5 1 2 5 Test Circuit for Response Time Vcc VCE= 2V I C= 2mA Ta= 25 C o 0 Input RD RL Input Output Output 10% 90% ts td 100Ω 10 RL= 10kΩ 10 Load resistance RL (k ) Fig.11 Frequency Response Voltage gain Av (dB) 80 Ambient temperature Ta ( C) Fig.9 Collector Dark Current vs. Ambient Temperature 10000 60 o o Ambient temperature Ta ( C) 1kΩ tr tf Test Circuit for Frequency Response Vcc 20 0.5 1 RD 2 5 10 20 50 100 RL Output 500 Frequency f (kHz) 0 3#&4 0 ) 7 6 ; $, $? (,,?!!(,", "$ !?-$? 30 seconds 230 C 200 C 180 C 1 minute 25 C 2 minutes 1.5 minutes 1 minute 2 E! ! $, !, (! ,+$"!"+ "$$+!$,!,%( :"!"!"(1 !,%(?!!(,-%6 0 3#&4 0 7 7